Skip to main content

Advertisement

Log in

Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

With the development and prosperity of Internet of Things (IoT) technology, wearable electronics have brought fresh changes to our lives. The demands for low power consumption and mini-type wearable power systems for wearable electronics are more urgent than ever. Thermoelectric materials can efficiently convert the temperature difference between body and environment into electrical energy without the need for mechanical components, making them one of the ideal candidates for wearable power systems. In recent years, a variety of high-performance thermoelectric materials and processes for the preparation of large-scale single-fiber devices have emerged, driving the application of flexible fiber-based thermoelectric generators. By weaving thermoelectric fibers into a textile that conforms to human skin, it can achieve stable operation for long periods even when the human body is in motion. In this review, the complete process from thermoelectric materials to single-fiber/yarn devices to thermoelectric textiles is introduced comprehensively. Strategies for enhancing thermoelectric performance, processing techniques for fiber devices, and the wide applications of thermoelectric textiles are summarized. In addition, the challenges of ductile thermoelectric materials, system integration, and specifications are discussed, and the relevant developments in this field are prospected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Xu T, Zhang Z, Qu L. Graphene-based fibers: recent advances in preparation and application. Adv Mater. 2020;32:1901979.

    CAS  Google Scholar 

  2. Jia YH, Jiang QL, Sun HD, Liu PP, Hu DH, Pei YZ, Liu WS, Crispin X, Fabiano S, Ma YG, Cao Y. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv Mater. 2021;33:2102990.

    CAS  Google Scholar 

  3. Shi XL, Chen WY, Zhang T, Zou J, Chen ZG. Fiber-based thermoelectrics for solid, portable, and wearable electronics. Energy Environ Sci. 2021;14:729–64.

    CAS  Google Scholar 

  4. Darabi S, Hummel M, Rantasalo S, Rissanen M, Mansson IO, Hilke H, Hwang B, Skrifvars M, Hamedi MM, Sixta H, Lund A, Muller C. Green conducting cellulose yarns for machine-sewn electronic textiles. ACS Appl Mater Interfaces. 2020;12:56403–12.

    CAS  Google Scholar 

  5. Ding T, Zhou Y, Wang X-Q, Zhang C, Li T, Cheng Y, Lu W, He J, Ho GW. All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv Energy Mater. 2021;11:2102219.

    CAS  Google Scholar 

  6. Zheng XH, Hu QL, Zhou XS, Nie WQ, Li CL, Yuan NY. Graphene-based fibers for the energy devices application: a comprehensive review. Mater Des. 2021;201: 109476.

    CAS  Google Scholar 

  7. Wen NX, Fan Z, Yang ST, Zhao YP, Li CW, Cong TZ, Huang H, Zhang JW, Guan X, Pan LJ. High-performance stretchable thermoelectric fibers for wearable electronics. Chem Eng J. 2021;426: 130816.

    CAS  Google Scholar 

  8. Lee B, Cho H, Park KT, Kim JS, Park M, Kim H, Hong Y, Chung S. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat Commun. 2020;11:5948.

    CAS  Google Scholar 

  9. Lin YC, Liu J, Wang XD, Xu JK, Liu PP, Nie GM, Liu C, Jiang FX. An integral p-n connected all-graphene fiber boosting wearable thermoelectric energy harvesting. Comp Commun. 2019;16:79–83.

    Google Scholar 

  10. Xu HF, Guo Y, Wu B, Hou CY, Zhang QH, Li YG, Wang HZ. Highly integrable thermoelectric fiber. ACS Appl Mater Interfaces. 2020;12:33297–304.

    CAS  Google Scholar 

  11. Du Y, Cai KF, Shen SZ, Donelsonand R, Xu JY, Wang HX, Lin T. Multifold enhancement of the output power of flexible thermoelectric generators made from cotton fabrics coated with conducting polymer. RSC Adv. 2017;7:43737–42.

    CAS  Google Scholar 

  12. Sun TT, Zhou BY, Zheng Q, Wang LJ, Jiang W, Snyder GJ. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat Commun. 2020;11:572.

    CAS  Google Scholar 

  13. Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater. 2022;7:870–86.

    Google Scholar 

  14. Ryan JD, Lund A, Hofmann AI, Kroon R, Sarabia-Riquelme R, Weisenberger MC, Muller C. All-organic textile thermoelectrics with carbon-nanotube-coated n-type yarns. Acs Appl Energy Mater. 2018;1:2934–41.

    CAS  Google Scholar 

  15. Liu ZX, Chen GM. Advancing flexible thermoelectric devices with polymer composites. Adv Mater Technol. 2020;5:2000049.

    CAS  Google Scholar 

  16. Zhang LS, Lin SP, Hua T, Huang BL, Liu SR, Tao XM. Fiber-based thermoelectric generators: materials, device structures, fabrication, characterization, and applications. Adv Energy Mater. 2018;8:1700524.

    Google Scholar 

  17. Liu YF, Liu PP, Jiang QL, Jiang FX, Liu J, Liu GQ, Liu CC, Du YK, Xu JK. Organic/inorganic hybrid for flexible thermoelectric fibers. Chem Eng J. 2021;405: 126510.

    CAS  Google Scholar 

  18. Kim Y, Lund A, Noh H, Hofmann AI, Craighero M, Darabi S, Zokaei S, Park JI, Yoon MH, Muller C. Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles. Macromol Mater Eng. 2020;305:1900749.

    CAS  Google Scholar 

  19. Tan G, Zhao L-D, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116:12123–49.

    CAS  Google Scholar 

  20. Liang LR, Chen GM, Guo CY. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos Sci Technol. 2016;129:130–6.

    CAS  Google Scholar 

  21. Gao CM, Liu YJ, Gao Y, Zhou Y, Zhou XY, Yin XJ, Pan CJ, Yang CL, Wang HF, Chen GM, Wang L. High-performance n-type thermoelectric composites of acridones with tethered tertiary amines and carbon nanotubes. J Mater Chem A. 2018;6:20161–9.

    CAS  Google Scholar 

  22. Zhang L, Shi XL, Yang YL, Chen ZG. Flexible thermoelectric materials and devices: from materials to applications. Mater Today. 2021;46:62–108.

    CAS  Google Scholar 

  23. Wang LM, Zhang J, Guo YT, Chen XY, Jin XM, Yang QY, Zhang K, Wang SR, Qiu YP. Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrids with enhanced thermoelectric power factors. Carbon. 2019;148:290–6.

    CAS  Google Scholar 

  24. Yang L, Chen Z-G, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater. 2018;8:1701797.

    Google Scholar 

  25. He J, Tritt TM. Advances in thermoelectric materials research: Looking back and moving forward. Science. 2017;357:eaak9997.

    Google Scholar 

  26. Wu Q, Hu JL. A novel design for a wearable thermoelectric generator based on 3D fabric structure. Smart Mater Struct. 2017;26: 045037.

    Google Scholar 

  27. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci. 2009;2:466–79.

    CAS  Google Scholar 

  28. Champier D. Thermoelectric generators: a review of applications. Energy Convers Manage. 2017;140:167–81.

    Google Scholar 

  29. Gayner C, Kar KK. Recent advances in thermoelectric materials. Prog Mater Sci. 2016;83:330–82.

    CAS  Google Scholar 

  30. Liu J, Liu GQ, Xu JK, Liu CC, Zhou WQ, Liu PP, Nie GM, Duan XM, Jiang FX. Graphene/polymer hybrid fiber with enhanced fracture elongation for thermoelectric energy harvesting. Acs Applied Energy Materials. 2020;3:6165–71.

    CAS  Google Scholar 

  31. Huang L, Lin SZ, Xu ZS, Zhou H, Duan JJ, Hu B, Zhou J. Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater. 2020;32:1902034.

    CAS  Google Scholar 

  32. Wang K, Hou C, Zhang Q, Li Y, Wang H. Highly integrated fiber-shaped thermoelectric generators with radially heterogeneous interlayers. Nano Energy. 2022;95: 107055.

    CAS  Google Scholar 

  33. Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R, Lin T. Thermoelectric fabrics: toward power generating clothing. Sci Rep. 2015;5:6411.

    CAS  Google Scholar 

  34. Jang D, Park KT, Lee S-S, Kim H. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy. 2022;97: 107143.

    CAS  Google Scholar 

  35. Park KT, Lee T, Ko Y, Cho YS, Park CR, Kim H. High-performance thermoelectric fabric based on a stitched carbon nanotube fiber. ACS Appl Mater Interfaces. 2021;13:6257–64.

    CAS  Google Scholar 

  36. Jin LL, Sun TT, Zhao W, Wang LJ, Jiang W. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application. J Power Sources. 2021;496: 229838.

    CAS  Google Scholar 

  37. Lee JA, Aliev AE, Bykova JS, de Andrade MJ, Kim D, Sim HJ, Lepro X, Zakhidov AA, Lee JB, Spinks GM, Roth S, Kim SJ, Baughman RH. Woven-yarn thermoelectric textiles. Adv Mater. 2016;28:5038–44.

    CAS  Google Scholar 

  38. Pan YC, Song YF, Jiang QL, Jia YH, Liu PP, Song HJ, Liu GQ. Solvent treatment of wet-spinning PEDOT:PSS fiber towards wearable thermoelectric energy harvesting. Synth Met. 2022;283: 116969.

    CAS  Google Scholar 

  39. Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev. 2020;120:7399–515.

    CAS  Google Scholar 

  40. Chang P-H, Bahramy MS, Nagaosa N, Nikolic BK. Giant thermoelectric effect in graphene-based topological insulators with heavy adatoms and nanopores. Nano Lett. 2014;14:3779–84.

    CAS  Google Scholar 

  41. Jacobs IE, Aasen EW, Oliveira JL, Fonseca TN, Roehling JD, Li J, Zhang G, Augustine MP, Mascal M, Moule AJ. Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology. J Mater Chem C. 2016;4:3454–66.

    CAS  Google Scholar 

  42. Chen Z-G, Shi X, Zhao L-D, Zou J. High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci. 2018;97:283–346.

    CAS  Google Scholar 

  43. Choi J, Jung Y, Yang SJ, Oh JY, Oh J, Jo K, Son JG, Moon SE, Park CR, Kim H. Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes. ACS Nano. 2017;11:7608–14.

    CAS  Google Scholar 

  44. Park KT, Cho YS, Jeong I, Jang D, Cho H, Choi Y, Lee T, Ko Y, Choi J, Hong SY, Oh M-W, Chung S, Park CR, Kim H. Highly integrated, wearable carbon-nanotube-yarn-based thermoelectric generators achieved by selective inkjet-printed chemical doping. Adv Energy Mater. 2022;12:2200256.

    CAS  Google Scholar 

  45. Ding TP, Chan KH, Zhou Y, Wang XQ, Cheng Y, Li TT, Ho GW. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun. 2020;11:6006.

    CAS  Google Scholar 

  46. Rosi FD. thermoelectricity and thermoelectric power generation. Solid-State Electron. 1968;11:833–40.

    Google Scholar 

  47. Ioffe AF, Stil’Bans L, Iordanishvili E, Stavitskaya T, Gelbtuch A, Vineyard G. Semiconductor thermoelements and thermoelectric cooling. London: Infosearch Ltd; 1957.

    Google Scholar 

  48. Komatsu N, Ichinose Y, Dewey OS, Taylor LW, Trafford MA, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K, Kono J. Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nat Commun. 2021;12:4931.

    CAS  Google Scholar 

  49. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7:105–14.

    CAS  Google Scholar 

  50. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321:554–7.

    CAS  Google Scholar 

  51. Toshima N. Recent progress of organic and hybrid thermoelectric materials. Synth Met. 2017;225:3–21.

    CAS  Google Scholar 

  52. Cutler M, Leavy JF, Fitzpatrick RL. Electronic transport in semimetallic cerium sulfide. Phys Rev. 1964;133:1143.

    CAS  Google Scholar 

  53. Chasmar R, Stratton R. The thermoelectric figure of merit and its relation to thermoelectric generators. Int J Electron. 1959;7:52–72.

    CAS  Google Scholar 

  54. Goldsmid HJ. The electrical conductivity and thermoelectric power of bismuth telluride. Proc Phys Soc Lond. 1958;71:633–46.

    CAS  Google Scholar 

  55. Wright DA. Thermoelectric properties of bismuth telluride and its alloys. Nature. 1958;181:834–834.

    Google Scholar 

  56. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science. 2008;320:634–8.

    CAS  Google Scholar 

  57. Zheng G, Su X, Xie H, Shu Y, Liang T, She X, Liu W, Yan Y, Zhang Q, Uher C, Kanatzidis MG, Tang X. High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction. Energy Environ Sci. 2017;10:2638–52.

    CAS  Google Scholar 

  58. Hong M, Chasapis TC, Chen Z-G, Yang L, Kanatzidis MG, Snyder GJ, Zou J. n-Type Bi2Te3-xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano. 2016;10:4719–27.

    CAS  Google Scholar 

  59. Tang X, Xie W, Li H, Zhao W, Zhang Q, Niino M. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl Phys Lett. 2007;90: 012102.

    Google Scholar 

  60. Sun M, Tang G, Wang H, Zhang T, Zhang P, Han B, Yang M, Zhang H, Chen Y, Chen J, Zhu Q, Li J, Chen D, Gan J, Qian Q, Yang Z. Enhanced thermoelectric properties of Bi2Te3-based micro-nano fibers via thermal drawing and interfacial engineering. Adv Mater. 2022;34:2202942.

    CAS  Google Scholar 

  61. Sun M, Tang GW, Huang BW, Chen ZJ, Zhao YJ, Wang HF, Zhao ZW, Chen DD, Qian Q, Yang ZM. Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers. Journal of Materiomics. 2020;6:467–75.

    Google Scholar 

  62. Choi H, Jeong K, Chae J, Park H, Baeck J, Kim TH, Song JY, Park J, Jeong K-H, Cho M-H. Enhancement in thermoelectric properties of Te-embedded Bi2Te3 by preferential phonon scattering in heterostructure interface. Nano Energy. 2018;47:374–84.

    CAS  Google Scholar 

  63. Mamur H, Bhuiyan MRA, Korkmaz F, Nil M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew Sustain Energy Rev. 2018;82:4159–69.

    CAS  Google Scholar 

  64. Zhao L-D, Chang C, Tan G, Kanatzidis MG. SnSe: a remarkable new thermoelectric material. Energy Environ Sci. 2016;9:3044–60.

    CAS  Google Scholar 

  65. Cao W, Wang Z, Miao L, Shi J, Xiong R. Extremely anisotropic thermoelectric properties of SnSe under pressure. Energy Environ Mater. 2022. https://doi.org/10.1002/eem2.12361.

    Article  Google Scholar 

  66. Chang C, Wu M, He D, Pei Y, Wu C-F, Wu X, Yu H, Zhu F, Wang K, Chen Y, Huang L, Li J-F, He J, Zhao L-D. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science. 2018;360:778–82.

    CAS  Google Scholar 

  67. Zhao L-D, Lo S-H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508:373.

    CAS  Google Scholar 

  68. Zhang J, Zhang T, Zhang H, Wang ZX, Li C, Wang Z, Li KW, Huang XM, Chen M, Chen Z, Tian ZT, Chen HS, Zhao LD, Wei L. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Adv Mater. 2020;32:2002702.

    CAS  Google Scholar 

  69. Zhao L-D, Tan G, Hao S, He J, Pei Y, Chi H, Wang H, Gong S, Xu H, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016;351:141–4.

    CAS  Google Scholar 

  70. Zhang Y, Hao S, Zhao L-D, Wolverton C, Zeng Z. Pressure induced thermoelectric enhancement in SnSe crystals. J Mater Chem A. 2016;4:12073–9.

    CAS  Google Scholar 

  71. Howard C, El-Batanouny M, Sankar R, Chou FC. Anomalous behavior in the phonon dispersion of the (001) surface of Bi2Te3 determined from helium atom-surface scattering measurements. Phys Rev B. 2013;88: 035402.

    Google Scholar 

  72. Nolas GS, Morelli DT, Tritt TM. Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci. 1999;29:89–116.

    CAS  Google Scholar 

  73. Wee D, Kozinsky B, Marzari N, Fornari M. Effects of filling in CoSb3: local structure, band gap, and phonons from first principles. Phys Rev B. 2010;81: 045204.

    Google Scholar 

  74. Rull-Bravo M, Moure A, Fernandez JF, Martin-Gonzalez M. Skutterudites as thermoelectric materials: revisited. RSC Adv. 2015;5:41653–67.

    CAS  Google Scholar 

  75. Shi X, Kong H, Li CP, Uher C, Yang J, Salvador JR, Wang H, Chen L, Zhang W. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo(4)Sb(12) double-filled skutterudites. Appl Phys Lett. 2008;92: 182101.

    Google Scholar 

  76. Zhang Q, Zhou Z, Dylla M, Agne MT, Pei Y, Wang L, Tang Y, Liao J, Li J, Bai S, Jiang W, Chen L, Snyder GJ. Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites. Nano Energy. 2017;41:501–10.

    CAS  Google Scholar 

  77. Hou C, Zhu M. Semiconductors flex thermoelectric power. Science (New York, NY). 2022;377:815–6.

    CAS  Google Scholar 

  78. Liu J, Xing T, Gao Z, Liang J, Peng L, Xiao J, Qiu P, Shi X, Chen L. Enhanced thermoelectric performance in ductile Ag2S-based materials via doping iodine. Appl Phys Lett. 2021;119: 121905.

    CAS  Google Scholar 

  79. Lu R, Yang X, Wang C, Shen Y, Zhang T, Zheng X, Chen H. Integrated measurement of thermoelectric properties for filamentary materials using a modified hot wire method. Rev Sci Instrum. 2022;93: 125107.

    CAS  Google Scholar 

  80. Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L. Room-temperature ductile inorganic semiconductor. Nat Mater. 2018;17:421.

    CAS  Google Scholar 

  81. Zhou W-X, Wu D, Xie G, Chen K-Q, Zhang G. alpha-Ag2S: a ductile thermoelectric material with high ZT. ACS Omega. 2020;5:5796–804.

    CAS  Google Scholar 

  82. Yang S, Gao Z, Qiu P, Liang J, Wei T-R, Deng T, Xiao J, Shi X, Chen L. Ductile Ag20S7Te3 with excellent shape-conformability and high thermoelectric performance. Adv Mater. 2021;33:2007681.

    CAS  Google Scholar 

  83. Wei T-R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, Qiu P, Shan Z, Jiang J, Li R, Chen L, He J, Shi X. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe. Science. 2020;369:542.

    CAS  Google Scholar 

  84. Yang Q, Yang S, Qiu P, Peng L, Wei T-R, Zhang Z, Shi X, Chen L. Flexible thermoelectrics based on ductile semiconductors. Science (New York, NY). 2022;377:854–8.

    CAS  Google Scholar 

  85. Zhang YC, Zhang QC, Chen GM. Carbon and carbon composites for thermoelectric applications. Carbon Energy. 2020;2:408–36.

    CAS  Google Scholar 

  86. Zhang CY, Zhang Q, Zhang D, Wang MY, Bo YW, Fan XQ, Li FC, Liang JJ, Huang Y, Ma RJ, Chen YS. Highly stretchable carbon nanotubes/polymer thermoelectric fibers. Nano Lett. 2021;21:1047–55.

    CAS  Google Scholar 

  87. Li CC, Jiang FX, Liu CC, Liu PP, Xu JK. Present and future thermoelectric materials toward wearable energy harvesting. Appl Mater Today. 2019;15:543–57.

    Google Scholar 

  88. Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Carbon-nanotube-based thermoelectric materials and devices. Adv Mater. 2018;30:1704386.

    Google Scholar 

  89. Hung NT, Nugraha ART, Saito R. Thermoelectric properties of carbon nanotubes. Energies. 2019;12:4561.

    CAS  Google Scholar 

  90. Hodge SA, Bayazit MK, Coleman KS, Shaffer MSP. Unweaving the rainbow: a review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem Soc Rev. 2012;41:4409–29.

    CAS  Google Scholar 

  91. Small JP, Perez KM, Kim P. Modulation of thermoelectric power of individual carbon nanotubes. Phys Rev Lett. 2003;91: 256801.

    Google Scholar 

  92. Moore KE, Tune DD, Flavel BS. Double-walled carbon nanotube processing. Adv Mater. 2015;27:3105–37.

    CAS  Google Scholar 

  93. Kalbac M, Green AA, Hersam MC, Kavan L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chem-a Eur J. 2011;17:9806–15.

    CAS  Google Scholar 

  94. Barnes TM, Blackburn JL, van de Lagemaat J, Coutts TJ, Heben MJ. Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks. ACS Nano. 2008;2:1968–76.

    CAS  Google Scholar 

  95. Fan Q-Q, Qin Z-Y, Liang X, Li L, Wu W-H, Zhu M-F. Reducing defects on multi-walled carbon nanotube surfaces induced by low-power ultrasonic-assisted hydrochloric acid treatment. J Exp Nanosci. 2010;5:337–47.

    CAS  Google Scholar 

  96. Chandra B, Afzali A, Khare N, El-Ashry MM, Tulevski GS. Stable charge-transfer doping of transparent single-walled carbon nanotube films. Chem Mater. 2010;22:5179–83.

    CAS  Google Scholar 

  97. MacLeod BA, Stanton NJ, Gould IE, Wesenberg D, Ihly R, Owczarczyk ZR, Hurst KE, Fewox CS, Folmar CN, Hughes KH, Zink BL, Blackburn JL, Ferguson AJ. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy Environ Sci. 2017;10:2168–79.

    CAS  Google Scholar 

  98. Avery AD, Zhou BH, Lee J, Lee E-S, Miller EM, Ihly R, Wesenberg D, Mistry KS, Guillot SL, Zink BL, Kim Y-H, Blackburn JL, Ferguson AJ. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat Energy. 2016;1:16033.

    CAS  Google Scholar 

  99. Wu G, Gao C, Chen G, Wang X, Wang H. High-performance organic thermoelectric modules based on flexible films of a novel n-type single-walled carbon nanotube. J Mater Chem A. 2016;4:14187–93.

    CAS  Google Scholar 

  100. Yu C, Murali A, Choi K, Ryu Y. Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes. Energy Environ Sci. 2012;5:9481–6.

    CAS  Google Scholar 

  101. Ito M, Koizumi T, Kojima H, Saito T, Nakamura M. From materials to device design of a thermoelectric fabric for wearable energy harvesters. J Mater Chem A. 2017;5:12068–72.

    CAS  Google Scholar 

  102. Jung J, Suh EH, Jeong Y, Yun D-J, Park SC, Oh JG, Jang J. Ionic-liquid doping of carbon nanotubes with HMIM BF4 for flexible thermoelectric generators. Chem Eng J. 2022;438: 135526.

    CAS  Google Scholar 

  103. Lee T, Park KT, Ku BC, Kim H. Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators. Nanoscale. 2019;11:16919–27.

    CAS  Google Scholar 

  104. Liu Y, Khavrus V, Lehmann T, Yang H-L, Stepien L, Greifzu M, Oswald S, Gemming T, Bezugly V, Cuniberti G. Boron-doped single-walled carbon nanotubes with enhanced thermoelectric power factor for flexible thermoelectric devices. Acs Appl Energy Mater. 2020;3:2556–64.

    CAS  Google Scholar 

  105. Muramatsu H, Kang C-S, Fujisawa K, Kim JH, Yang C-M, Kim JH, Hong S, Kim YA, Hayashi T. Outer tube-selectively boron-doped double-walled carbon nanotubes for thermoelectric applications. Acs Applied Nano Mater. 2020;3:3347–54.

    CAS  Google Scholar 

  106. Collins PG, Bradley K, Ishigami M, Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science. 2000;287:1801–4.

    CAS  Google Scholar 

  107. Lan XQ, Wang TZ, Liu CC, Liu PP, Xu JK, Liu XF, Du YK, Jiang FX. A high performance all-organic thermoelectric fiber generator towards promising wearable electron. Compos Sci Technol. 2019;182: 107767.

    CAS  Google Scholar 

  108. Xia X, Zhang Q, Zhou W, Mei J, Xiao Z, Xi W, Wang Y, Xie S, Zhou W. Integrated, Highly flexible, and tailorable thermoelectric type temperature detectors based on a continuous carbon nanotube fiber. Small. 2021;17:2102825.

    CAS  Google Scholar 

  109. Nonoguchi Y, Tani A, Ikeda T, Goto C, Tanifuji N, Uda RM, Kawai T. Water-processable, air-stable organic nanoparticle-carbon nanotube nanocomposites exhibiting n-type thermoelectric properties. Small. 2017;13:1603420.

    Google Scholar 

  110. Wang Y, Li Q, Wang J, Li Z, Li K, Dai X, Pan J, Wang H. Understanding the solvent effects on polarity switching and thermoelectric properties changing of solution-processable n-type single-walled carbon nanotube films. Nano Energy. 2022;93: 106804.

    CAS  Google Scholar 

  111. Tang J, Chen Y, McCuskey SR, Chen L, Bazan GC, Liang Z. Recent advances in n-type thermoelectric nanocomposites. Adv Electron Mater. 2019;5:1800943.

    CAS  Google Scholar 

  112. Brownlie L, Shapter J. Advances in carbon nanotube n-type doping: methods, analysis and applications. Carbon. 2018;126:257–70.

    CAS  Google Scholar 

  113. Nonoguchi Y, Ohashi K, Kanazawa R, Ashiba K, Hata K, Nakagawa T, Adachi C, Tanase T, Kawai T. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants. Sci Rep. 2013;3:3344.

    Google Scholar 

  114. Ruffieux P, Wang S, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Muellen K, Fasel R. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature. 2016;531:489.

    CAS  Google Scholar 

  115. Lee W, Lim G, Ko SH. Significant thermoelectric conversion efficiency enhancement of single layer graphene with substitutional silicon dopants. Nano Energy. 2021;87: 106188.

    CAS  Google Scholar 

  116. Sevincli H, Cuniberti G. Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys Rev B. 2010;81: 113401.

    Google Scholar 

  117. Areshkin DA, Gunlycke D, White CT. Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett. 2007;7:204–10.

    CAS  Google Scholar 

  118. Lee W, Kihm KD, Kim HG, Lee W, Cheon S, Yeom S, Lim G, Pyun KR, Ko SH, Shin S. Two orders of magnitude suppression of graphene’s thermal conductivity by heavy dopants (Si). Carbon. 2018;138:98–107.

    CAS  Google Scholar 

  119. Zhang H, Lee G, Fonseca AF, Borders TL, Cho K. Isotope effect on the thermal conductivity of graphene. J Nanomater. 2010;2010: 537657.

    Google Scholar 

  120. Xiao N, Dong X, Song L, Liu D, Tay Y, Wu S, Li L-J, Zhao Y, Yu T, Zhang H, Huang W, Hng HH, Ajayan PM, Yan Q. Enhanced thermopower of graphene films with oxygen plasma treatment. ACS Nano. 2011;5:2749–55.

    CAS  Google Scholar 

  121. Anno Y, Imakita Y, Takei K, Akita S, Arie T. Enhancement of graphene thermoelectric performance through defect engineering. 2d Materials. 2017;4: 025019.

    Google Scholar 

  122. Wang X, Sun G, Routh P, Kim D-H, Huang W, Chen P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014;43:7067–98.

    CAS  Google Scholar 

  123. Bharti M, Singh A, Samanta S, Aswal DK. Conductive polymers for thermoelectric power generation. Prog Mater Sci. 2018;93:270–310.

    CAS  Google Scholar 

  124. Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–67.

    CAS  Google Scholar 

  125. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–53.

    CAS  Google Scholar 

  126. Wang Y, Ding Y, Guo X, Yu G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019;12:1978–87.

    CAS  Google Scholar 

  127. Shi Y, Peng L, Ding Y, Zhao Y, Yu G. Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev. 2015;44:6684–96.

    CAS  Google Scholar 

  128. Grancaric AM, Jerkovic I, Koncar V, Cochrane C, Kelly FM, Soulat D, Legrand X. Conductive polymers for smart textile applications. J Ind Text. 2018;48:612–42.

    CAS  Google Scholar 

  129. Zhu D. Organic thermoelectrics: from materials to devices. Berlin: Wiley; 2022. p. 20–2.

    Google Scholar 

  130. Jalili R, Razal JM, Innis PC, Wallace GG. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Func Mater. 2011;21:3363–70.

    CAS  Google Scholar 

  131. Hwang B, Lund A, Tian Y, Darabi S, Muller C. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS. ACS Appl Mater Interfaces. 2020;12:27537–44.

    CAS  Google Scholar 

  132. Hofmann AI, Ostergren I, Kim Y, Fauth S, Craighero M, Yoon MH, Lund A, Muller C. All-polymer conducting fibers and 3D prints via melt processing and templated polymerization. ACS Appl Mater Interfaces. 2020;12:8713–21.

    CAS  Google Scholar 

  133. Ryan JD, Mengistie DA, Gabrielsson R, Lund A, Muller C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl Mater Interfaces. 2017;9:9045–50.

    CAS  Google Scholar 

  134. Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR. Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives. Adv Mater. 2003;15:855–79.

    CAS  Google Scholar 

  135. Xu Y, Jia Y, Liu P, Jiang Q, Hu D, Ma Y. Poly(3,4-ethylenedioxythiophene) (PEDOT) as promising thermoelectric materials and devices. Chem Eng J. 2021;404: 126552.

    CAS  Google Scholar 

  136. Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem. 2005;15:2077–88.

    CAS  Google Scholar 

  137. Fan Z, Ouyang J. Thermoelectric properties of PEDOT:PSS. Adv Electron Mater. 2019;5:1800769.

    CAS  Google Scholar 

  138. Mengistie DA, Chen C-H, Boopathi KM, Pranoto FW, Li L-J, Chu C-W. Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces. 2015;7:94–100.

    CAS  Google Scholar 

  139. Yi C, Wilhite A, Zhang L, Hu R, Chuang SSC, Zheng J, Gong X. Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by binary secondary dopants. ACS Appl Mater Interfaces. 2015;7:8984–9.

    CAS  Google Scholar 

  140. Teo MY, Kim N, Kee S, Kim BS, Kim G, Hong S, Jung S, Lee K. Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Appl Mater Interfaces. 2017;9:819–26.

    CAS  Google Scholar 

  141. McGillivray D, Thomas JP, Abd-Ellah M, Heinig NF, Leung KT. Performance enhancement by secondary doping in PEDOT:PSS/planar-Si hybrid solar cells. ACS Appl Mater Interfaces. 2016;8:34303–8.

    CAS  Google Scholar 

  142. Li M, Zeng F, Luo M, Qing X, Wang W, Lu Y, Zhong W, Yang L, Liu Q, Wang Y, Luo J, Wang D. Synergistically improving flexibility and thermoelectric performance of composite yarn by continuous ultrathin PEDOT:PSS/DMSO/ionic liquid coating. ACS Appl Mater Interfaces. 2021;13:50430–40.

    CAS  Google Scholar 

  143. Lund A, Tian Y, Darabi S, Muller C. A polymer-based textile thermoelectric generator for wearable energy harvesting. J Power Sources. 2020;480: 228836.

    CAS  Google Scholar 

  144. Liu J, Jia YH, Jiang QL, Jiang FX, Li CC, Wang XD, Liu P, Liu PP, Hu F, Du YK, Xu JK. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting. ACS Appl Mater Interfaces. 2018;10:44033–40.

    CAS  Google Scholar 

  145. Liu GQ, Jiang FX, Liu J, Liu CC, Xu JK, Jiang QL, Zheng N, Nie GM, Liu PP. Solvent treatment inducing ultralong cycle stability poly (3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as binding-free electrodes for supercapacitors. Int J Energy Res. 2020;44:5856–65.

    CAS  Google Scholar 

  146. Saxena N, Keilhofer J, Maurya AK, Fortunato G, Overbeck J, Mueller-Buschbaum P. Facile optimization of thermoelectric properties in PEDOT:PSS thin films through acido-base and redox dedoping using readily available salts. Acs Appl Energy Mater. 2018;1:336–42.

    CAS  Google Scholar 

  147. Lee SH, Park H, Kim S, Son W, Cheong IW, Kim JH. Transparent and flexible organic semiconductor nanofilms with enhanced thermoelectric efficiency. J Mater Chem A. 2014;2:7288–94.

    CAS  Google Scholar 

  148. Tsai T-C, Chang H-C, Chen C-H, Huang Y-C, Whang W-T. A facile dedoping approach for effectively tuning thermoelectricity and acidity of PEDOT:PSS films. Org Electron. 2014;15:641–5.

    CAS  Google Scholar 

  149. Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH. Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. J Mater Chem A. 2014;2:6532–9.

    CAS  Google Scholar 

  150. He H, Ouyang J. Enhancements in the Mechanical stretchability and thermoelectric properties of PEDOT:PSS for flexible electronics applications. Accounts Mater Res. 2020;1:146–57.

    CAS  Google Scholar 

  151. Villalva DR, Haque MA, Nugraha MI, Baran D. Enhanced thermoelectric performance and lifetime in acid-doped PEDOT:PSS films via work function modification. Acs Appl Energy Mater. 2020;3:9126–32.

    CAS  Google Scholar 

  152. Zhu Z, Liu C, Jiang Q, Shi H, Jiang F, Xu J, Xiong J, Liu E. Optimizing the thermoelectric properties of PEDOT:PSS films by combining organic co-solvents with inorganic base. J Mater Sci Mater Electron. 2015;26:8515–21.

    CAS  Google Scholar 

  153. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Prog Polym Sci. 2009;34:783–810.

    CAS  Google Scholar 

  154. Seeberg TM, Royset A, Jahren S, Strisland F, Ieee, editors. Printed Organic Conductive Polymers Thermocouples in Textile and Smart Clothing Applications. In: 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS); Boston, MA; 2011.

  155. Li J, Tang X, Li H, Yan Y, Zhang Q. Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth Met. 2010;160:1153–8.

    CAS  Google Scholar 

  156. Chatterjee K, Ganguly S, Kargupta K, Banerjee D. Bismuth nitrate doped polyaniline—characterization and properties for thermoelectric application. Synth Met. 2011;161:275–9.

    CAS  Google Scholar 

  157. Debnath A, Deb K, Sarkar K, Saha B. Improved thermoelectric performance in TiO2 incorporated polyaniline: a polymer-based hybrid material for thermoelectric generators. J Electron Mater. 2020;49:5028–36.

    CAS  Google Scholar 

  158. Pope J, Lekakou C. Thermoelectric polymer composite yarns and an energy harvesting wearable textile. Smart Mater Struct. 2019;28: 095006.

    CAS  Google Scholar 

  159. Zhang L, Yang K, Chen R, Zhou Y, Chen S, Zheng Y, Li M, Xu C, Tang X, Zang Z, Sun K. The role of mineral acid doping of PEDOT:PSS and its application in organic photovoltaics. Adv Electron Mater. 2020;6:1900648.

    CAS  Google Scholar 

  160. Lim KH, Wong KW, Cadavid D, Liu Y, Zhang Y, Cabot A, Ng KM. Mechanistic study of energy dependent scattering and hole-phonon interaction at hybrid polymer composite interfaces for optimized thermoelectric performance. Compos Part B Eng. 2019;164:54–60.

    CAS  Google Scholar 

  161. Liu S, Li H, Fan X, He C. Enhanced thermoelectric performance of conducting polymer composites by constructing sequential energy-filtering interfaces and energy barriers. Compos Sci Technol. 2022;221: 109347.

    CAS  Google Scholar 

  162. Wang Q, Yao Q, Chang J, Chen L. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J Mater Chem. 2012;22:17612–8.

    CAS  Google Scholar 

  163. Li H, Liu S, Li P, Yuan D, Zhou X, Sun J, Lu X, He C. Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon. 2018;136:292–8.

    CAS  Google Scholar 

  164. Liu S, Li H, He C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites. Carbon. 2019;149:25–32.

    CAS  Google Scholar 

  165. Liu X, Du Y, Meng Q, Shen SZ, Xu J. Flexible thermoelectric power generators fabricated using graphene/PEDOT:PSS nanocomposite films. J Mater Sci Mater Electron. 2019;30:20369–75.

    CAS  Google Scholar 

  166. Jiang Q, Lan X, Liu C, Shi H, Zhu Z, Zhao F, Xu J, Jiang F. High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting. Mater Chem Front. 2018;2:679–85.

    CAS  Google Scholar 

  167. Hu XZ, Zhang K, Zhang J, Wang SR, Qiu YP. Thermoelectric properties of conducting polymer nanowire-tellurium nanowire composites. Acs Appl Energy Mater. 2018;1:4883.

    CAS  Google Scholar 

  168. Bae EJ, Kang YH, Jang K-S, Cho SY. Enhancement of thermoelectric properties of PEDOT:PSS and tellurium-PEDOT:PSS hybrid composites by simple chemical treatment. Sci Rep. 2016;6:18805.

    CAS  Google Scholar 

  169. Wang X, Meng F, Wang T, Li C, Tang H, Gao Z, Li S, Jiang F, Xu J. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J Alloy Compd. 2018;734:121–9.

    CAS  Google Scholar 

  170. Wang L, Zhang Z, Liu Y, Wang B, Fang L, Qiu J, Zhang K, Wang S. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and periodic nanophase. Nat Commun. 2018;9:3817.

    Google Scholar 

  171. Goo G, Anoop G, Unithrattil S, Kim WS, Lee HJ, Kim HB, Jung M-H, Park J, Ko HC, Jo JY. Proton-irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT:PSS composite films. Adv Electron Mater. 2019;5:1800786.

    Google Scholar 

  172. Xiong J, Wang L, Xu J, Liu C, Zhou W, Shi H, Jiang Q, Jiang F. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater Sci Mater Electron. 2016;27:1769–76.

    CAS  Google Scholar 

  173. Wen N, Fan Z, Yang S, Zhao Y, Cong T, Xu S, Zhang H, Wang J, Huang H, Li C. Highly conductive, ultra-flexible and continuously processable PEDOT: PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy. 2020;78: 105361.

    CAS  Google Scholar 

  174. Jia Y, Shen L, Liu J, Zhou W, Du Y, Xu J, Liu C, Zhang G, Zhang Z, Jiang F. An efficient PEDOT-coated textile for wearable thermoelectric generators and strain sensors. J Mater Chem C. 2019;7:3496–502.

    CAS  Google Scholar 

  175. Zhu Y, Xu W, Ravichandran D, Jambhulkar S, Song K. A gill-mimicking thermoelectric generator (TEG) for waste heat recovery and self-powering wearable devices. J Mater Chem A. 2021;9:8514–26.

    CAS  Google Scholar 

  176. Bharti M, Jha P, Singh A, Chauhan A, Misra S, Yamazoe M, Debnath A, Marumoto K, Muthe K, Aswal D. Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generator. Energy. 2019;176:853–60.

    CAS  Google Scholar 

  177. Li P, Guo Y, Mu J, Wang H, Zhang Q, Li Y. Single-walled carbon nanotubes/polyaniline-coated polyester thermoelectric textile with good interface stability prepared by ultrasonic induction. RSC Adv. 2016;6:90347–53.

    CAS  Google Scholar 

  178. Gurauskis J, Lohne ØF, Lein HL, Wiik K. Processing of thin film ceramic membranes for oxygen separation. J Eur Ceram Soc. 2012;32:649–55.

    CAS  Google Scholar 

  179. Zhu C, Wu J, Yan J, Liu X. Advanced fiber materials for wearable electronics. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00212-0.

    Article  Google Scholar 

  180. Zheng Y, Zhang Q, Jin W, Jing Y, Chen X, Han X, Bao Q, Liu Y, Wang X, Wang S. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J Mater Chem A. 2020;8:2984–94.

    CAS  Google Scholar 

  181. Modern Biopolymer Science. Bridging the divide between fundamental treatise and industrial application. San Diego: Academic Press; 2009.

    Google Scholar 

  182. He C, Cheng J, Wu C, Wang B. Bifunctional shared fibers for high-efficiency self-powered fiber-shaped photocapacitors. Adv Fiber Mater. 2022. https://doi.org/10.1007/s42765-022-00218-8.

    Article  Google Scholar 

  183. Yang X, Zhang K. Direct wet-spun single-walled carbon nanotubes-based p-n segmented filaments toward wearable thermoelectric textiles. ACS Appl Mater Interfaces. 2022;14:44704–12.

    CAS  Google Scholar 

  184. Kim SI, Lee KH, Amun H, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH, Snyder GJ, Kim SW. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348:109–14.

    CAS  Google Scholar 

  185. Kim KC, Lim SS, Lee SH, Hong J, Cho DY, Mohamed AY, Koo CM, Baek SH, Kim JS, Kim SK. Precision interface engineering of an atomic layer in bulk Bi2Te3 alloys for high thermoelectric performance. ACS Nano. 2019;13:7146–54.

    CAS  Google Scholar 

  186. Wang LM, Zhang K. Textile-based thermoelectric generators and their applications. Energy Environ Mater. 2020;3:67–79.

    Google Scholar 

  187. Zhang T, Li K, Zhang J, Chen M, Wang Z, Ma S, Zhang N, Wei L. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy. 2017;41:35–42.

    Google Scholar 

  188. Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Appl Mater Interfaces. 2019;11:2441–7.

    CAS  Google Scholar 

  189. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater. 2020;32: e1904911.

    Google Scholar 

  190. Shen Y, Wang Z, Wang Z, Wang J, Yang X, Zheng X, Chen H, Li K, Wei L, Zhang T. Thermally drawn multifunctional fibers: toward the next generation of information technology. Infomat. 2022;4:e12318.

    Google Scholar 

  191. Zheng Y, Han X, Yang J, Jing Y, Chen X, Li Q, Zhang T, Li G, Zhu H, Zhao H, Snyder GJ, Zhang K. Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ Sci. 2022;15:2374–85.

    CAS  Google Scholar 

  192. Allison LK, Andrew TL. A wearable all-fabric thermoelectric generator. Adv Mater Technol. 2019;4:1800615.

    Google Scholar 

  193. Yamamoto N, Takai H. Electrical power generation from a knitted wire panel using the thermoelectric effect. Electric Eng Jpn. 2002;140:16–21.

    Google Scholar 

  194. Wen N, Fan Z, Yang S, Zhao Y, Cong T, Xu S, Zhang H, Wang J, Huang H, Li C, Pan L. Highly conductive, ultra-flexible and continuously processable PEDOT:PSS fibers with high thermoelectric properties for wearable energy harvesting. Nano Energy. 2020;78: 105361.

    CAS  Google Scholar 

  195. Lund A, van der Velden NM, Persson N-K, Hamedi MM, Müller C. Electrically conducting fibres for e-textiles: an open playground for conjugated polymers and carbon nanomaterials. Mater Sci Eng R Rep. 2018;126:1–29.

    Google Scholar 

  196. Kim Y, Lund A, Noh H, Hofmann AI, Craighero M, Darabi S, Zokaei S, Park JI, Yoon MH, Müller C. Robust PEDOT: PSS wet-spun fibers for thermoelectric textiles. Macromol Mater Eng. 2020;305:1900749.

    CAS  Google Scholar 

  197. Komatsu N, Ichinose Y, Dewey OS, Taylor LW, Trafford MA, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K, Kono J. Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nat Commun. 2021;12:1–8.

    Google Scholar 

  198. Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application challenges in fiber and textile electronics. Adv Mater. 2020;32:1901971.

    CAS  Google Scholar 

  199. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater. 2020;32:1901958.

    CAS  Google Scholar 

  200. Bulathsinghala RL. Investigation on material variants and fabrication methods for microstrip textile antennas: a review based on conventional and novel concepts of weaving, knitting and embroidery. Cogent Eng. 2022;9:2025681.

    Google Scholar 

  201. Cherenack K, Van Pieterson L. Smart textiles: challenges and opportunities. J Appl Phys. 2012;112: 091301.

    Google Scholar 

  202. Akbari M, Tamayol A, Bagherifard S, Serex L, Mostafalu P, Faramarzi N, Mohammadi MH, Khademhosseini A. Textile technologies and tissue engineering: a path toward organ weaving. Adv Healthc Mater. 2016;5:751–66.

    CAS  Google Scholar 

  203. Almeida LR, Martins AR, Fernandes EM, Oliveira MB, Correlo VM, Pashkuleva I, Marques AP, Ribeiro AS, Durães NF, Silva CJ. New biotextiles for tissue engineering: development, characterization and in vitro cellular viability. Acta Biomater. 2013;9:8167–81.

    CAS  Google Scholar 

  204. Wang X, Han C, Hu X, Sun H, You C, Gao C, Haiyang Y. Applications of knitted mesh fabrication techniques to scaffolds for tissue engineering and regenerative medicine. J Mech Behav Biomed Mater. 2011;4:922–32.

    CAS  Google Scholar 

  205. Ming HZ. The mechanical properties of composites reinforced with woven and braided fabrics. Compos Sci Technol. 2000;60:479–98.

    Google Scholar 

  206. Nakad Z, Jones M, Martin T, Shenoy R. Using electronic textiles to implement an acoustic beamforming array: a case study. Pervasive Mob Comput. 2007;3:581–606.

    Google Scholar 

  207. Adumitroaie A, Barbero EJ. Beyond plain weave fabrics—I. Geometrical model. Compos Struct. 2011;93:1424–32.

    Google Scholar 

  208. Zaidi NI, Ali MT, Abd Rahman NH, Nordin MSA, Shah AASA, Yahya MF, Ieee, editors. A Comprehensive Study of Weaving Structure and Its Impact on Textile Antenna for WBAN Application. In: 13th European Conference on Antennas and Propagation (EuCAP); Krakow, POLAND; 2019.

  209. Hamdan NA-h, Voelker S, Borchers J, Acm, editors. Sketch&Stitch: Interactive Embroidery for E-Textiles. CHI Conference on Human Factors in Computing Systems (CHI); Montreal, CANADA; 2018.

  210. Breier AC. Biomedical textiles for orthopaedic and surgical applications. Embroidery technology for hard-tissue scaffolds. New York: Woodhead Publishing; 2015. p. 23–43.

    Google Scholar 

  211. Huang Q, Wang D, Hu H, Shang J, Chang J, Xie C, Yang Y, Lepró X, Baughman RH, Zheng Z. Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors. Adv Funct. 2020;30:1910541.

    CAS  Google Scholar 

  212. Ryan JD, Mengistie DA, Gabrielsson R, Lund A, Müller C. Machine-washable PEDOT: PSS dyed silk yarns for electronic textiles. ACS Appl Mater Interfaces. 2017;9:9045–50.

    CAS  Google Scholar 

  213. Hong S, Shin S, Chen R. An adaptive and wearable thermal camouflage device. Adv Funct. 2020;30:1909788.

    CAS  Google Scholar 

  214. Hong S, Gu Y, Seo JK, Wang J, Liu P, Meng YS, Xu S, Chen R. Wearable thermoelectrics for personalized thermoregulation. Sci Adv. 2019;5: eaaw0536.

    CAS  Google Scholar 

  215. Park H, Kim D, Eom Y, Wijethunge D, Hwang J, Kim H, Kim W. Mat-like flexible thermoelectric system based on rigid inorganic bulk materials. J Phys D. 2017;50: 494006.

    Google Scholar 

  216. Hu E, Kaynak A, Li Y. Development of a cooling fabric from conducting polymer coated fibres: proof of concept. Synth Met. 2005;150:139–43.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52172249, 51976215, and 51973034), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (YJKYYQ20200017), the Chinese Academy of Sciences Talents Program (E2290701), the Funding of Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Sciences (CXYJJ21-ZD-02), the Fundamental Research Funds for the Central Universities (2232020G-01 and 19D110106), and the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province (BE2022011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinghua Zheng, Kun Zhang or Ting Zhang.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Han, X., Zhang, P. et al. Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles. Adv. Fiber Mater. 5, 1105–1140 (2023). https://doi.org/10.1007/s42765-023-00267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00267-7

Keywords

Navigation