Skip to main content
Log in

Research Progress of Fabrics with Different Geometric Structures for Triboelectric Nanogenerators in Flexible and Wearable Electronics

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Widespread reliance on fossil fuels, and the resulting imbalance between energy supply and demand have emerged as significant obstacles to achieving sustainable development. Triboelectric nanogenerators (TENGs) offer a viable solution to this problem. Among the various materials used in TENGs, fabrics with geometric structures have attracted considerable interest because of their advantageous properties, such as their light weight, breathable structures, favorable softness, and excellent breathability. This review provides a comprehensive introduction to fabric geometric (fabric structure with yarn as the basic unit, including woven fabrics formed by warp and weft yarns and knitted fabrics formed by yarn coils, etc.) TENGs, including their definition, working principle, and mechanisms, and explores the recent progress in TENGs based on one-, two-, and three-dimensional structures, classifying them into woven and knitted fabrics according to the fabrication method. We summarize the advantages and disadvantages of TENGs with different dimensions. Considering the intrinsically limited conductivity of the fiber and fabric, progress in improving the comprehensive output performance of TENGs via combination with other conductive materials and surface modification is discussed. Finally, this review concludes with a discussion of the challenges, opportunities, and potential applications related to TENGs based on fabric geometric structures. This study is expected to provide readers with new strategies and conceptual ideas to improve the performance of TENGs constructed with fabrics, particularly through the optimization of their structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from ref [37], Copyright 2014, American Chemical Society. Reproduced with permission from ref [38], Copyright 2017, American Chemical Society. Reproduced with permission from ref [39], Copyright 2015, WILEY–VCH. Reproduced with permission from ref [40], Copyright 2018, Royal Society of Chemistry. Reproduced with permission from ref [41], Copyright 2022, John Wiley & Sons. Reproduced with permission from ref [42], Copyright 2019, Elsevier. Reproduced with permission from ref [43], Copyright 2019, Elsevier. Reproduced with permission from ref [44], Copyright 2020, Springer Nature. Reproduced with permission from ref [45], Copyright 2018, Elsevier. Reproduced with permission from ref [46], Copyright 2016, Springer Nature Limited. Reproduced with permission from ref [47], Copyright 2021, WILEY–VCH. Reproduced with permission from ref [48], Copyright 2022, Elsevier. Reproduced with permission from ref [49], Copyright 2015, Elsevier. Reproduced with permission from ref [9], Copyright 2017, WILEY–VCH. Reproduced with permission from ref [50], Copyright 2021, Elsevier. Reproduced with permission from ref [51], Copyright 2020, WILEY–VCH. Reproduced with permission from ref [52], Copyright 2022, Elsevier. Reproduced with permission from ref [53], Copyright 2019, Elsevier. Reproduced with permission from ref [54], Copyright 2023, WILEY–VCH

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data availability is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Chi JG, Liu CR, Che LF, Li DJ, Fan K, Li Q, Yang WH, Dong LX, Wang GF, Wang ZL. Harvesting water-evaporation-induced electricity based on liquid-solid triboelectric nanogenerator. Adv Sci. 2022;9:2201586.

    Article  CAS  Google Scholar 

  2. Dan XZ, Cao R, Cao XL, Wang YF, Xiong Y, Han J, Luo L, Yang JH, Xu N, Sun J, Sun QJ, Wang ZL. Whirligig-inspired hybrid nanogenerator for multi-strategy energy harvesting. Adv Fiber Mater. 2023;5:362.

    Article  Google Scholar 

  3. Dudem B, Kim DH, Yu JS. Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy. Nano Res. 2018;11:101.

    Article  CAS  Google Scholar 

  4. Wu YC, Zhong XD, Wang X, Yang Y, Wang ZL. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014;7:1631.

    Article  CAS  Google Scholar 

  5. Yang Y, Zhu G, Zhang HL, Chen J, Zhong XD, Lin ZH, Su YJ, Bai P, Wen XN, Wang ZL. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano. 2013;7:9461.

    Article  CAS  Google Scholar 

  6. Zhang L, Zhang BB, Chen J, Jin L, Deng WL, Tang JF, Zhang HT, Pan H, Zhu MH, Yang WQ, Wang ZL. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv Mater. 2016;28:1650.

    Article  CAS  Google Scholar 

  7. Jiang T, Zhang LM, Chen XY, Han CB, Tang W, Zhang C, Xu L, Wang ZL. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano. 2015;9:12562.

    Article  CAS  Google Scholar 

  8. Jiang T, Yao YY, Xu L, Zhang LM, Xiao TX, Wang ZL. Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy. 2017;31:560.

    Article  CAS  Google Scholar 

  9. Xiong JQ, Lin MF, Wang JX, Gaw SL, Parida K, Lee PS. Wearable all-fabric-based triboelectric generator for water energy harvesting. Adv Energy Mater. 2017;7:1701243.

    Article  Google Scholar 

  10. Feng JR, Zhou HL, Cao Z, Zhang EY, Xu SX, Li WT, Yao HL, Wan LY, Liu GL. 0.5 m triboelectric nanogenerator for efficient blue energy harvesting of all-sea areas. Adv Sci. 2022;9:2204407.

    Article  Google Scholar 

  11. Luo JJ, Wang ZM, Xu L, Wang AC, Han K, Jiang T, Lai QS, Bai Y, Tang W, Fan FR, Wang ZL. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat Commun. 2019;10:5147.

    Article  Google Scholar 

  12. Chen CY, Chen LJ, Wu ZY, Guo HY, Yu WD, Du ZQ, Wang ZL. 3d double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3d tactile sensors. Mater Today. 2020;32:84.

    Article  CAS  Google Scholar 

  13. Huo ZY, Kim Y-J, Suh I-Y, Lee D-M, Lee JH, Du Y, Wang S, Yoon H-J, Kim S-W. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field. Nat Commun. 2021;12:3693.

    Article  CAS  Google Scholar 

  14. Li JC, Yin J, Wee MGV, Chinnappan A, Ramakrishna S. A self-powered piezoelectric nanofibrous membrane as wearable tactile sensor for human body motion monitoring and recognition. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00282-8.

    Article  Google Scholar 

  15. You AM, Zhang XL, Peng X, Dong K, Lu YY, Zhang Q. A skin-inspired triboelectric nanogenerator with an interpenetrating structure for motion sensing and energy harvesting. Macromol Mater Eng. 2021;306:2170028.

    Article  CAS  Google Scholar 

  16. Dong K, Deng JN, Zi YL, Wang YC, Xu C, Zou HY, Ding WB, Dai YJ, Gu BH, Sun BZ, Wang ZL. 3d orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater. 2017;29:1702648.

    Article  Google Scholar 

  17. He TYY, Sun ZD, Shi QF, Zhu ML, Anaya DV, Xu MY, Chen T, Yuce MR, Thean AV-Y, Lee C. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy. 2019;58:641.

    Article  CAS  Google Scholar 

  18. Zhang CX, Dai KR, Liu D, Yi F, Wang XF, Zhu LQ, You Z. Ultralow quiescent power-consumption wake-up technology based on the bionic triboelectric nanogenerator. Adv Sci. 2020;7:2000254.

    Article  Google Scholar 

  19. Chou S-H, Lu HW, Liu T-C, Chen YT, Fu YL, Shieh Y-H, Lai Y-C, Chen SY. An environmental-inert and highly self-healable elastomer obtained via double-terminal aromatic disulfide design and zwitterionic crosslinked network for use as a triboelectric nanogenerator. Adv Sci. 2023;10:2202815.

    Article  CAS  Google Scholar 

  20. Imani IM, Kim B, Xiao X, Rubab N, Park B-J, Kim Y-J, Zhao P, Kang M, Kim S-W. Ultrasound-driven on-demand transient triboelectric nanogenerator for subcutaneous antibacterial activity. Adv Sci. 2023;10:2204801.

    Article  CAS  Google Scholar 

  21. Cheedarala RK, Duy LC, Ahn KK. Double characteristic bno-spi-tengs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy. 2018;44:430.

    Article  CAS  Google Scholar 

  22. Parida K, Thangavel G, Cai GF, Zhou XR, Park S, Xiong JQ, Lee PS. Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun. 2019;10:2158.

    Article  Google Scholar 

  23. Wang HM, Xu L, Bai Y, Wang ZL. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat Commun. 2020;11:4203.

    Article  Google Scholar 

  24. Niu SM, Liu Y, Wang SH, Lin L, Zhou YS, Hu YF, Wang ZL. Theory of sliding-mode triboelectric nanogenerators. Adv Mater. 2013;25:6184.

    Article  CAS  Google Scholar 

  25. Jin T, Sun ZD, Li L, Zhang Q, Zhu ML, Zhang ZX, Yuan GJ, Chen T, Tian YZ, Hou XY, Lee C. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun. 2020;11:5381.

    Article  CAS  Google Scholar 

  26. He WC, Liu WL, Chen J, Wang Z, Liu YK, Pu XJ, Yang HM, Tang Q, Yang HK, Guo HY, Hu CG. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat Commun. 2020;11:4277.

    Article  CAS  Google Scholar 

  27. Jurado UT, Pu SH, White NM. Wave impact energy harvesting through water-dielectric triboelectrification with single-electrode triboelectric nanogenerators for battery-less systems. Nano Energy. 2020;78: 105204.

    Article  CAS  Google Scholar 

  28. Yu JR, Gao GY, Huang JR, Yang XX, Han J, Zhang H, Chen YH, Zhao CL, Sun QJ, Wang ZL. Contact-electrification-activated artificial afferents at femtojoule energy. Nat Commun. 2021;12:1581.

    Article  CAS  Google Scholar 

  29. Shi QF, Lee C. Self-powered bio-inspired spider-net-coding interface using single-electrode triboelectric nanogenerator. Adv Sci. 2019;6:1900617.

    Article  Google Scholar 

  30. Zhang Q, Zhang ZX, Liang QJ, Shi QF, Zhu ML, Lee C. All in one, self-powered bionic artificial nerve based on a triboelectric nanogenerator. Adv Sci. 2021;8:2004727.

    Article  CAS  Google Scholar 

  31. Niu SM, Liu Y, Chen XY, Wang SH, Zhou YS, Lin L, Xie YN, Wang ZL. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy. 2015;12:760.

    Article  CAS  Google Scholar 

  32. So MY, Xu BG, Li ZH, Lai CL, Jiang CHZ. Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring. Nano Energy. 2023;106: 108033.

    Article  CAS  Google Scholar 

  33. Lai Y-C, Deng JN, Zhang SL, Niu SM, Guo HY, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater. 2017;27:1604462.

    Article  Google Scholar 

  34. Yang Y, Chen L, He J, Hou XJ, Qiao XJ, Xiong JJ, Chou XJ. Flexible and extendable honeycomb-shaped triboelectric nanogenerator for effective human motion energy harvesting and biomechanical sensing. Adv Mater Technol. 2022;7:2100702.

    Article  CAS  Google Scholar 

  35. Liu X, Liu YZ, Cheng TH, Gao YF, Yang ZQ. A high performing piezoelectric and triboelectric nanogenerator based on a large deformation of the novel lantern-shaped structure. Nano Energy. 2022;92: 106699.

    Article  CAS  Google Scholar 

  36. Shi QW, Sun JQ, Hou CY, Li YG, Zhang QH, Wang HZ. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3.

    Article  Google Scholar 

  37. Zhong JW, Zhang Y, Zhong QZ, Hu QY, Hu B, Wang ZL, Zhou J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano. 2014;8:6273.

    Article  CAS  Google Scholar 

  38. Yu AF, Pu X, Wen RM, Liu MM, Zhou T, Zhang K, Zhang Y, Zhai JY, Hu WG, Wang ZL. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano. 2017;11:12764.

    Article  CAS  Google Scholar 

  39. Pu X, Li LX, Song HQ, Du CH, Zhao ZF, Jiang CY, Cao GZ, Hu WG, Wang ZL. A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater. 2015;27:2472.

    Article  CAS  Google Scholar 

  40. Ning C, Tian L, Zhao XY, Xiang SX, Tang YJ, Liang E, Mao YC. Washable textile-structured single-electrode triboelectric nanogenerator for self-powered wearable electronics. J Mater Chem A. 2018;6:19143.

    Article  CAS  Google Scholar 

  41. Li YY, Zhang YH, Yi J, Peng X, Cheng RW, Ning C, Sheng FF, Wang S, Dong K, Wang ZL. Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat. 2022;4: e12191.

    Article  CAS  Google Scholar 

  42. Guan XY, Xu BG, Wu MJ, Jing TT, Yang YJ, Gao YY. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing. Nano Energy. 2021;80: 105549.

    Article  CAS  Google Scholar 

  43. Gong JL, Xu BG, Guan XY, Chen YJ, Li SY, Feng J. Towards truly wearable energy harvesters with full structural integrity of fiber materials. Nano Energy. 2019;58:365.

    Article  CAS  Google Scholar 

  44. Dong K, Peng X, An J, Wang AC, Luo JJ, Sun BZ, Wang J, Wang ZL. Shape adaptable and highly resilient 3d braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun. 2020;11:2868.

    Article  CAS  Google Scholar 

  45. He TYY, Shi QF, Wang H, Wen F, Chen T, Ouyang J, Lee C. Beyond energy harvesting—multi-functional triboelectric nanosensors on a textile. Nano Energy. 2019;57:338.

    Article  CAS  Google Scholar 

  46. Chen J, Huang Y, Zhang NN, Zou HY, Liu RY, Tao CY, Fan X, Wang ZL. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat Energy. 2016;1:16138.

    Article  CAS  Google Scholar 

  47. Rezaei J, Nikfarjam A. Rib stitch knitted extremely stretchable and washable textile triboelectric nanogenerator. Adv Mater Technol. 2021;6:2000983.

    Article  CAS  Google Scholar 

  48. Tan D, Xu BG, Gao YY, Tang Y, Liu YF, Yang YJ, Li ZH. Breathable fabric-based triboelectric nanogenerators with open-porous architected polydimethylsiloxane coating for wearable applications. Nano Energy. 2022;104: 107873.

    Article  CAS  Google Scholar 

  49. Lee S, Ko W, Oh Y, Lee J, Baek G, Lee Y, Sohn J, Cha S, Kim J, Park J, Hong J. Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy. 2015;12:410.

    Article  CAS  Google Scholar 

  50. Paosangthong W, Wagih M, Torah R, Beeby S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy. 2022;92: 106739.

    Article  CAS  Google Scholar 

  51. Ma LY, Wu RH, Liu S, Patil A, Gong H, Yi J, Sheng FF, Zhang YZ, Wang J, Wang J, Guo WX, Wang ZL. A machine-fabricated 3d honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue. Adv Mater. 2020;32:2003897.

    Article  CAS  Google Scholar 

  52. Rahman MT, Rana SMS, Salauddin M, Zahed MA, Lee S, Yoon E-S, Park JY. Silicone-incorporated nanoporous cobalt oxide and mxene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications. Nano Energy. 2022;100: 107454.

    Article  CAS  Google Scholar 

  53. Huang T, Zhang J, Yu B, Yu H, Long HR, Wang HZ, Zhang QH, Zhu MF. Fabric texture design for boosting the performance of a knitted washable textile triboelectric nanogenerator as wearable power. Nano Energy. 2019;58:375.

    Article  CAS  Google Scholar 

  54. Lin YY, Cheng NB, Meng N, Wang C, Wang XF, Yu JY, Ding B. A patterned knitted fabric with reversible gating stability for dynamic moisture management of human body. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202304109.

    Article  Google Scholar 

  55. Li MQ, Xu BG, Li ZH, Gao YY, Yang YJ, Huang XX. Toward 3d double-electrode textile triboelectric nanogenerators for wearable biomechanical energy harvesting and sensing. Chem Eng J. 2022;450: 137491.

    Article  CAS  Google Scholar 

  56. Huang T, Wang C, Yu H, Wang HZ, Zhang QH, Zhu MF. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy. 2015;14:226.

    Article  CAS  Google Scholar 

  57. Lee KY, Yoon H-J, Jiang T, Wen XN, Seung W, Kim S-W, Wang ZL. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array. Adv Energy Mater. 2016;6:1502566.

    Article  Google Scholar 

  58. Liu LM, Pan J, Chen PN, Zhang J, Yu XH, Ding X, Wang BJ, Sun XM, Peng HS. A triboelectric textile templated by a three-dimensionally penetrated fabric. J Mater Chem A. 2016;4:6077.

    Article  CAS  Google Scholar 

  59. Zhou T, Zhang C, Han CB, Fan FR, Tang W, Wang ZL. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl Mater Interfaces. 2014;6:14695.

    Article  CAS  Google Scholar 

  60. Tian ZM, He J, Chen X, Zhang ZX, Wen T, Zhai C, Han JQ, Mu JL, Hou XJ, Chou XJ, Xue CY. Performance-boosted triboelectric textile for harvesting human motion energy. Nano Energy. 2017;39:562.

    Article  CAS  Google Scholar 

  61. Rana SMS, Rahman MT, Zahed MA, Lee SH, Shin YD, Seonu S, Kim D, Salauddin M, Bhatta T, Sharstha K, Park JY. Zirconium metal-organic framework and hybridized co-npc@mxene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors. Nano Energy. 2022;104: 107931.

    Article  CAS  Google Scholar 

  62. Jiang CHZ, Lai CL, Xu BG, So MY, Li ZH. Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy. 2022;93: 106807.

    Article  CAS  Google Scholar 

  63. Cui NY, Liu JM, Gu L, Bai S, Chen XB, Qin Y. Wearable triboelectric generator for powering the portable electronic devices. ACS Appl Mater Interfaces. 2015;7:18225.

    Article  CAS  Google Scholar 

  64. Lv XS, Liu Y, Yu JY, Li ZL, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2023;5:401.

    Article  Google Scholar 

  65. Wang ZL, Wang AC. On the origin of contact-electrification. Mater Today. 2019;30:34.

    Article  Google Scholar 

  66. Lin SQ, Xu L, Chi Wang A, Wang ZL. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nat Commun. 2020;11:399.

    Article  CAS  Google Scholar 

  67. Apodaca MM, Wesson PJ, Bishop KJM, Ratner MA, Grzybowski BA. Contact electrification between identical materials. Angew Chem Int Ed. 2010;49:946.

    Article  CAS  Google Scholar 

  68. Baytekin HT, Patashinski AZ, Branicki M, Baytekin B, Soh S, Grzybowski BA. The mosaic of surface charge in contact electrification. Science. 2011;333:308.

    Article  CAS  Google Scholar 

  69. Sakaguchi M, Makino M, Ohura T, Iwata T. Contact electrification of polymers due to electron transfer among mechano anions, mechano cations and mechano radicals. J Electrostat. 2014;72:412.

    Article  CAS  Google Scholar 

  70. Zhan F, Wang AC, Xu L, Lin SQ, Shao JJ, Chen XY, Wang ZL. Electron transfer as a liquid droplet contacting a polymer surface. ACS Nano. 2020;14:17565.

    Article  CAS  Google Scholar 

  71. Pu X, Song WX, Liu MM, Sun CW, Du CH, Jiang CY, Huang X, Zou DC, Hu WG, Wang ZL. Wearable power-textiles by integrating fabric triboelectric nanogenerators and fiber-shaped dye-sensitized solar cells. Adv Energy Mater. 2016;6:1601048.

    Article  Google Scholar 

  72. Niu L, Wang J, Wang K, Pan H, Jiang GM, Chen CY, Ma PB. High-speed sirospun conductive yarn for stretchable embedded knitted circuit and self-powered wearable device. Adv Fiber Mater. 2023;5:154.

    Article  CAS  Google Scholar 

  73. Dong K, Deng JN, Ding WB, Wang AC, Wang PH, Cheng CY, Wang YC, Jin LM, Gu BH, Sun BZ, Wang ZL. Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv Energy Mater. 2018;8:1801114.

    Article  Google Scholar 

  74. He M, Du WW, Feng YM, Li SJ, Wang W, Zhang X, Yu AF, Wan LY, Zhai JY. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy. 2021;86: 106058.

    Article  CAS  Google Scholar 

  75. Kim KN, Chun JS, Kim JW, Lee KY, Park J-U, Kim S-W, Wang ZL, Baik JM. Highly stretchable 2d fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano. 2015;9:6394.

    Article  CAS  Google Scholar 

  76. Zhou MJ, Xu F, Ma LY, Luo QL, Ma WW, Wang RW, Lan CT, Pu X, Qin XH. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy. 2022;104: 107885.

    Article  CAS  Google Scholar 

  77. Ye C, Xu QF, Ren J, Ling SJ. Violin string inspired core-sheath silk/steel yarns for wearable triboelectric nanogenerator applications. Adv Fiber Mater. 2020;2:24.

    Article  CAS  Google Scholar 

  78. Zhao ZF, Pu X, Du CH, Li LX, Jiang CY, Hu WG, Wang ZL. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. ACS Nano. 2016;10:1780.

    Article  CAS  Google Scholar 

  79. Jing TT, Xu BG, Xin JH, Guan XY, Yang YJ. Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner resistance of triboelectric nanogenerator textiles. J Mater Chem A. 2021;9:12331.

    Article  CAS  Google Scholar 

  80. Zhu C, Wu JW, Yan JH, Liu XQ. Advanced fiber materials for wearable electronics. Adv Fiber Mater. 2023;5:12.

    Article  Google Scholar 

  81. Pu X, Li LX, Liu MM, Jiang CY, Du CH, Zhao ZF, Hu WG, Wang ZL. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater. 2016;28:98.

    Article  CAS  Google Scholar 

  82. Peng F, Liu D, Zhao W, Zheng GQ, Ji YX, Dai K, Mi LW, Zhang DB, Liu CT, Shen CY. Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy. 2019;65: 104068.

    Article  CAS  Google Scholar 

  83. Zhu MS, Huang Y, Ng WS, Liu JY, Wang ZF, Wang ZY, Hu H, Zhi CY. 3d spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production. Nano Energy. 2016;27:439.

    Article  CAS  Google Scholar 

  84. Kim DK, Jeong JB, Lim K, Ko J, Lang P, Choi M, Lee S, Bae JH, Kim H. Improved output voltage of a nanogenerator with 3d fabric. J Nanosci Nanotechnol. 2020;20:4666.

    Article  Google Scholar 

  85. Kang Y, Wang B, Dai SG, Liu GL, Pu YP, Hu CG. Folded elastic strip-based triboelectric nanogenerator for harvesting human motion energy for multiple applications. ACS Appl Mater Interfaces. 2015;7:20469.

    Article  CAS  Google Scholar 

  86. Choi AY, Lee CJ, Park J, Kim D, Kim YT. Corrugated textile based triboelectric generator for wearable energy harvesting. Sci Rep. 2017;7:45583.

    Article  CAS  Google Scholar 

  87. Lin ZM, Yang J, Li XS, Wu YF, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater. 2018;28:1704112.

    Article  Google Scholar 

  88. Ning C, Dong K, Cheng RW, Yi J, Ye CY, Peng X, Sheng FF, Jiang Y, Wang ZL. Flexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensing. Adv Funct Mater. 2021;31:2006679.

    Article  CAS  Google Scholar 

  89. Zhang DW, Yang WF, Gong W, Ma WW, Hou CY, Li YG, Zhang QH, Wang HZ. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv Mater. 2021;33:2100782.

    Article  CAS  Google Scholar 

  90. Kavarthapu VS, Graham SA, Manchi P, Paranjape MV, Yu JS. Electrospun znsno3/pvdf-hfp nanofibrous triboelectric films for efficient mechanical energy harvesting. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00295-3.

    Article  Google Scholar 

  91. Fan JC, Yuan MM, Wang LB, Xia QX, Zheng HW, Zhou AG. Mxene supported by cotton fabric as electrode layer of triboelectric nanogenerators for flexible sensors. Nano Energy. 2023;105: 107973.

    Article  CAS  Google Scholar 

  92. Kwak SS, Kim H, Seung W, Kim J, Hinchet R, Kim S-W. Fully stretchable textile triboelectric nanogenerator with knitted fabric structures. ACS Nano. 2017;11:10733.

    Article  CAS  Google Scholar 

  93. Liu LQ, Yang XY, Zhao LL, Xu WK, Wang JW, Yang QM, Tang QW. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy. 2020;73: 104797.

    Article  CAS  Google Scholar 

  94. Feng LL, Xu SJ, Sun T, Zhang CJ, Feng JD, Yao LR, Ge JL. Fire/acid/alkali-resistant aramid/carbon nanofiber triboelectric nanogenerator for self-powered biomotion and risk perception in fire and chemical environments. Adv Fiber Mater. 2023. https://doi.org/10.1007/s42765-023-00288-2.

    Article  Google Scholar 

  95. Niu L, Peng X, Chen LJ, Liu Q, Wang TR, Dong K, Pan H, Cong HL, Liu GL, Jiang GM, Chen CY, Ma PB. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection. Nano Energy. 2022;97: 107168.

    Article  CAS  Google Scholar 

  96. Dong K, Wang YC, Deng JN, Dai YJ, Zhang SL, Zou HY, Gu BH, Sun BZ, Wang ZL. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano. 2017;11:9490.

    Article  CAS  Google Scholar 

  97. Mather RR, Wilson JIB. Fabrication of photovoltaic textiles. Coatings. 2017. https://doi.org/10.3390/coatings7050063.

    Article  Google Scholar 

  98. Zhang HL, Yang Y, Hou T-C, Su YJ, Hu CG, Wang ZL. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy. 2013;2:1019.

    Article  CAS  Google Scholar 

  99. Hou T-C, Yang Y, Zhang HL, Chen J, Chen L-J, Lin WZ. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy. 2013;2:856.

    Article  CAS  Google Scholar 

  100. Jung S, Lee J, Hyeon T, Lee M, Kim D-H. Fabric-based integrated energy devices for wearable activity monitors. Adv Mater. 2014;26:6329.

    Article  CAS  Google Scholar 

  101. He J, Qian S, Niu XS, Zhang N, Qian JC, Hou XJ, Mu JL, Geng WP, Chou XJ. Piezoelectric-enhanced triboelectric nanogenerator fabric for biomechanical energy harvesting. Nano Energy. 2019;64: 103933.

    Article  CAS  Google Scholar 

  102. Guo YB, Li KR, Hou CY, Li YG, Zhang QH, Wang HZ. Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications. ACS Appl Mater Interfaces. 2016;8:4676.

    Article  CAS  Google Scholar 

  103. Wang SH, Lin L, Wang ZL. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012;12:6339.

    Article  CAS  Google Scholar 

  104. Yang YQ, Sun N, Wen Z, Cheng P, Zheng HC, Shao HY, Xia YJ, Chen C, Lan HW, Xie XK, Zhou CJ, Zhong J, Sun XH, Lee S-T. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano. 2027;2018:12.

    Google Scholar 

  105. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang CH, Son S, Kim JH, Jang YH, Kim DE, Lee T. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater. 2015;27:2433.

    Article  CAS  Google Scholar 

  106. Ming XQ, Shi L, Zhu H, Zhang Q. Stretchable, phase-transformable ionogels with reversible ionic conductor–insulator transition. Adv Funct Mater. 2020;30:2005079.

    Article  CAS  Google Scholar 

  107. Park H, Oh S-J, Kim D, Kim M, Lee C, Joo H, Woo I, Bae JW, Lee J-H. Plasticized pvc-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing. Adv Sci. 2022;9:2201070.

    Article  CAS  Google Scholar 

  108. Sun LJ, Huang HF, Ding QY, Guo YF, Sun W, Wu ZC, Qin ML, Guan QB, You ZW. Highly transparent, stretchable, and self-healable ionogel for multifunctional sensors, triboelectric nanogenerator, and wearable fibrous electronics. Adv Fiber Mater. 2022;4:98.

    Article  CAS  Google Scholar 

  109. Chu H, Jang H, Lee Y, Chae Y, Ahn J-H. Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy. 2016;27:298.

    Article  CAS  Google Scholar 

  110. Dong L, Wang MX, Wu JJ, Zhu CH, Shi J, Morikawa H. Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting. Adv Fiber Mater. 2022;4:1486.

    Article  CAS  Google Scholar 

  111. Jing TT, Wang SC, Yuan HY, Yang YJ, Xue M, Xu BG. Interfacial roughness enhanced gel/elastomer interfacial bonding enables robust and stretchable triboelectric nanogenerator for reliable energy harvesting. Small. 2023;19:2206528.

    Article  CAS  Google Scholar 

  112. Liu YH, Fu Q, Mo JL, Lu YX, Cai CC, Luo B, Nie SX. Chemically tailored molecular surface modification of cellulose nanofibrils for manipulating the charge density of triboelectric nanogenerators. Nano Energy. 2021;89: 106369.

    Article  CAS  Google Scholar 

  113. Mishra S, Supraja P, Haranath D, Kumar RR, Pola S. Effect of surface and contact points modification on the output performance of triboelectric nanogenerator. Nano Energy. 2022;104: 107964.

    Article  CAS  Google Scholar 

  114. Zhu ML, Shi QF, He TYY, Yi ZR, Ma YM, Yang B, Chen T, Lee CK. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano. 1940;2019:13.

    Google Scholar 

  115. Salauddin M, Rana SMS, Sharifuzzaman M, Rahman MT, Park C, Cho H, Maharjan P, Bhatta T, Park JY. A novel mxene/ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv Energy Mater. 2021;11:2002832.

    Article  CAS  Google Scholar 

  116. Xiong JQ, Cui P, Chen XL, Wang JX, Parida K, Lin MF, Lee PS. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting. Nat Commun. 2018;9:4280.

    Article  Google Scholar 

  117. Wu RH, Liu S, Lin ZF, Zhu SH, Ma LY, Wang ZL. Industrial fabrication of 3d braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv Energy Mater. 2022;12:2201288.

    Article  CAS  Google Scholar 

  118. Ning C, Cheng RW, Jiang Y, Sheng FF, Yi J, Shen S, Zhang YH, Peng X, Dong K, Wang ZL. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano. 2022;16:2811.

    Article  CAS  Google Scholar 

  119. Zou Y, Tan PC, Shi BJ, Ouyang H, Jiang DJ, Liu Z, Li H, Yu M, Wang C, Qu XC, Zhao LM, Fan YB, Wang ZL, Li Z. A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nat Commun. 2019;10:2695.

    Article  Google Scholar 

  120. Ma LY, Wu RH, Patil A, Yi J, Liu D, Fan XW, Sheng FF, Zhang YF, Liu S, Shen S, Wang J, Wang ZL. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater. 2021;31:2102963.

    Article  CAS  Google Scholar 

  121. Cheng RW, Dong K, Liu LX, Ning C, Chen PF, Peng X, Liu D, Wang ZL. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano. 2020;14:15853.

    Article  CAS  Google Scholar 

  122. Lai Y-C, Hsiao Y-C, Wu H-M, Wang ZL. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Adv Sci. 2019;6:1801883.

    Article  Google Scholar 

  123. Wang ZZ, Gong LK, Dong SC, Fan BB, Feng Y, Zhang Z, Zhang C. A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J Mater Chem A. 2022;10:25230.

    Article  CAS  Google Scholar 

  124. Liu D, Zhou LL, Cui SN, Gao YK, Li SX, Zhao ZH, Yi ZY, Zou HY, Fan YJ, Wang J, Wang ZL. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat Commun. 2022;13:6019.

    Article  CAS  Google Scholar 

  125. Chen CY, Guo HY, Chen LJ, Wang YC, Pu XJ, Yu WD, Wang FM, Du ZQ, Wang ZL. Direct current fabric triboelectric nanogenerator for biomotion energy harvesting. ACS Nano. 2020;14:4585.

    Article  CAS  Google Scholar 

  126. Shao H, Fang J, Wang HX, Niu HT, Zhou H, Cao YY, Chen FY, Fu SD, Lin T. Schottky direct-current energy harvesters with large current output density. Nano Energy. 2019;62:171.

    Article  CAS  Google Scholar 

  127. Liu GX, Luan RF, Qi YC, Gong LK, Cao J, Wang ZH, Liu F, Zeng JH, Huang XL, Qin YH, Dong SC, Feng Y, Huang LB, Zhang C. Organic tribovoltaic nanogenerator with electrically and mechanically tuned flexible semiconductor textile. Nano Energy. 2023;106: 108075.

    Article  CAS  Google Scholar 

  128. Wei CH, Cheng R, Ning C, Wei X, Peng X, Lv TM, Sheng FF, Dong K, Wang ZL. A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202303562.

    Article  Google Scholar 

  129. He HL, Liu JR, Wang YS, Zhao YH, Qin Y, Zhu ZY, Yu ZC, Wang JF. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano. 2022;16:2953.

    Article  CAS  Google Scholar 

  130. Ye GM, Wan YF, Wu JM, Zhuang WB, Zhou ZQ, Jin TS, Zi JY, Zhang DD, Geng XM, Yang P. Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction. Nano Energy. 2022;97: 107148.

    Article  CAS  Google Scholar 

  131. Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye CY, Wang ZL. Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano Micro Lett. 2021;13:103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for financial support from the National Natural Science Foundation of China (U21A2095) and the Key Research and Development Program of Hubei Province (2021BAA068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Deng.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, D., Ye, J., Zhou, Y. et al. Research Progress of Fabrics with Different Geometric Structures for Triboelectric Nanogenerators in Flexible and Wearable Electronics. Adv. Fiber Mater. 5, 1852–1878 (2023). https://doi.org/10.1007/s42765-023-00334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00334-z

Keywords

Navigation