Skip to main content
Log in

Fire/Acid/Alkali-Resistant Aramid/Carbon Nanofiber Triboelectric Nanogenerator for Self-Powered Biomotion and Risk Perception in Fire and Chemical Environments

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Casualties are frequent in high-risk environments, particularly in high-risk chemical and high-temperature fire environments, due to improper protection or accidents. While wearable sensors can offer real-time biomechanical monitoring in fire and chemical environments, they cause discomfort, contain toxic heavy metals, and lack resistance to fire and acid/alkali. Herein, a facile approach to fabricating metal-free fire/acid/alkali-resistant poly(m-phenylene isophthalamide) fiber and carbon nanofiber composite triboelectric nanogenerator (PMIA/CNF-TENG) was demonstrated. The PMIA/CNF-TENG shows the advantages of textile construction including flexibility, waterproofing, and moisture permeability. It also exhibits unique functions, such as ultrahigh fire/temperature resistance, strong acid and alkali protection, the ability to monitor human signals in real time with self-power, handwritten input for danger signals, and sudden risk perception. The PMIA/CNF-TENG possessed an open-circuit voltage (VOC) retention rate of 96.8% even at 250 °C, thereby showing considerably higher thermal stability than conventional flame-retardant TENGs. When moved from room temperature to a simulated fire environment, the biomotion-generated VOC increased by 136.7% for bending the elbow and by over 900% for hand input, indicating good fire-sensing capability. In addition, output signal strength by solid–liquid contact depended on the solution type and corresponded to the laws—NaOH > HNO3 > H2SO4 > H2O, indicating potential applications in chemical splash detection and active acid–alkali liquid identification. Moreover, the PMIA/CNF-TENG could be built into wireless intelligent sensing systems to achieve remote biomotion and risk perception.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA, Martin SS, Muse ED, Turakhia MP, Tarakji KG, Elshazly MB. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol. 2021;18:581.

    Article  CAS  Google Scholar 

  2. Li Y, Lou Q, Yang J, Cai K, Liu Y, Lu Y, Qiu Y, Lu Y, Wang Z, Wu M, He J, Shen S. Exceptionally high power factor Ag2Se/Se/polypyrrole. Adv Funct Mater. 2022;32:2106902.

    Article  CAS  Google Scholar 

  3. Chen G, Li Y, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev. 2020;120:3668.

    Article  CAS  Google Scholar 

  4. Libanori A, Chen G, Zhao X, Zhou Y, Chen J. Smart textiles for personalized healthcare. Nat Electron. 2022;5:142.

    Article  CAS  Google Scholar 

  5. Fang Y, Chen G, Bick M, Chen J. Smart textiles for personalized thermoregulation. Chem Soc Rev. 2021;50:9357.

    Article  CAS  Google Scholar 

  6. Dong K, Hu Y, Yang J, Kim S-W, Hu W, Wang ZL. Smart textile triboelectric nanogenerators: current status and perspectives. Mrs Bull. 2021;46:512.

    Article  CAS  Google Scholar 

  7. Paosangthong W, Wagih M, Torah R, Beeby S. Textile-based triboelectric nanogenerator with alternating positive and negative freestanding woven structure for harvesting sliding energy in all directions. Nano Energy. 2022;92: 106739.

    Article  CAS  Google Scholar 

  8. Ma L, Wu R, Patil A, Yi J, Liu D, Fan X, Sheng F, Zhang Y, Liu S, Shen S, Wang J, Wang ZL. Acid and alkali-resistant textile triboelectric nanogenerator as a smart protective suit for liquid energy harvesting and self-powered monitoring in high-risk environments. Adv Funct Mater. 2021;31:2102963.

    Article  CAS  Google Scholar 

  9. Jia M, Guo P, Wang W, Yu A, Zhang Y, Wang Z, Zhai J. Tactile tribotronic reconfigurable p-n junctions for artificial synapses. Sci Bull. 2022;67:803.

    Article  CAS  Google Scholar 

  10. Luo Y, Miao Y, Wang H, Dong K, Hou L, Xu Y, Chen W, Zhang Y, Zhang YY, Fan W. Laser-induced janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res. 2023. https://doi.org/10.1007/s12274-023-5382-y.

    Article  Google Scholar 

  11. Wang W, Yu A, Zhai J, Wang ZL. Recent progress of functional fiber and textile triboelectric nanogenerators: towards electricity power generation and intelligent sensing. Adv Fiber Mater. 2021;3:394.

    Article  CAS  Google Scholar 

  12. Wang J, He J, Ma L, Yao Y, Zhu X, Peng L, Liu X, Li K, Qu M. A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chem Eng J. 2021;423: 130200.

    Article  CAS  Google Scholar 

  13. Chen W, Fan W, Wang Q, Yu X, Luo Y, Wang W, Lei R, Li Y. A nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy. 2022;103: 107769.

    Article  CAS  Google Scholar 

  14. Fan W, Zhang G, Zhang X, Dong K, Liang X, Chen W, Yu L, Zhang Y. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small. 2022;18:2107150.

    Article  CAS  Google Scholar 

  15. Fan W, Zhang Y, Sun Y, Wang S, Zhang C, Yu X, Wang W, Dong K. Durable antibacterial and temperature regulated core-spun yarns for textile health and comfort applications. Chem Eng J. 2023;455: 140917.

    Article  CAS  Google Scholar 

  16. Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang Z, Zhai J. Elastic Kernmantle e-braids for high-impact sports monitoring. Adv Sci. 2022;9:2202489.

    Article  Google Scholar 

  17. Yu A, Wang W, Li Z, Liu X, Zhang Y, Zhai J. Large-scale smart carpet for self-powered fall detection. Adv Mater Technol. 2020;5:1900978.

    Article  CAS  Google Scholar 

  18. Fan W, Zhang C, Yang L, Wang S, Dong K, Li Y, Wu F, Liang J, Wang C, Zhang Y. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Res. 2023. https://doi.org/10.1007/s12274-023-5413-8.

    Article  Google Scholar 

  19. Su Y, Tian M, Li J, Zhang X, Zhao P. Numerical study of heat and moisture transfer in thermal protective clothing against a coupled thermal hazardous environment. Int J Heat Mass Tran. 2022;194: 122989.

    Article  Google Scholar 

  20. Holm S, Engström O, Melander M, Horvath MCS, Fredén F, Lipcsey M, Huss F. Cutaneous steam burns and steam inhalation injuries: a literature review and a case presentation. Eur J Plast Surg. 2022;45:881–96.

    Article  Google Scholar 

  21. Huang W, Wang Y, Lv L, Wang W, Jin C, Zhu G, Shi Q, Qu Q, Jin C, Zheng H. 1-Hydroxyethylidene-1, 1-diphosphonic acid: a multifunctional interface modifier for eliminating HF in silicon anode. Energy Storage Mater. 2021;42:493.

    Article  Google Scholar 

  22. Yin Z, Lu J, Hong N, Cheng W, Jia P, Wang H, Hu W, Wang B, Song L, Hu Y. Functionalizing Ti3C2Tx for enhancing fire resistance and reducing toxic gases of flexible polyurethane foam composites with reinforced mechanical properties. J Colloid Interf Sci. 2022;607:1300.

    Article  CAS  Google Scholar 

  23. Zhou Y, Sun Z, Jiang L, Chen S, Ma J, Zhou F. Flexible and conductive meta-aramid fiber paper with high thermal and chemical stability for electromagnetic interference shielding. Appl Surf Sci. 2020;533: 147431.

    Article  CAS  Google Scholar 

  24. Fan G, Ge J, Kim H-Y, Ding B, Al-Deyab SS, El-Newehy M, Yu J. Hierarchical porous carbon nanofibrous membranes with an enhanced shape memory property for effective adsorption of proteins. RSC Adv. 2015;5:64318.

    Article  CAS  Google Scholar 

  25. Zhong X, Sun P, Wei R, Dong H, Jiang S. Object recognition by a heat-resistant core-sheath triboelectric nanogenerator sensor. J Mater Chem A. 2022;10:15080.

    Article  CAS  Google Scholar 

  26. Li Z, Cheng X, He S, Shi X, Gong L, Zhang H. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance. Compos Part A-Appl S. 2016;84:316.

    Article  CAS  Google Scholar 

  27. Wang L, Zhang M, Yang B, Ding X, Tan J, Song S, Nie J. Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. Acs Appl Mater Interfaces. 2021;13:5486.

    Article  CAS  Google Scholar 

  28. Deng Z, Yue J, Huang Z. Solvothermal degradation and reuse of carbon fiber reinforced boron phenolic resin composites. Compos Part B-Eng. 2021;221: 109011.

    Article  CAS  Google Scholar 

  29. Dong S, Xu F, Sheng Y, Guo Z, Pu X, Liu Y. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources. Nano Energy. 2020;78: 105327.

    Article  CAS  Google Scholar 

  30. Zhang A-N, Zhao H-B, Cheng J-B, Li M-E, Li S-L, Cao M, Wang Y-Z. Construction of durable eco-friendly biomass-based flame-retardant coating for cotton fabrics. Chem Eng J. 2021;410: 128361.

    Article  CAS  Google Scholar 

  31. Cheng R, Dong K, Liu L, Ning C, Chen P, Peng X, Liu D, Wang ZL. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications. ACS Nano. 2020;14:15853.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFC2600301), Postdoctoral Research Foundation of China (No. 2020M671580), Jiangsu Postdoctoral Research Foundation (2021K579C), and the Natural Science Foundation of Jiangsu Province (Grant No. BK20200968). The authors are sincerely thankful to all individuals who were involved in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sijun Xu or Jianlong Ge.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1900 KB)

Supplementary file2 (MP4 5474 KB)

Supplementary file3 (MP4 8693 KB)

Supplementary file4 (MP4 6465 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Xu, S., Sun, T. et al. Fire/Acid/Alkali-Resistant Aramid/Carbon Nanofiber Triboelectric Nanogenerator for Self-Powered Biomotion and Risk Perception in Fire and Chemical Environments. Adv. Fiber Mater. 5, 1478–1492 (2023). https://doi.org/10.1007/s42765-023-00288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00288-2

Keywords

Navigation