Skip to main content
Log in

An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Excellent outdoor thermal management is vital for public health and safety. However, the ever-changing and uncontrollable outdoor environmental conditions, such as irrepressible sunlight and drastic temperature fluctuations, bring majestic challenges to outdoor thermal management. Here, we report a significant advancement toward designing and fabricating a novel fiber membrane with a dual-function of radiative cooling and solar heating for an efficient daytime outdoor thermal management. Unlike the reported dual-mode thermal management materials, which are usually fabricated by compounding organic polymers and metal/inorganic non-metal materials, our fiber-based membrane is composed of only two polymers, i.e., poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) and polypyrrole (PPy). The resulting membrane presents outstanding outdoor thermoregulation capacity, with a practically attainable sun-ambient cooling temperature of ~ 4.5 °C, super-ambient heating temperature of ~ 35.8 °C, in an outdoor environment, under solar intensity (Isolar) of ~ 850 W m−2. Fabrication process is simple and cost-effective, which offers the possibility of preparing large-scale products. Owing to the scalable and simple fabrication process, and the exceptional outdoor thermoregulation ability, this dual-mode fiber membrane has great potential to maintain a comfortable outdoor environment for human activities and industrial operations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vicedo-Cabrera AM, Forsberg B, Tobias A, Zanobetti A, Schwartz J, Armstrong B, Gasparrini A. Associations of inter- and intraday temperature change with mortality. Am J Epidemiol 2016;183:286.

    Article  Google Scholar 

  2. Cohen P, Shashua-Bar L, Keller R, Gil-Ad R, Yaakov Y, Lukyanov V, Bar P, Tanny J, Cohen S, Potchter O. Urban outdoor thermal perception in hot arid Beer Sheva, Israel: methodological and gender aspects. Build Environ 2019;160:106169.

    Article  Google Scholar 

  3. Bathiany S, Dakos V, Scheffer M, Lenton TM. Climate models predict increasing temperature variability in poor countries. Sci Adv 2018;4:5809.

    Article  Google Scholar 

  4. Zhu FL, Feng QQ. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int J Therm Sci 2021;165:106899.

    Article  Google Scholar 

  5. Wang T, Wu Y, Shi L, Hu XH, Chen M, Wu LM. A structural polymer for highly efficient all-day passive radiative cooling. Nat Commun 2021;12:365.

    Article  CAS  Google Scholar 

  6. Niu WB, Zhang LL, Wang YP, Wang ZW, Zhao K, Wu SL, Zhang SF, Tok AIY. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management. ACS Appl Mater Inter 2019;11:32261.

    Article  CAS  Google Scholar 

  7. Yin XB, Yang RG, Tan G, Fan SH. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source. Science 2020;370:786.

    Article  CAS  Google Scholar 

  8. Zhao K, Cheng J, Sun N, Wang YP, Huang HL, Zhang SF, Niu WB. Photonic Janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices. Adv Mater Technol 2021;1:2101057.

    Google Scholar 

  9. Li XQ, Sun BW, Sui CX, Nandi A, Fang HM, Peng YC, Tan G, Hsu P-C. Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nat Commun 2020;11:6101.

    Article  CAS  Google Scholar 

  10. Hu MK, Zhao B, Suhendri CJY, Wang QL, Riffat S, Su YH, Pei G. Feasibility of realizing daytime solar heating and radiative cooling simultaneously with a novel structure. Sustain Cities Soc 2021;74:103224.

    Article  Google Scholar 

  11. Cohen Y, Rubin AE. Daytime solar heating controls downy mildew peronospora belbahrii in sweet basil. PLoS ONE 2015;10:e0126103.

    Article  Google Scholar 

  12. Shi MK, Shen MM, Guo XY, Jin XX, Cao YX, Yang YY, Wang WJ, Wang JF. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021;15:11396.

    Article  CAS  Google Scholar 

  13. Wang WL, Zhao ZP, Zou QX, Hong BB, Zhang W, Wang GP. Self-adaptive radiative cooling and solar heating based on a compound metasurface. J Mater Chem C 2020;8:3192.

    Article  CAS  Google Scholar 

  14. Cai LL, Song AY, Wu PL, Hsu P-C, Peng YC, Chen J, Liu C, Catrysse PB, Liu YY, Yang AK, Zhou CX, Zhou CY, Fan SH, Cui Y. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 2017;8:496.

    Article  Google Scholar 

  15. Zhou K, Li W, Patel BB, Tao R, Chang YL, Fan SH, Diao Y, Cai LL. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett 2021;21:1493.

    Article  CAS  Google Scholar 

  16. Zeng SN, Pian SJ, Su MY, Wang ZN, Wu MQ, Liu XH, Chen MY, Xiang YZ, Wu JW, Zhang MN, Cen QQ, Tang YW, Zhou XH, Huang ZH, Wang R, Tunuhe A, Sun XY, Xia ZG, Tian MW, Chen M, Ma X, Yang LY, Zhou J, Zhou HM, Yang Q, Li X, Ma YG, Tao GM. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021;373:692.

    Article  CAS  Google Scholar 

  17. Chen MJ, Pang D, Mandal J, Chen XY, Yan HJ, He YR, Yu NF, Yang Y. Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett 2021;21:1412.

    Article  CAS  Google Scholar 

  18. Li D, Liu X, Li W, Lin ZH, Zhu B, Li ZZ, Li JL, Li B, Fan SH, Xie JW, Zhu J. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat Nanotechnol 2021;16:153.

    Article  CAS  Google Scholar 

  19. Yang ZB, Zhang J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl Mater Inter 2021;13:43387.

    Article  CAS  Google Scholar 

  20. Zhou M, Song HM, Xu XY, Shahsafi A, Qu YR, Xia ZY, Ma ZQ, Kats MA, Zhu J, Ooi BS, Gan QQ, Yu ZF. Vapor condensation with daytime radiative cooling. Proc Natl Acad Sci 2021;118:e2019292118.

    Article  CAS  Google Scholar 

  21. Yue XJ, Zhang T, Yang DY, Qiu FX, Wei GY, Zhou H. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management. Nano Energy 2019;63:103808.

    Article  CAS  Google Scholar 

  22. Zhou L, Song HM, Zhang N, Rada J, Singer M, Zhang HF, Ooi BS, Yu ZF, Gan QQ. Hybrid concentrated radiative cooling and solar heating in a single system. Cell Rep Phys Sci 2021;2:100338.

    Article  Google Scholar 

  23. Mandal J, Fu Y, Overvig AC, Jia MX, Sun KR, Shi NN, Zhou H, Xiao XH, Yu NF, Yang Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018;362:315.

    Article  CAS  Google Scholar 

  24. Zhai Y, Ma YG, David SN, Zhao DL, Lou RN, Tan G, Yang RG, Yin XB. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017;355:1062.

    Article  CAS  Google Scholar 

  25. Li T, Zhai Y, He SM, Gan WT, Wei ZY, Heidarinejad M, Dalgo D, Mi R, Zhao XP, Song JW, Dai JQ, Chen CJ, Aili A, Vellore A, Martini A, Yang RG, Srebric J, Yin XB, Hu LB. A radiative cooling structural material. Science 2019;364:760.

    Article  CAS  Google Scholar 

  26. Zhang HW, Ly KCS, Liu XH, Chen ZH, Yan M, Wu ZL, Wang X, Zheng YB, Zhou H, Fan TX. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc Natl Acad Sci 2020;117:14657.

    Article  Google Scholar 

  27. Luo H, Zhu YN, Xu ZQ, Hong Y, Ghosh P, Kaur S, Wu MB, Yang CY, Qiu M, Li Q. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett 2021;21:3879.

    Article  CAS  Google Scholar 

  28. Hsu P-C, Liu C, Song AY, Zhang Z, Peng YC, Xie J, Liu K, Wu C-L, Catrysse PB, Cai LL, Zhai S, Majumdar A, Fan SH, Cui Y. A dual-mode textile for human body radiative heating and cooling. Sci Adv 2017;3:e1700895.

    Article  Google Scholar 

  29. Laine RM, Choi JW, Lee I. Organic-inorganic nanocomposites with completely defined interfacial interactions. Adv Mater 2001;13:800.

    Article  CAS  Google Scholar 

  30. Li TQ, Zhang MQ, Zhang K, Zeng HM. The dependence of the fracture toughness of thermoplastic composite laminates on interfacial interaction. Compos Sci Technol 2000;60:465.

    Article  CAS  Google Scholar 

  31. Wang ZG, Ren HT, Zhang SX, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J Mater Chem A 2017;5:10968.

    Article  CAS  Google Scholar 

  32. Kokado K. Network polymers derived from the integration of flexible organic polymers and rigid metal-organic frameworks. Polym J 2017;49:345.

    Article  CAS  Google Scholar 

  33. Logothetidis S. Flexible organic electronic devices: Materials, process and applications. Mat Sci Eng B 2008;152:96.

    Article  CAS  Google Scholar 

  34. Mandal J, Yang Y, Yu NF, Raman AP. Paints as a scalable and effective radiative cooling technology for buildings. Joule 2020;4:1350.

    Article  Google Scholar 

  35. Zha ZB, Yue XL, Ren QS, Dai ZF. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 2013;25:777.

    Article  CAS  Google Scholar 

  36. Qin G, Qiu J. Ordered polypyrrole nanorings with near-infrared spectrum absorption and photothermal conversion performance. Chem Eng J 2019;359:652.

    Article  CAS  Google Scholar 

  37. Hossain MM, Gu M. Radiative cooling: principles, progress, and potentials. Adv Sci 2016;3:1500360.

    Article  Google Scholar 

  38. Zhu LX, Raman A, Fan SH. Color-preserving daytime radiative cooling. Appl Phys Lett 2013;103:223902.

    Article  Google Scholar 

  39. Zhao DL, Aili A, Zhai Y, Xu SY, Tan G, Yin XB, Yang RG. Radiative sky cooling: fundamental principles, materials, and applications. Appl Phys Rev 2019;6:021306.

    Article  Google Scholar 

  40. Raman AP, Anoma MA, Zhu LX, Rephaeli E, Fan SH. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014;515:540.

    Article  CAS  Google Scholar 

  41. Gentle AR, Smith GB. Radiative heat pumping from the earth using surface phonon resonant nanoparticles. Nano Lett 2010;10:373.

    Article  CAS  Google Scholar 

  42. Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, Troise G. Nocturnal and diurnal performances of selective radiators. Appl Energ 1977;3:267.

    Article  CAS  Google Scholar 

  43. Xiao P, Gu JC, Zhang C, Ni F, Liang Y, He J, Zhang L, Ouyang JY, Kuo S-W, Chen T. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction. Nano Energy 2019;65:104002.

    Article  Google Scholar 

  44. Jia HY, Wang J, Zhang XY, Wang YP. Pen-writing polypyrrole arrays on paper for versatile cheap sensors. ACS Macro Lett 2014;3:86.

    Article  CAS  Google Scholar 

  45. Sim LN, Majid SR, Arof AK. FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 2012;58:57.

    Article  CAS  Google Scholar 

  46. Ahmad AL, Farooqui UR, Hamid NA. Synthesis and characterization of porous poly(vinylidene fluoride-co-hexafluoro propylene) (PVDF-co-HFP)/poly(aniline) (PANI)/graphene oxide (GO) ternary hybrid polymer electrolyte membrane. Electrochim Acta 2018;283:842.

    Article  CAS  Google Scholar 

  47. Bandara TMWJ, Weerasinghe AMJS, Dissanayake MAKL, Senadeera GKR, Furlani M, Albinsson I, Mellander B-E. Characterization of poly (vinylidene fluoride-co-hexafluoropropylene)(PVdF-HFP) nanofiber membrane based quasi solid electrolytes and their application in a dye sensitized solar cell. Electrochim Acta 2018;266:276.

    Article  CAS  Google Scholar 

  48. Cabuk M, Alan Y, Yavuz M, Unal HI. Synthesis, characterization and antimicrobial activity of biodegradable conducting polypyrrole-graft-chitosan copolymer. Appl Surf Sci 2014;318:168.

    Article  CAS  Google Scholar 

  49. Jia YC, Xiao P, He HC, Yao JY, Liu FL, Wang ZF, Li YH. Photoelectrochemical properties of polypyrrole/TiO2 nanotube arrays nanocomposite under visible light. Appl Surf Sci 2012;258:6627.

    Article  CAS  Google Scholar 

  50. Yu XX, Chan JQ, Chen C. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 2021;88:106259.

    Article  CAS  Google Scholar 

  51. Berk A, Anderson GP, Acharya PK, Bernstein LS, Muratov L, Lee J, Fox M, Adler-Golden SM, Chetwynd JH, Hoke ML, Lockwood RB, Gardner JA, Cooley TW, Borel CC, Lewis PE, Shettle EP. Modtran 5: 2006 update. Proc SPIE 2006;6233:62331F.

    Article  Google Scholar 

  52. Rephaeli E, Raman A, Fan SH. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett 2013;13:1457.

    Article  CAS  Google Scholar 

  53. Huang X, Li N, Wang JF, Liu DF, Xu J, Zhang ZJ, Zhong MF. Single nanoporous MgHPO4·1.2H2O for daytime radiative cooling. ACS Appl Mater Inter 2020;12:2252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 32001429), China Postdoctoral Science Foundation (2020M671442, 2019M661768), Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z369, 2019K091), Scientific Research Start-up Funds of Nanjing Forestry University (163101127), Undergraduate Innovation Training Program of Nanjing Forestry University (2020NFUSPITP0224), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Zhang or Zhenyang Luo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4373 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, B., Zhang, R., Zeng, X. et al. An Easy-to-Prepare Flexible Dual-Mode Fiber Membrane for Daytime Outdoor Thermal Management. Adv. Fiber Mater. 4, 1058–1068 (2022). https://doi.org/10.1007/s42765-022-00164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00164-5

Keywords

Navigation