Skip to main content

Advertisement

Log in

Evaluation of stress concentrations during high-temperature exposure on the lifetime of single and dual-layer ZrO2-8Y2O3/ZrO2-9.5Y2O3-5.6Yb2O3-5.2Gd2O3 TBCs

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this study, the effective stresses in determining the lifetime of new-generation single-layer ZrO2-9.5Y2O3-5.6Yb2O3-5.2Gd2O3 (ZGdYbYO) and dual-layer ZrO2-8Y2O3 (YSZ)/ZGdYbYO thermal barrier coatings (TBCs) were investigated. For this purpose, single-layer ZGdYbYO and dual-layer YSZ/ZGdYbYO TBCs were applied on IN738LC/CoNiCrAlY by atmospheric plasma spraying technique. Then, their cyclic oxidation behavior was studied at 1100 °C with 4-h cycles. The morphologies of the TBCs (before and after oxidation) were investigated by field emission scanning electron microscopy (FESEM). In addition, the mechanical behavior of the TBCs was examined by the nano-indentation test. Thermal stress was measured in single-layer ZGdYbYO and dual-layer YSZ/ZGdYbYO TBCs to be 1.2 and 1.1 GPa, respectively, with thermal growth oxide (TGO) layer growth causing stresses of 0.8 GPa and 0.3 GPa, respectively. The variation in the energy release rate of the TBCs during oxidation cycles was calculated. The results showed that the changes in the energy release rate of dual-layer YSZ/ZGdYbYO TBC compared to single-layer ZGdYbYO TBC are less, and, therefore, have a better high-temperature performance. Applying an intermediate YSZ layer with higher fracture toughness than that of ZGdYbYO between the bond and top coats enhances the mechanical properties of new TBCs and extends their lifetime by improving their resistance to high-temperature oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. J.G. Thakare et al., Thermal barrier coatings—a state of the art review. Met. Mater. Int. 27(7), 1947–1968 (2021)

    Article  Google Scholar 

  2. G. Mehboob et al., A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime. Ceram. Int. 46(7), 8497–8521 (2020)

    Article  CAS  Google Scholar 

  3. P. Zhang, Performance of MCrAlX coatings: oxidation, hot corrosion and interdiffusion. Linköping University Electronic Press 2015, 3–45 (2019)

    Google Scholar 

  4. E. Bakan et al., Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties. J. Therm. Spray Technol. 26(6), 992–1010 (2017)

    Article  CAS  Google Scholar 

  5. X. Cao, R. Vassen et al., Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24(1), 1–10 (2004)

    Article  CAS  Google Scholar 

  6. J. Thakare et al., Mechanical property evaluation of carbon nanotubes reinforced plasma sprayed YSZ-alumina composite coating. Ceram. Int. 44(6), 6980–6989 (2018)

    Article  CAS  Google Scholar 

  7. R. Vaßen et al., Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205(4), 938–942 (2010)

    Article  Google Scholar 

  8. M. Peters, B. Saruhan-Brings, U. Schulz, Advanced coatings for blades of future aero engines, in Proceedings of the 1st CEAS. (European Air and Space Conference, Berlin, Germany, 2007), pp.10–13

    Google Scholar 

  9. O. Metco, Material product data sheet: zirconia gadolinia ytterbia yttria agglomerated and sintered thermal spray powder, Document number: DSMTS-0099.4, Powder Products: Metco 2 (2015)

  10. M. Bahamirian et al., Synthesis and characterization of yttria-stabilized zirconia nanoparticles doped with ytterbium and gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3. Metall. Mater. Trans. A 49(6), 2523–2532 (2018)

    Article  CAS  Google Scholar 

  11. M. Bahamirian et al., Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100° C and 1300° C for advanced TBC applications. Ceram. Int. 45(6), 7344–7350 (2019)

    Article  CAS  Google Scholar 

  12. S.-H. Jung et al., Thermal durability and fracture behavior of layered Yb-Gd-Y-based thermal barrier coatings in thermal cyclic exposure. Surf. Coat. Technol. 323, 39–48 (2017)

    Article  CAS  Google Scholar 

  13. M. Bahamirian et al., Microstructure and cyclic oxidation of yttria-stabilized zirconia/nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 thermal barrier coating at 1373 K. J. Mater. Eng. Perform. 29(11), 7080–7093 (2020)

    Article  CAS  Google Scholar 

  14. A. Keyvani et al., Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling. J. Alloy. Compd. 727, 1057–1066 (2017)

    Article  CAS  Google Scholar 

  15. M. Bahamirian et al., ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3; a promising TBC material with high resistance to hot corrosion. J. Asian Ceram. Soc. 8(3), 898–908 (2020)

    Article  Google Scholar 

  16. M. Bahamirian et al., Hot corrosion behavior of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 TBCs in CMAS: CaO-MgO-Al2O3-SiO2. J. Aust. Ceram. Soc. 57(1), 215–224 (2021)

    Article  CAS  Google Scholar 

  17. P.-f Zhao, Shang et al., Experimental study on the interfacial delamination in a thermal barrier coating system at elevated temperatures. J. Zhejiang Univ.-SCI. A 11(10), 794–803 (2010)

    Article  CAS  Google Scholar 

  18. R. Vaßen et al., Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings. Mater. Sci. Eng.: A 303(1–2), 100–109 (2001)

    Article  Google Scholar 

  19. R. Vaßen et al., Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results. J. Therm. Spray Technol. 18, 835–845 (2009)

    Article  Google Scholar 

  20. S. Ojha et al., Experimental and numerical investigation of residual stress in coatings on steel. J. Test. Eval. 48(6), 4370–4386 (2020)

    Article  CAS  Google Scholar 

  21. A. Kucuk et al., Influence of plasma spray parameters on mechanical properties of yttria-stabilized zirconia coatings. I: four point bend test. Mater. Sci. Eng.: A 284(1–2), 29–40 (2000)

    Article  Google Scholar 

  22. A. Kucuk et al., Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: acoustic emission response. Mater. Sci. Eng.: A 284(1–2), 41–50 (2000)

    Article  Google Scholar 

  23. Grünling et al., Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties. J. Phys. IV 3(C7), C7-903-C7-912 (1993)

    Google Scholar 

  24. L. Wang et al., Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater. Des. 32(1), 36–47 (2011)

    Article  Google Scholar 

  25. I. Golosnoy et al., Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J. Therm. Spray Technol. 18, 809–821 (2009)

    Article  Google Scholar 

  26. M. Bahamirian et al., Thermal durability of YSZ/nanostructured Gd2Zr2O7 TBC undergoing thermal cycling. Oxid. Met. 92(5), 401–421 (2019)

    Article  CAS  Google Scholar 

  27. M. Bahamirian et al., A2Zr2O7 (A= La/Gd/Yb): grain growth effect on phase stability properties at 1300° C. Ceram. Int. 49(11), 16717–16731 (2023)

    Article  CAS  Google Scholar 

  28. M. Bahamirian, A comparative study on phase stability of ZrO2–8wt.%Y2O3: nanoparticles and microparticles. Adv. Ceram. Prog. 8(2), 53–60 (2022)

    CAS  Google Scholar 

  29. A. Keyvani et al., A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling. J. Alloy. Compd. 541, 488–494 (2012)

    Article  CAS  Google Scholar 

  30. D. Balint et al., Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading. Acta Mater. 59(6), 2544–2555 (2011)

    Article  CAS  Google Scholar 

  31. M. Ahrens et al., Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness. Surf. Coat. Technol. 161(1), 26–35 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Milad Bahamirian: conceptualization, supervision, and writing original draft. Zahra Nasr-Esfahani: investigation. Mohammad Farvizi and Mohsen Nouri-Khezrabad: writing, review, and editing.

Corresponding author

Correspondence to Milad Bahamirian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr-Esfahani, Z., Bahamirian, M., Farvizi, M. et al. Evaluation of stress concentrations during high-temperature exposure on the lifetime of single and dual-layer ZrO2-8Y2O3/ZrO2-9.5Y2O3-5.6Yb2O3-5.2Gd2O3 TBCs. emergent mater. 6, 1611–1621 (2023). https://doi.org/10.1007/s42247-023-00556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00556-2

Keywords

Navigation