Skip to main content
Log in

Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study is intended to improve the high-temperature oxidation of nano-ZGYbY: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 in order to apply it in the new generation of defect cluster thermal barrier coatings (TBCs) through the employment of an intermediate conventional yttria-stabilized zirconia (micro-YSZ) layer between the bond coat (CoNiCrAlY) and top coat. The specimens were deposited with an atmospheric plasma spray (APS) process on IN738LC superalloy. The cyclic oxidation test was performed in air at 1373 K with 4 h in each cycle. The microstructure of the nano-ZGYbY was studied by field emission scanning electron microscopy, revealing the formation of a bimodal microstructure consisted of nanosized particles retained from the initial APS-processed nanopowder and columnar grains, whereas the microstructure of intermediate micro-YSZ layer consisted of columnar grain splats only. X-ray diffraction of TBCs confirmed the formation of non-transformable (t′) ZrO2 phase (\( \frac{c}{a\sqrt 2 } \) < 1.01) as well as the stability of this phase after oxidation. Also, applying an intermediate conventional YSZ layer with a higher CTE and KIC than that of nano-ZGYbY between the bond and top coats improved mechanical properties in new TBCs and it increased the oxidation life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, and D. Stöver, Overview on Advanced Thermal Barrier Coatings, Surf. Coat. Technol., 2010, 205, p 938–942

    Google Scholar 

  2. R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier And Biomedical Applications: A Review, J. Therm. Spray Technol., 2007, 16, p 40–63

    CAS  Google Scholar 

  3. X. Cao, R. Vassen, and D. Stoever, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24, p 1–10

    CAS  Google Scholar 

  4. Y. Pan, Y. Lin, G. Liu, and J. Zhang, Influence of Transition Metal on the Mechanical and Thermodynamic Properties of IrAl Thermal Barrier Coating, Vacuum, 2020, 174, p 109203

    CAS  Google Scholar 

  5. N. Eliaz, G. Shemesh, and R. Latanision, Hot corrosion in Gas Turbine Components, Eng. Fail. Anal., 2002, 9, p 31–43

    CAS  Google Scholar 

  6. M. Stiger, N. Yanar, M. Topping, F. Pettit, and G. Meier, Thermal Barrier Coatings for the 21st Century, Z. Metall., 1999, 90, p 1069–1078

    CAS  Google Scholar 

  7. M. Bahamirian and Sh Khameneh Asl, An Investigation on Effect of Bond Coat Replacement on Hot Corrosion Properties of Thermal Barrier Coatings, Iran. J. Mater. Sci. Eng., 2013, 10, p 12–21

    CAS  Google Scholar 

  8. R. Lima and B. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng., A, 2008, 485, p 182–193

    Google Scholar 

  9. A. Keyvani, M. Bahamirian, and A. Kobayashi, Effect of Sintering Rate on the Porous Microstructural, Mechanical and Thermomechanical Properties of YSZ and CSZ TBC Coatings Undergoing Thermal Cycling, J. Alloys Compd., 2017, 727, p 1057–1066

    CAS  Google Scholar 

  10. M. Loghman-Estarki, R.S. Razavi, and H. Jamali, Thermal Stability and Sintering Behavior of Plasma Sprayed Nanostructured 7YSZ, 15YSZ and 5.5 SYSZ Coatings at Elevated Temperatures, Ceram. Int., 2016, 42, p 14374–14383

    CAS  Google Scholar 

  11. S. Paul, A. Cipitria, S. Tsipas, and T. Clyne, Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilisers, Surf. Coat. Technol., 2009, 203, p 1069–1074

    CAS  Google Scholar 

  12. A. Keyvani and M. Bahamirian, Hot Corrosion and Mechanical Properties of Nanostructured Al2O3/CSZ Composite TBCs, Surf. Eng., 2017, 33, p 433–443

    CAS  Google Scholar 

  13. M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Enhancement of Hot Corrosion Resistance of Thermal Barrier Coatings by Using Nanostructured Gd2Zr2O7 Coating, Surf. Coat. Technol., 2019, 360, p 1–12

    CAS  Google Scholar 

  14. M.R. Loghman-Estark, R.S. Razavi, and H. Edris, Synthesis and Thermal Stability of Nontransformable Tetragonal (ZrO2)0.96(REO1.5)0.04(Re = Sc3+, Y3+) Nanocrystals, Defect Diffus. Forum, 2013, 334, p 60–64

    Google Scholar 

  15. C. Viazzi, J.-P. Bonino, F. Ansart, and A. Barnabé, Structural Study of Metastable Tetragonal YSZ Powders Produced Via a Sol–Gel Route, J. Alloys Compd., 2008, 452, p 377–383

    CAS  Google Scholar 

  16. M. Shahid and M. Abbas, Investigation of Failure Mechanism of Thermal Barrier Coatings (TBCs) Deposited by EB-PVD Technique, J. Phys: Conf. Ser., 2013, 439, p 012021

    Google Scholar 

  17. Y. Tang, Failure Analysis of Thermal Barrier Coatings. Ph.D. Thesis, Tulane University, Tulane, USA (2007)

  18. K. Carlsson, A Study of Failure Development in Thick Thermal Barrier Coatings. Independent Thesis Advanced Level (degree of Magister), Linköping University (2007)

  19. K.W. Schlichting, N. Padture, E. Jordan, and M. Gell, Failure Modes in Plasma-Sprayed Thermal Barrier Coatings, Mater. Sci. Eng., A, 2003, 342, p 120–130

    Google Scholar 

  20. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804–809

    CAS  Google Scholar 

  21. T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K.Z. Thosin, and S. Hayashi, Advanced Coatings on High Temperature Applications, Mater. Sci. Forum, 2006, 522, p 1–14

    Google Scholar 

  22. U. Schulz, C. Leyens, K. Fritscher, M. Peters, B. Saruhan-Brings, O. Lavigne et al., Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings, Aerosp. Sci. Technol., 2003, 7, p 73–80

    CAS  Google Scholar 

  23. Y. Pan, D. Pu, and Y. Jia, Adjusting the Correlation Between the Oxidation Resistance and Mechanical Properties of Pt-Based Thermal Barrier Coating, Vacuum, 2020, 172, p 109067

    CAS  Google Scholar 

  24. A. Keyvani, N. Mostafavi, M. Bahamirian, H. Sina, and A. Rabiezadeh, Synthesis and Phase Stability of Zirconia-Lanthania-Ytterbia-Yttria Nanoparticles; a Promising Advanced TBC Material, Asian Ceram. Soc., 2020, 8, p 336–344

    Google Scholar 

  25. M.B.A. Keyvani and B. Esmaeili, Sol-Gel Synthesis and Characterization of ZrO2-25wt.%CeO2-2.5wt.%Y2O3 (CYSZ) Nanoparticles, Ceram. Int., 2020, 20, p 30

    Google Scholar 

  26. A. Keyvani, P. Mahmoudinezhad, A. Jahangiri, and M. Bahamirian, Synthesis and Characterization of ((La1-xGdx)2Zr2O7; x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1) Nanoparticles for Advanced TBCs, J. Aust. Ceram. Soc., 2020, 20, p 30

    Google Scholar 

  27. S. Metco, Material Product Data Sheet: Zirconia Gadolinia Ytterbia Yttria Agglomerated and Sintered Thermal Spray Powder. DSMTS-0099.4 (2015)

  28. D. Zhu and R.A. Miller, Development of Advanced Low Conductivity Thermal Barrier Coatings, Int. J. Appl. Ceram. Technol., 2004, 1, p 86–94

    CAS  Google Scholar 

  29. S.M.M.H.M. Bahamirian, M. Farvizi, A. Keyvani, and M.R. Rahimipour, ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3; a Promising TBC Material with High Resistance to Hot Corrosion, J. Asian Ceram. Soc., 2020, 20, p 30

    Google Scholar 

  30. M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Phase Stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 Compound at 1100 C and 1300 C for Advanced TBC Applications, Ceram. Int., 2019, 45, p 7344–7350

    CAS  Google Scholar 

  31. S.-H. Jung, Z. Lu, Y.-G. Jung, D. Song, U. Paik, B.-G. Choi et al., Thermal Durability and Fracture Behavior of Layered Yb-Gd-Y-Based Thermal Barrier Coatings in Thermal Cyclic Exposure, Surf. Coat. Technol., 2017, 323, p 39–48

    CAS  Google Scholar 

  32. Z.-G. Liu, W.-H. Zhang, J.-H. Ouyang, and Y. Zhou, Novel Double-Ceramic-Layer (La0.8Eu0.2)2Zr2O7/YSZ Thermal Barrier Coatings Deposited by Plasma Spraying, Ceram. Int., 2014, 40, p 11277–11282

    CAS  Google Scholar 

  33. X. Xiaoyun, G. Hongbo, G. Shengkai, and X. Huibin, Hot Corrosion Behavior of Double-Ceramic-Layer LaTi2Al9O19/YSZ Thermal Barrier Coatings, Chin. J. Aeronaut., 2012, 25, p 137–142

    Google Scholar 

  34. L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, and C. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53, p 117–127

    CAS  Google Scholar 

  35. R. Vassen, F. Traeger, and D. Stöver, New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems, Int. J. Appl. Ceram. Technol., 2004, 1, p 351–361

    CAS  Google Scholar 

  36. M. Gell, Application Opportunities for Nanostructured Materials and Coatings, Mater. Sci. Eng., A, 1995, 204, p 246–251

    Google Scholar 

  37. C.-B. Liu, Z.-M. Zhang, X.-L. Jiang, L. Min, and Z.-H. Zhu, Comparison of Thermal Shock Behaviors Between Plasma-Sprayed Nanostructured and Conventional Zirconia Thermal Barrier Coatings, Trans. Nonferrous Met. Soc. China, 2009, 19, p 99–107

    CAS  Google Scholar 

  38. C. Zhou, N. Wang, and H. Xu, Comparison of Thermal Cycling Behavior of Plasma-Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Mater. Sci. Eng., A, 2007, 452, p 569–574

    Google Scholar 

  39. H. Chen, X. Zhou, and C. Ding, Investigation of the Thermomechanical Properties of a Plasma-Sprayed Nanostructured Zirconia Coating, J. Eur. Ceram. Soc., 2003, 23, p 1449–1455

    CAS  Google Scholar 

  40. R. Lima, A. Kucuk, and C. Berndt, Evaluation of Microhardness and Elastic Modulus of Thermally Sprayed Nanostructured Zirconia Coatings, Surf. Coat. Technol., 2001, 135, p 166–172

    CAS  Google Scholar 

  41. M. Bahamirian, S. Hadavi, M. Rahimipour, M. Farvizi, and A. Keyvani, Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3, Metall. Mater. Trans. A, 2018, 49, p 2523–2532

    CAS  Google Scholar 

  42. M.R. Loghman-Estarki, H. Edris, H. Jamali, R. Ghasemi, M. Pourbafrany, M. Erfanmanesh et al., Spray Drying of Nanometric SYSZ Powders to Obtain Plasma Sprayable Nanostructured Granules, Ceram. Int., 2013, 39, p 9447–9457

    CAS  Google Scholar 

  43. R. Aminov, A. Moskalenko, and A. Kozhevnikov, Optimal Gas Turbine Inlet Temperature for Cyclic Operation, J. Phys: Conf. Ser., 2018, 1111, p 012046

    Google Scholar 

  44. ASTM standard-E228, Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer (1995)

  45. T. Samani, M. Kermani, M. Razavi, M. Farvizi, and I. Mobasherpour, A Comparative Study on the Microstructure, Hot Corrosion Behavior and Mechanical Properties of Duplex and Functionally Graded Nanostructured/Conventional YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2019, 6, p 115063

    CAS  Google Scholar 

  46. S. Bose, Chapter 7—Thermal Barrier Coatings (TBCs), High Temperature Coatings, Elsevier, Amsterdam, 2007, p 155–232

    Google Scholar 

  47. F.-W. Bach, K. Möhwald, A. Laarmann, and T. Wenz, Modern Surface Technology, Wiley, New York, 2006

    Google Scholar 

  48. A. Kucuk, C. Berndt, U. Senturk, R. Lima, and C. Lima, Influence of Plasma Spray Parameters on Mechanical Properties of Yttria Stabilized Zirconia Coatings. I: Four Point Bend Test, Mater. Sci. Eng., A, 2000, 284, p 29–40

    Google Scholar 

  49. J. Ilavsky and J.K. Stalick, Phase Composition and Its Changes During Annealing of Plasma-Sprayed YSZ, Surf. Coat. Technol., 2000, 127, p 120–129

    CAS  Google Scholar 

  50. H. Grünling and W. Mannsmann, Plasma Sprayed Thermal Barrier Coatings for Industrial Gas Turbines: Morphology, Processing and Properties, Le J. Phys. IV, 1993, 3, p C7-903–C7-912

    Google Scholar 

  51. L. Wang, Y. Wang, X. Sun, J. He, Z. Pan, Y. Zhou et al., Influence of Pores on the Thermal Insulation Behavior of Thermal Barrier Coatings Prepared by Atmospheric Plasma Spray, Mater. Des., 2011, 32, p 36–47

    Google Scholar 

  52. I. Golosnoy, A. Cipitria, and T. Clyne, Heat Transfer Through Plasma-Sprayed Thermal Barrier Coatings in Gas Turbines: A Review of Recent Work, J. Therm. Spray Technol., 2009, 18, p 809–821

    Google Scholar 

  53. A. Cipitria, I. Golosnoy, and T. Clyne, A Sintering Model for Plasma-Sprayed Zirconia TBCs. Part I: Free-Standing Coatings, Acta Mater., 2009, 57, p 980–992

    CAS  Google Scholar 

  54. O. Racek and C. Berndt, Mechanical Property Variations Within Thermal Barrier Coatings, Surf. Coat. Technol., 2007, 202, p 362–369

    CAS  Google Scholar 

  55. R. Lima, A. Kucuk, and C. Berndt, Integrity of Nanostructured Partially Stabilized Zirconia After Plasma Spray Processing, Mater. Sci. Eng., A, 2001, 313, p 75–82

    Google Scholar 

  56. R. Ghasemi, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali, Comparison of Microstructure and Mechanical Properties of Plasma-Sprayed Nanostructured and Conventional Yttria Stabilized Zirconia Thermal Barrier Coatings, Ceram. Int., 2013, 39, p 8805–8813

    CAS  Google Scholar 

  57. E.H. Kisi and C. Howard, Crystal Structures of Zirconia Phases and Their Inter-relation, Key Eng. Mater., 1998, 153, p 1–36

    Google Scholar 

  58. T. Sakuma, Microstructural Aspects on the Cubic-Tetragonal Transformation in Zirconia, Key Eng. Mater., 1998, 153, p 75–96

    Google Scholar 

  59. A. Keyvani, M. Saremi, M.H. Sohi, and Z. Valefi, A Comparison on Thermomechanical Properties of Plasma-Sprayed Conventional and Nanostructured YSZ TBC Coatings in Thermal Cycling, J. Alloys Compd., 2012, 541, p 488–494

    CAS  Google Scholar 

  60. H. Xu and H. Guo, Thermal Barrier Coatings, Woodhead Publishing Limited, Singapore, 2011, p 193–197

    Google Scholar 

  61. A. Keyvani and M. Bahamirian, Oxidation Resistance of Al2O3-Nanostructured/CSZ Composite Compared to Conventional CSZ and YSZ Thermal Barrier Coatings, Mater. Res. Exp., 2016, 3, p 105047

    Google Scholar 

  62. Z. Zou, L. Jia, L. Yang, X. Shan, L. Luo, F. Guo et al., Role of Internal Oxidation on the Failure of Air Plasma Sprayed Thermal Barrier Coatings with a Double-Layered Bond Coat, Surf. Coat. Technol., 2017, 319, p 370–377

    CAS  Google Scholar 

  63. M. Bahamirian, S. Hadavi, M. Farvizi, A. Keyvani, and M. Rahimipour, Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling, Oxid. Met., 2019, 92, p 401–421

    CAS  Google Scholar 

  64. H.-J. Jang, D.-H. Park, Y.-G. Jung, J.-C. Jang, S.-C. Choi, and U. Paik, Mechanical Characterization and Thermal Behavior of HVOF-Sprayed Bond Coat in Thermal Barrier Coatings (TBCs), Surf. Coat. Technol., 2006, 200, p 4355–4362

    CAS  Google Scholar 

  65. Y.-S. Song, I.-G. Lee, D.Y. Lee, D.-J. Kim, S. Kim, and K. Lee, High-Temperature Properties of Plasma-Sprayed Coatings of YSZ/NiCrAlY on Inconel Substrate, Mater. Sci. Eng., A, 2002, 332, p 129–133

    Google Scholar 

  66. J.S. Wallace and J. Ilavsky, Elastic Modulus Measurements in Plasma Sprayed Deposits, J. Therm. Spray Technol., 1998, 7, p 521–526

    CAS  Google Scholar 

  67. F. Tang and J.M. Schoenung, Evolution of Young’s Modulus of Air Plasma Sprayed Yttria-Stabilized Zirconia in Thermally Cycled Thermal Barrier Coatings, Scr. Mater., 2006, 54, p 1587–1592

    CAS  Google Scholar 

  68. Z. Wu, L. Ni, Q. Yu, and C. Zhou, Effect of Thermal Exposure on Mechanical Properties of a Plasma-Sprayed Nanostructured Thermal Barrier Coating, J. Therm. Spray Technol., 2012, 21, p 169–175

    CAS  Google Scholar 

  69. H. Chen, S.W. Lee, H. Du, C.X. Ding, and C.H. Choi, Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings, Mater. Lett., 2004, 58, p 1241–1245

    CAS  Google Scholar 

  70. M. Bacos, J. Dorvaux, O. Lavigne, R. Mévrel, R. Poulain, C. Rio et al., Performance and Degradation Mechanisms of Thermal Barrier Coatings for Turbine Blades: A Review of Onera Activities, AerospaceLab, 2011, 3, p 1–11

    Google Scholar 

  71. T. Beck, R. Herzog, O. Trunova, M. Offermann, R.W. Steinbrech, and L. Singheiser, Damage Mechanisms and Lifetime Behavior of Plasma-Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part II: Modeling, Surf. Coat. Technol., 2008, 202, p 5901–5908

    CAS  Google Scholar 

  72. A.G. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46, p 505–553

    Google Scholar 

  73. K. Ogawa, High Temperature Oxidation Behavior of Thermal Barrier Coatings, Gas Turbines-Materials, Modeling and Performance, IntechOpen, London, 2015

    Google Scholar 

  74. E. Busso, J. Lin, S. Sakurai, and M. Nakayama, A Mechanistic Study of Oxidation-Induced Degradation in a Plasma-Sprayed Thermal Barrier Coating System: Part I: Model Formulation, Acta Mater., 2001, 49, p 1515–1528

    CAS  Google Scholar 

  75. A. Reddy, D. Hovis, A. Heuer, A. Paulikas, and B. Veal, In Situ Study of Oxidation-Induced Growth Strains in a Model NiCrAlY Bond-Coat Alloy, Oxid. Met., 2007, 67, p 153–177

    CAS  Google Scholar 

  76. M. Abbas, H. Guo, and M.R. Shahid, Comparative Study on Effect of Oxide Thickness on Stress Distribution of Traditional and Nanostructured Zirconia Coating Systems, Ceram. Int., 2013, 39, p 475–481

    CAS  Google Scholar 

  77. M. Ali, S. Nusier, and G. Newaz, Mechanics of Damage Initiation and Growth in a TBC/Superalloy System, Int. J. Solids Struct., 2001, 38, p 3329–3340

    Google Scholar 

  78. D. Chicot and A. Tricoteaux, Mechanical Properties of Ceramic by Indentation: Principle and Applications, Ceramic Materials, InTech, London, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. M. Hadavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

According to Ref. 78, to measure the hardness of the coatings, micro Vickers method was employed. 300 gf load and loading time of 10 s were used for this purpose. Eq 4 was used for hardness calculation.

$$ H_{\text{V}} = 0.0018544\frac{P}{{d^{2} }} $$
(4)

In this equation, “HV” represents Vickers hardness, “P” denotes the load in “gf,” and “d” stands for the mean diameter effect of indentation in “mm”.

Elastic modulus was measured using Knoop indentation test. For which, Eq 5 was used.

$$ \frac{{b^{{\prime }} }}{{a^{{\prime }} }} = \frac{b}{a} - \alpha \frac{H}{E} $$
(5)

In this equation, \( \frac{b}{a} \) = 0.141 which is related to the geometry of indenter and also, “a′” and “b′” are the effect of indentation diameters. In this equation, “H” was obtained according to Vickers indenter to calculate elastic modulus (E). “α” was considered constant 0.45.

Crack length measurement can be used in Vickers hardness test to determine fracture toughness of ceramics. Fracture toughness of the specimens can be measured by Eq 6.

$$ K_{\text{IC}} = 0.0154\frac{P}{{C^{1.5} }}\left( {\frac{E}{H}} \right)^{0.5} $$
(6)

where “KIC” denotes fracture toughness; “P” and “C” are indenting load and mean length of crack, respectively. “H” and “E” also show Vickers hardness and Young’s modulus, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahamirian, M., Hadavi, S.M.M., Farvizi, M. et al. Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K. J. of Materi Eng and Perform 29, 7080–7093 (2020). https://doi.org/10.1007/s11665-020-05174-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05174-1

Keywords

Navigation