Skip to main content
Log in

Hot corrosion behavior of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 TBCs in CMAS: CaO-MgO-Al2O3-SiO2

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Improvement of hot corrosion resistance in calcium-magnesium-aluminosilicate (CMAS: CaO-MgO-Al2O3-SiO2) environments is one of the main goals in the development of aero-engines especially in their thermal barrier coatings (TBCs). In this regard, this study aims to improve the quality and efficiency of the yttria-stabilized ZrO2 (8YSZ) TBCs by substitution of new coatings such as ZGYbY: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3. For this purpose, 8YSZ and ZGYbY topcoats with CoNiCrAlY bond coat were applied on IN738LC substrates using atmospheric plasma spray (APS) technique. Hot corrosion behavior of the coatings was investigated in CMAS environment by a furnace method at 1150 °C in the 4-h cycles. Phase and microstructural investigations of the coatings by XRD and FESEM/EDS methods before and after the hot corrosion test indicated the better performance of ZGYbY coating (relative to 8YSZ) in preventing from the diffusion of the CMAS particles. This could be due to the formation of the impermeable apatite compounds (i.e., Ca4Y(Yb/Gd)6O(SiO4)6). Furthermore, the destruction of the TBCs in CMAS environment can be attributed to the diffusion of molten silicates through the pores and micro-cracks of the ceramic top layer to the TBC and then release of the ZrO2 stabilizer and finally the tetragonal to monoclinic ZrO2 phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee K-I (2015) Volcanic ash degradation on thermal barrier coatings and preliminary fabrication of protective coatings, Doctoral dissertation, The University of Manchester, United Kingdom

  2. Krämer, S., Faulhaber, S., Chambers, M., Clarke, D., Levi, C., Hutchinson, J., et al.: Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Mater Sci Eng A. 490, 26–35 (2008)

    Article  Google Scholar 

  3. Peng, H., Wang, L., Guo, L., Miao, W., Guo, H., Gong, S.: Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Progress in Natural Science: Materials International. 22, 461–467 (2012)

    Article  Google Scholar 

  4. Drexler, J.M., Ortiz, A.L., Padture, N.P.: Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 60, 5437–5447 (2012)

    Article  CAS  Google Scholar 

  5. Drexler, J.M., Gledhill, A.D., Shinoda, K., Vasiliev, A.L., Reddy, K.M., Sampath, S., et al.: Jet engine coatings for resisting volcanic ash damage. Adv Mater. 23, 2419–2424 (2011)

    Article  CAS  Google Scholar 

  6. Gledhill, A.D., Reddy, K.M., Drexler, J.M., Shinoda, K., Sampath, S., Padture, N.P.: Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Mater Sci Eng A. 528, 7214–7221 (2011)

    Article  CAS  Google Scholar 

  7. Cao, X., Vassen, R., Stoever, D.: Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 24, 1–10 (2004)

    Article  CAS  Google Scholar 

  8. Keyvani, A., Bahamirian, M.: Hot corrosion and mechanical properties of nanostructured Al2O3/CSZ composite TBCs. Surf Eng. 33, 433–443 (2017)

    Article  CAS  Google Scholar 

  9. Wang, H., Bakal, A., Zhang, X., Tarwater, E., Sheng, Z., Fergus, J.W.: CaO-MgO-Al2O3-SiO2 (CMAS) corrosion of Gd2Zr2O7 and Sm2Zr2O7. J Electrochem Soc. 163, C643–C648 (2016)

    Article  CAS  Google Scholar 

  10. Krause, A.R., Garces, H.F., Dwivedi, G., Ortiz, A.L., Sampath, S., Padture, N.P.: Calcia-magnesia-alumino-silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 105, 355–366 (2016)

    Article  CAS  Google Scholar 

  11. Borom, M.P., Johnson, C.A., Peluso, L.A.: Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf Coat Technol. 86, 116–126 (1996)

    Article  Google Scholar 

  12. Krämer, S., Yang, J., Levi, C.G.: Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J Am Ceram Soc. 91, 576–583 (2008)

    Article  Google Scholar 

  13. Aygun A (2008) Novel thermal barrier coatings (TBCs) that are resistant to high temperature attack by CaO-MgO- Al2O3-SiO2 (CMAS) glassy deposits,” Ph.D. thesis, The Ohio State University

  14. Aygun, A., Vasiliev, A.L., Padture, N.P., Ma, X.: Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 55, 6734–6745 (2007)

    Article  CAS  Google Scholar 

  15. Felsche J (1973) The crystal chemistry of the rare-earth silicates: rare earths, Springer, Berlin, Heidelberg, pp. 99–197

  16. Drexler, J.M., Chen, C.-H., Gledhill, A.D., Shinoda, K., Sampath, S., Padture, N.P.: Plasma sprayed gadolinium zirconate thermal barrier coatings that are resistant to damage by molten Ca–Mg–Al–silicate glass. Surf Coat Technol. 206, 3911–3916 (2012)

    Article  CAS  Google Scholar 

  17. Habibi, M., Wang, L., Guo, S.: Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7+YSZ composite thermal barrier coatings in Na2SO4+V2O5 at 1050°C. J Eur Ceram Soc. 32, 1635–1642 (2012)

    Article  CAS  Google Scholar 

  18. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Enhancement of hot corrosion resistance of thermal barrier coatings by using nanostructured Gd2Zr2O7 coating. Surf Coat Technol. 360, 1–12 (2019)

    Article  CAS  Google Scholar 

  19. Bahamirian, M., Hadavi, S., Rahimipour, M., Farvizi, M., Keyvani, A.: Synthesis and characterization of yttria-stabilized zirconia nanoparticles doped with ytterbium and gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3. Metall Mater Trans A. 49, 2523–2532 (2018)

    Article  CAS  Google Scholar 

  20. Bahamirian, M., Hadavi, S., Farvizi, M., Rahimipour, M., Keyvani, A.: Phase stability of ZrO2 9.5 Y2O3 5.6 Yb2O3 5.2 Gd2O3 compound at 1100°C and 1300°C for advanced TBC applications. Ceram Int. 45, 7344–7350 (2019)

    Article  CAS  Google Scholar 

  21. Jung, S.-H., Lu, Z., Jung, Y.-G., Song, D., Paik, U., Choi, B.-G., et al.: Thermal durability and fracture behavior of layered Yb-Gd-Y-based thermal barrier coatings in thermal cyclic exposure. Surf Coat Technol. 323, 39–48 (2017)

    Article  CAS  Google Scholar 

  22. Li, Q.-L., Cui, X.-Z., Li, S.-Q., Yang, W.-H., Wang, C., Cao, Q.: Synthesis and phase stability of scandia, gadolinia, and ytterbia co-doped zirconia for thermal barrier coating application. J Therm Spray Technol. 24, 136–143 (2015)

    Google Scholar 

  23. Bose S (2007) Chapter 7–Thermal barrier coatings (TBCs), High Temperature Coatings, pp. 155–232

  24. Bach F-W, Möhwald K, Laarmann A, Wenz T (2006) Modern surface technology: John Wiley & Sons, pp. 20–110

  25. Kucuk, A., Berndt, C., Senturk, U., Lima, R., Lima, C.: Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four point bend test. Mater Sci Eng A. 284, 29–40 (2000)

    Article  Google Scholar 

  26. Ilavsky, J., Stalick, J.K.: Phase composition and its changes during annealing of plasma-sprayed YSZ. Surf Coat Technol. 127, 120–129 (2000)

    Article  CAS  Google Scholar 

  27. Grünling, H., Mannsmann, W.: Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties. Le Journal de Physique IV. 3, C7-903–C7-912 (1993)

    Google Scholar 

  28. Wang, L., Wang, Y., Sun, X., He, J., Pan, Z., Zhou, Y., et al.: Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Mater Des. 32, 36–47 (2011)

    Article  Google Scholar 

  29. Golosnoy, I., Cipitria, A., Clyne, T.: Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol. 18, 809–821 (2009)

    Article  Google Scholar 

  30. Paul, S., Cipitria, A., Tsipas, S., Clyne, T.: Sintering characteristics of plasma sprayed zirconia coatings containing different stabilisers. Surf Coat Technol. 203, 1069–1074 (2009)

    Article  CAS  Google Scholar 

  31. Cipitria, A., Golosnoy, I., Clyne, T.: A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Mater. 57, 980–992 (2009)

    Article  CAS  Google Scholar 

  32. Racek, O., Berndt, C.: Mechanical property variations within thermal barrier coatings. Surf Coat Technol. 202, 362–369 (2007)

    Article  CAS  Google Scholar 

  33. Lima, R., Kucuk, A., Berndt, C.: Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Mater Sci Eng A. 313, 75–82 (2001)

    Article  Google Scholar 

  34. Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D.: Overview on advanced thermal barrier coatings. Surf Coat Technol. 205, 938–942 (2010)

    Article  Google Scholar 

  35. Lima, R.S., Marple, B.R.: Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol. 16, 40–63 (2007)

    Article  CAS  Google Scholar 

  36. Rohsenow WM, Hartnett JP, and Ganic EN (1985) Handbook of heat transfer fundamentals, mgh

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bahamirian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahamirian, M., Hadavi, S.M.M., Farvizi, M. et al. Hot corrosion behavior of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 TBCs in CMAS: CaO-MgO-Al2O3-SiO2. J Aust Ceram Soc 57, 215–224 (2021). https://doi.org/10.1007/s41779-020-00524-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00524-7

Keywords

Navigation