Skip to main content
Log in

Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Enzyme immobilization technique has a broad application prospect in the area of biotechnology, biochemistry, and environmental remediation. In this study, the composite hydrogel consisting of dopamine functionalized cellulose nanofiber and alginate was fabricated for immobilization of laccase. Infrared spectra, scanning electron micrographs, and energy dispersive X-ray analysis demonstrated that the laccase molecules were covalently immobilized onto the surface of composite hydrogel. The immobilized laccase exhibited the highest enzymatic activity about 462 U·g−1. Compared with free laccase, the pH, temperature, and storage stabilities of immobilized laccase were improved dramatically. Moreover, the immobilized enzyme can be easily separated from reaction system and reused. It retained 79.6% of its initial activity after 14 cycles of operation. Immobilized laccase was utilized for efficient degradation of bisphenol A (BPA) from polluted water, and the affecting factors on BPA removal efficiency were analyzed. Greater than 82% of BPA was removed under optimum conditions. A small amount of ABTS was added into BPA degradation; the removal efficiency had reached up to 98.7%. Results indicated that the immobilized laccase has great potential for industrial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cydzik-Kwiatkowska A, Zielińska M, Bernat K, Bukowska K, Wojnowska-Barya I (2020) Insights into mechanisms of bisphenol a biodegradation in aerobic granular sludge. Biores Technol 315:123806

    Article  CAS  Google Scholar 

  2. Donato M, Cernera G, Giovannelli P, Galasso G, Bilancio A, Migliaccio A, Castoria G (2017) Recent advances on bisphenol-A and endocrine disruptor effects on human prostate cancer. Mol Cell Endocrinol 457:35–42

    Article  Google Scholar 

  3. Shao Y, Bai H, Wang H, Fei G, Li L, Zhu Y (2022) Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv Compos Hybrid Mater 5:130–143

    Article  CAS  Google Scholar 

  4. Neamţu M, Nǎdejde C, HodoroabǎVD SRJ, Ababei G, Panne U (2019) Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters. Environ Chem 16:125–136

    Article  Google Scholar 

  5. Ambauen N, Weber C, Muff J, Hallé C, Meyn T (2020) Electrochemical removal of Bisphenol A from landfill leachate under Nordic climate conditions. J Appl Electrochem 50:1175–1188

    Article  CAS  Google Scholar 

  6. Ghobadi Nejad Z, Borghei SM, Yaghmaei S (2019) Kinetic studies of bisphenol A in aqueous solutions by enzymatic treatment. Int J Environ Sci Technol 16:821–832

    Article  CAS  Google Scholar 

  7. Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, De Los H, Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18:200

    Article  CAS  Google Scholar 

  8. Bilal M, Rasheed T, Nabeel F, Iqbal H, Zhao Y (2019) Hazardous contaminants in the environment and their laccase-assisted degradation – a review. J Environ Manag 234:253–264

    Article  CAS  Google Scholar 

  9. Wang Z, Ren D, Wu J, Jiang S, Yu H, Cheng Y, Zhang S, Zhang X (2022) Study on adsorption-degradation of 2,4-dichlorophenol by modified biochar immobilized laccase. Int J Environ Sci Technol 19:1393–1406

    Article  CAS  Google Scholar 

  10. Senthivelan T, Kanagaraj J, Panda RC (2016) Recent trends in fungal laccase for various industrial applications: an eco-friendly approach - a review. Biotechnol Bioprocess Eng 21:19–38

    Article  CAS  Google Scholar 

  11. Gu Y, Yuan L, Jia L, Xue P, Yao H (2021) Recent developments of a co-immobilized laccase–mediator system: a review. RSC Adv 11:29498–29506

    Article  CAS  Google Scholar 

  12. Sirisha VL, Jain A (2016) Enzyme immobilization: an overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res 79:179–211

    Article  CAS  Google Scholar 

  13. Pandey A (2021) Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ Chem Lett 19:2043–2055

    Article  CAS  Google Scholar 

  14. Sulaiman S, Mokhtar MN, Naim MN, Baharuddin AS, Sulaiman A (2015) A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Appl Biochem Biotechnol 175:1817–1842

    Article  CAS  Google Scholar 

  15. Sathishkumar P, Kamala-Kannan S, Cho M, Kim JS, Hadibarata T, Salim MR, Oh BT (2014) Laccase immobilization on cellulose nanofiber: the catalytic efficiency and recyclic application for simulated dye effluent treatment. J Mol Catal B Enzym 100:111–120

    Article  CAS  Google Scholar 

  16. Rodriguez-Restrepo Y, Rocha C, Teixeira J, Orrego C (2020) Valorization of passion fruit stalk by the preparation of cellulose nanofibers and immobilization of trypsin. Fibers Polym 21:2807–2816

    Article  CAS  Google Scholar 

  17. Kim HJ, Park S, Kim SH, Kim JH, Yu H, Kim HJ, Yang YH, Kan E, Kim YH, Lee SH (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J Mol Catal B Enzym 122:170–178

    Article  CAS  Google Scholar 

  18. Melo Brites M, Cerón A, Costa S, Oliveira R, Ferraz H, Catalani L, Costa S (2020) Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique. Enzyme Microb Technol 132:109384

    Article  Google Scholar 

  19. Yuan B, Li L, Murugadoss V, Vupputuri S, Wang J, Alikhani N, Guo Z (2020) Nanocellulose-based composite materials for wastewater treatment and waste-oil remediation. ES Food Agrofor 1:41–52

    Google Scholar 

  20. Gu H, Gao C, Zhou X, Du A, Naik N, Guo Z (2021) Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv Compos Hybrid Mater 4:459–468

    Article  CAS  Google Scholar 

  21. Xie S, Zhang X, Walcott M, Lin H (2018) Applications of cellulose nanocrystals: a review. Eng Sci 2:4–16

    Google Scholar 

  22. Li Y, Guo J, Li M, Tang Y, Murugadoss V, Seok I, Yu J, Sun L, Sun C, Luo Y (2021) Recent application of cellulose gel in flexible sensing-a review. ES Food Agrofor 4:9–27

    Google Scholar 

  23. Guo X, Wang Y, Qin Y, Shen P, Peng Q (2020) Structures, properties and application of alginic acid: a review. Int J Biol Macromol 162:618–628

    Article  CAS  Google Scholar 

  24. Zhang X, Lin X, He Y, Luo X (2019) Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int J Biol Macromol 136:445–459

    Article  CAS  Google Scholar 

  25. Dalponte I, Mathias Á, Jorge R (2021) A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal. Colloids Surf A 627:127159

    Article  Google Scholar 

  26. Zhao H, Ouyang XK, Yang L (2021) Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads. J Mol Liq 324:115122

    Article  CAS  Google Scholar 

  27. Zhang H, Yang C, Zhou W, Luan Q, Li W, Deng Q, Dong X, Tang H, Huang F (2018) A pH-responsive gel macrosphere based on sodium alginate and cellulose nanofiber for potential intestinal delivery of probiotics. ACS Sustain Chem Eng 6:13924–13931

    Article  CAS  Google Scholar 

  28. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohyd Polym 83:1804–1811

    Article  CAS  Google Scholar 

  29. Sehaqui H, Gálvez M, Becatinni V, Cheng Ng Y, Steinfeld A, Zimmermann T, Tingaut P (2015) Fast and reversible direct CO2 capture from air onto all-polymer nanofibrillated cellulose-polyethylenimine foams. Environ Sci Technol 49:3167–3174

    Article  CAS  Google Scholar 

  30. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  31. Xu R, Chi C, Li F, Zhang B (2013) Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. Acs Appl Mater Interfaces 5:12554–12560

    Article  CAS  Google Scholar 

  32. Du C, Li H, Li B, Liu M, Zhan H (2016) Characteristics and properties of cellulose nanofibers prepared by TEMPO oxidation of corn husk. BioResources 11:5276–5284

    Article  CAS  Google Scholar 

  33. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491

    Article  CAS  Google Scholar 

  34. Lavoine N, Bras J, Saito T, Isogai A (2017) Optimization of preparation of thermally stable cellulose nanofibrils via heat-induced conversion of ionic bonds to amide bonds. J Polym Sci A Polym Chem 55:1750–1756

    Article  CAS  Google Scholar 

  35. Abd El-Ghaffar MA, Hashem M, El-Awady M, Rabie AM (2012) PH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohyd Polym 89:667–675

    Article  CAS  Google Scholar 

  36. Zhang X, Chen Z, Li K, Yang Z, Li Z, Xie D, Zhou W, Wang T, Ma S, Burns R, Ruso J, Tang Z, Liu Z (2019) Immobilization of penicillin G acylase on a novel paramagnetic composite carrier with epoxy groups. Adv Compos Hybrid Mater 2:720–734

    Article  CAS  Google Scholar 

  37. Della V, Avolio R, Alfè M, Errico ME, Napolitano A, D’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Func Mater 23:1331–1340

    Article  Google Scholar 

  38. Michalicha A, Pałka K, Roguska A, Pisarek M, Belcarz A (2021) Polydopamine-coated curdlan hydrogel as a potential carrier of free amino group-containing molecules. Carbohyd Polym 256:117524

    Article  CAS  Google Scholar 

  39. Yavaşer R, Karagözler A (2021) Laccase immobilized polyacrylamide-alginate cryogel: a candidate for treatment of effluents. Process Biochem 101:137–146

    Article  Google Scholar 

  40. Liu S (2020) Mass transfer effects: immobilized and heterogeneous reaction systems. Bioprocess Eng: 773–817

  41. Qiu X, Wang Y, Xue Y, Li W, Hu Y (2020) Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem Eng J 391:123564

    Article  CAS  Google Scholar 

  42. Feng Q, Xia X, Wei A, Wang X, Wei Q, Huo D, Wei A (2011) Preparation of Cu(II)-chelated poly(vinyl alcohol) nanofibrous membranes for catalase immobilization. J Appl Polym Sci 120:3291–3296

    Article  CAS  Google Scholar 

  43. Vera M, Rivas B (2017) Immobilization of trametes versicolor laccase on different PGMA-based polymeric microspheres using response surface methodology: optimization of conditions. J Appl Polym Sci 134:45249

    Article  Google Scholar 

  44. Simón-Herrero C, Naghdi M, Taheran M, Kaur Brar S, Romero A, Valverde JL, Avalos Ramirez A, Sánchez-Silva L (2019) Immobilized laccase on polyimide aerogels for removal of carbamazepine. J Hazard Mater 376:83–90

    Article  Google Scholar 

  45. Jia Y, Chen Y, Luo J, Hu Y (2019) Immobilization of laccase onto meso-MIL-53(Al) via physical adsorption for the catalytic conversion of triclosan. Ecotoxicol Environ Saf 184:109670

    Article  CAS  Google Scholar 

  46. Asgher M, Wahab A, Bilal M, Iqbal HMN (2018) Delignification of lignocellulose biomasses by alginate–chitosan immobilized laccase produced from Trametes versicolor IBL-04. Waste Biomass Valorization 9:2071–2079

    Article  CAS  Google Scholar 

  47. Wang J, Yu S, Feng F, Lu L (2019) Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: recyclable biocatalysts with enhanced stability for dye decolorization. Biochem Eng J 150:107285

    Article  CAS  Google Scholar 

  48. Aricov L, Leonties AR, Gîfu IC, Preda D, Raducan A, Anghel DF (2020) Enhancement of laccase immobilization onto wet chitosan microspheres using an iterative protocol and its potential to remove micropollutants. J Environ Manag 276:111326

    Article  CAS  Google Scholar 

  49. Lin J, Liu Y, Chen S, Le X, Zhou X, Zhao Z, Ou Y, Yang J (2016) Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal. Int J Biol Macromol 84:189–199

    Article  CAS  Google Scholar 

  50. Sanguanpak S, Shongkittikul W, Wannagon A, Chiemchaisri C (2017) Effects of TiO2 on the laccase enzyme immobilization and the bisphenol-A removal of the ceramic membranes. Desalin Water Treat 93:163–170

    Article  CAS  Google Scholar 

  51. Koloti LE, Gule NP, Arotiba OA, Malinga SP (2018) Laccase-immobilized dendritic nanofibrous membranes as a novel approach towards the removal of bisphenol A. Environ Technol 39:392–404

    Article  CAS  Google Scholar 

  52. Hautphenne C, Penninckx M, Debaste F (2016) Product formation from phenolic compounds removal by laccases: a review. Environ Technol Innov 5:250–266

    Article  Google Scholar 

  53. Pedroza AM, Mosqueda R, Alonso-Vante N, Rodríguez-Vázquez R (2007) Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 67:793–801

    Article  CAS  Google Scholar 

  54. Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77:301–309

    Article  Google Scholar 

  55. Lin J, Fan L, Miao R, Le X, Chen S, Zhou X (2015) Enhancing catalytic performance of laccase via immobilization on chitosan/CeO2 microspheres. Int J Biol Macromol 78:1–8

    Article  CAS  Google Scholar 

  56. Wlizło K, Polak J, Kapral-Piotrowska J, Graz M, Paduch R, Jarosz-Wikolazka A (2020) Influence of carrier structure and physicochemical factors on immobilization of fungal laccase in terms of bisphenol A removal. Catalysts 10:951

    Article  Google Scholar 

  57. Hou J, Dong G, Ye Y, Chen V (2014) Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane. J Membr Sci 469:19–30

    Article  CAS  Google Scholar 

  58. Yang H, He P, Yin Y, Mao Z, Zhang J, Zhong C, Xie T, Wang A (2021) Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater. Bioprocess Biosyst Eng 44:2061–2073

    Article  CAS  Google Scholar 

  59. Zhang L, Tang W, Ma T, Zhou L, Hui C, Wang X, Wang P, Zhang C, Chen C (2019) Laccase-immobilized tannic acid-mediated surface modification of halloysite nanotubes for efficient bisphenol-A degradation. RSC Adv 9:38935–38942

    Article  CAS  Google Scholar 

  60. Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) A promising laccase immobilization approach for bisphenol A removal from aqueous solutions. Biores Technol 271:360–367

    Article  CAS  Google Scholar 

  61. Zhang Y, Piao M, He L, Yao L, Piao T, Liu Z, Piao Y (2020) Immobilization of laccase on magnetically separable biochar for highly efficient removal of bisphenol A in water. RSC Adv 10:4795–4804

    Article  CAS  Google Scholar 

  62. Molina M, Díez-Jaén J, Sánchez-Sánchez M, Blanco R (2021) One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catal Today 390:265–271

    Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities under Grant [No. 2572018BC17].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhang or Miaojun Xu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Lian, M., Alhadhrami, A. et al. Laccase immobilized on functionalized cellulose nanofiber/alginate composite hydrogel for efficient bisphenol A degradation from polluted water. Adv Compos Hybrid Mater 5, 1852–1864 (2022). https://doi.org/10.1007/s42114-022-00476-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00476-5

Keywords

Navigation