Skip to main content
Log in

A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nanobiocatalysis is a new frontier of emerging nanosized material support in enzyme immobilization application. This paper is about a comprehensive review on cellulose nanofibers (CNF), including their structure, surface modification, chemical coupling for enzyme immobilization, and potential applications. The CNF surface consists of mainly –OH functional group that can be directly interacted weakly with enzyme, and its binding can be improved by surface modification and interaction of chemical coupling that forms a strong and stable covalent immobilization of enzyme. The knowledge of covalent interaction for enzyme immobilization is important to provide more efficient interaction between CNF support and enzyme molecule. Enzyme immobilization onto CNF is having potential for improving enzymatic performance and production yield, as well as contributing toward green technology and sustainable sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jain, K. K. (2005). The role of nanobiotechnology in drug discovery. Drug Discovery Today, 10(21), 1435–1442.

    CAS  Google Scholar 

  2. Hubbe, M. A., Rojas, O. J., Lucia, L. A., & Sain, M. (2008). Cellulosic nanocomposites: a review. BioResources, 3(3), 929–980.

    Google Scholar 

  3. Srilatha, B. (2011). Nanotechnology in agriculture. Journal of Nanomedicine Nanotechnology, 2(7), 1–5.

    Google Scholar 

  4. Kim, J., Grate, J. W., & Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends in Biotechnology, 26(11), 639–646.

    CAS  Google Scholar 

  5. Datta, S., Christena, L. R., & Rajaram, Y. (2013). Enzyme immobilization: an overview on techniques and support materials. 3. Biotech, 3(1), 1–9.

    Google Scholar 

  6. Berg, J. M., Tymoczko, J. L., & Stryer, L. (2002). Enzymes accelerate reactions by facilitating the formation of the transition state. In W. H. Freeman (Ed.), Biochemistry (5th ed., Vol. 8.3). New York.

  7. Cao, L. (2006). Covalent enzyme immobilization. In Carrier-bound immobilized enzymes (pp. 169–316). Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Xie, T., Wang, A., Huang, L., Li, H., Chen, Z., Wang, Q., & Yin, X. (2009). Recent advance in the support and technology used in enzyme immobilization. African Journal of Biotechnology, 8(19), 4724–4733.

    CAS  Google Scholar 

  9. Wu, D., & Regnier, F. E. (1993). Native protein separations and enzyme microassays by capillary zone and gel electrophoresis. Analytical Chemistry, 65(15), 2029–2035.

    CAS  Google Scholar 

  10. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    CAS  Google Scholar 

  11. Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. Topics in Current Chemistry, 200, 95–126.

    CAS  Google Scholar 

  12. Wang, Z. G., Wan, L. S., Liu, Z. M., Huang, X. J., & Xu, Z. K. (2009). Enzyme immobilization on electrospun polymer nanofibers: an overview. Journal of Molecular Catalysis B: Enzymatic, 56(4), 189–195.

    CAS  Google Scholar 

  13. Lalonde, J., & Margolin, A. (2008). Immobilization of enzymes. In K. Drauz & H. Waldmnn (Eds.), Enzyme catalysis in organic synthesis (2nd ed., pp. 163–184). Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Google Scholar 

  14. Andreescu, S., Bucur, B., & Marty, J.-L. (2006). Affinity immobilization of tagged enzymes. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (Vol. 22, pp. 97–106). Humana Press.

  15. Fei, G., Ma, G.-H., Wang, P., & Su, Z.-G. (2010). Enzyme immobilization, biocatalyst featured with nanoscale structure. Encyclopedia of industrial biotechnology (pp. 1–26). John Wiley & Sons, Inc.

  16. Grunwald, P. (2009). Biocatalysis: Biochemical Fundamentals and Applications (pp. 231–288). Imperial College Press.

  17. Flickinger, M. C., & Drew, S. W. (1999). Fermentation, biocatalysis and bioseparation. Encyclopedia of bioprocess technology. New York, USA: John Wiley & Sons.

    Google Scholar 

  18. Górecka, E., & Jastrzębska, M. (2011). Immobilization techniques and biopolymer carriers. Food Science and Biotechnology, 75(1), 65–86.

    Google Scholar 

  19. Betancor, L., Fuentes, M., Dellamora-Ortiz, G., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Guisán, J. M., & Fernández-Lafuente, R. (2005). Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 32(3), 97–101.

    CAS  Google Scholar 

  20. Kim, J., Grate, J. W., & Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61(3), 1017–1026.

    CAS  Google Scholar 

  21. Brena, B., González-Pombo, P., & Batista-Viera, F. (2006). Immobilization of enzymes: a literature survey. In J. M. Guisan (Ed.), Immobilization of enzymes and cells (3rd ed., Vol. 1051, pp. 15–30). Humana Press.

  22. Pessela, B. C. C., Dellamora-Ortiz, G., Betancor, L., Fuentes, M., Guisán, J. M., & Fernandez-Lafuente, R. (2007). Modulation of the catalytic properties of multimeric β-galactosidase from E. coli by using different immobilization protocols. Enzyme and Microbial Technology, 40(2), 310–315.

    CAS  Google Scholar 

  23. Wang, P. (2006). Nanoscale biocatalyst systems. Current Opinion in Biotechnology, 17(6), 574–579.

    CAS  Google Scholar 

  24. Wang, P., Dai, S., Waezsada, S. D., Tsao, A. Y., & Davison, B. H. (2001). Enzyme stabilization by covalent binding in nanoporous sol‐gel glass for nonaqueous biocatalysis. Biotechnology and Bioengineering, 74(3), 249–255.

    CAS  Google Scholar 

  25. Kim, B. C., Nair, S., Kim, J., Kwak, J. H., Grate, J. W., Kim, S. H., & Gu, M. B. (2005). Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres. International Journal of Nanotechnology, 16(7), S382.

    Google Scholar 

  26. Huang, X.-J., Yu, A.-G., Jiang, J., Pan, C., Qian, J.-W., & Xu, Z.-K. (2009). Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic, 57(1–4), 250–256.

    CAS  Google Scholar 

  27. Lee, J., Lee, Y., Youn, J. K., Na, H. B., Yu, T., Kim, H., Lee, S.-M., Koo, Y.-M., Kwak, J. H., & Park, H. G. (2008). Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small, 4(1), 143–152.

    CAS  Google Scholar 

  28. Verma, M., Barrow, C., & Puri, M. (2013). Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Applied Microbiology and Biotechnology, 97(1), 23–39.

    CAS  Google Scholar 

  29. Jia, H., Zhu, G., Vugrinovich, B., Kataphinan, W., Reneker, D. H., & Wang, P. (2002). Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress, 18(5), 1027–1032.

    CAS  Google Scholar 

  30. Jia, H. (2011). Enzyme-carrying electrospun nanofibers. In P. Wang (Ed.), Methods in Molecular Biology (2011th ed., Vol. 743, pp. 205–212). Humana Press.

  31. Gianfreda, L., & Scarfi, M. R. (1991). Enzyme stabilization: state of the art. Molecular and Cellular Biochemistry, 100(2), 97–128.

    CAS  Google Scholar 

  32. Nair, S., Kim, J., Crawford, B., & Kim, S. H. (2007). Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules, 8(4), 1266–1270.

    CAS  Google Scholar 

  33. Chawla, K. K. (2005). Fibrous materials (p. 312). Cambridge University Press.

  34. Belgacem, M. N., & Gandini, A. (2008). Surface modification of cellulose fibres. In B. Mohamed (Ed.), Monomers, polymers and composites from renewable resources (pp. 385–400). Amsterdam: Elsevier.

    Google Scholar 

  35. Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154–169.

    CAS  Google Scholar 

  36. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479–3500.

    CAS  Google Scholar 

  37. Siqueira, G., Bras, J., & Dufresne, A. (2010). Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers, 2(4), 728–765.

    CAS  Google Scholar 

  38. Samir, M. A. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612–626.

    CAS  Google Scholar 

  39. Cunha, A., & Gandini, A. (2010). Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose, 17(5), 875–889. doi:10.1007/s10570-010-9434-6.

    CAS  Google Scholar 

  40. Lavoine, N., Desloges, I., Dufresne, A., & Bras, J. (2012). Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydrate Polymer, 90(2), 735–764.

    CAS  Google Scholar 

  41. John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydrate Polymer, 71(3), 343–364.

    CAS  Google Scholar 

  42. Krässig, H. A. (1994). Cellulose: structure, accessibility and reactivity. Journal of Polymer Science Part A: Polymer Chemistry, 32(12), 367.

    Google Scholar 

  43. Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., & Renneckar, S. (2010). Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science, 45(1), 1–33.

    CAS  Google Scholar 

  44. Tischer, W., & Kasche, V. (1999). Immobilized enzymes: crystals or carriers? Trends in Biotechnology, 17(8), 326–335.

    CAS  Google Scholar 

  45. Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459–494.

    Google Scholar 

  46. Karimi, S., Tahir, P. M., Karimi, A., Dufresne, A., & Abdulkhani, A. (2014). Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydrate Polymer, 101, 878–885.

    CAS  Google Scholar 

  47. Jonoobi, M., Harun, J., Tahir, P. M., Shakeri, A., SaifulAzry, S., & Makinejad, M. D. (2011). Physicochemical characterization of pulp and nanofibers from kenaf stem. Materials Letters, 65(7), 1098–1100.

    CAS  Google Scholar 

  48. Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M., & Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18(2), 433–442.

    CAS  Google Scholar 

  49. Shi, J., Shi, S. Q., Barnes, H. M., & Pittman, C. U., Jr. (2011). A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1), 879–890.

    CAS  Google Scholar 

  50. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymer, 83(4), 1804–1811.

    CAS  Google Scholar 

  51. Gupta, M. N., Kaloti, M., Kapoor, M., & Solanki, K. (2011). Nanomaterials as matrices for enzyme immobilization. Artificial Cells Blood Substitute, 39(2), 98–109.

    CAS  Google Scholar 

  52. Kumar, P., Gupta, A., Dhakate, S. R., Mathur, R. B., Nagar, S., & Gupta, V. K. (2013). Covalent immobilization of xylanase produced from Bacillus pumilus SV-85S on electrospun polymethyl methacrylate nanofiber membrane. Biotechnology and Applied Biochemistry, 60(2), 162–9.

    CAS  Google Scholar 

  53. Yang, D., Paul, B., Xu, W., Yuan, Y., Liu, E., Ke, X., Wellard, R. M., Guo, C., Xu, Y., Sun, Y., & Zhu, H. (2010). Alumina nanofibers grafted with functional groups: a new design in efficient sorbents for removal of toxic contaminants from water. Water Research, 44(3), 741–750.

    CAS  Google Scholar 

  54. Kim, J., Jia, H., & Wang, P. (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 24(3), 296–308.

    CAS  Google Scholar 

  55. Sotowa, K.-I., Takagi, K., & Sugiyama, S. (2008). Fluid flow behavior and the rate of an enzyme reaction in deep microchannel reactor under high-throughput condition. Chemical Engineering Journal, 135(0), 30–36.

    Google Scholar 

  56. Song, J., Kahveci, D., Chen, M., Guo, Z., Xie, E., Xu, X., Besenbacher, F., & Dong, M. (2012). Enhanced catalytic activity of lipase encapsulated in PCL nanofibers. Langmuir, 28(14), 6157–6162.

    CAS  Google Scholar 

  57. Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10), 1171–1178.

    CAS  Google Scholar 

  58. Smith, K. H., Tejeda-Montes, E., Poch, M., & Mata, A. (2011). Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials. Chemical Society Reviews, 40(9), 4563–4577.

    CAS  Google Scholar 

  59. Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.

    CAS  Google Scholar 

  60. Laurencin, C., Kumbar, S., Nukavarapu, S., James, R., & Hogan, M. (2008). Recent patents on electrospun biomedical nanostructures: an overview. Recent Patents on Biotechnology, 1(1), 68–78.

    Google Scholar 

  61. Cengiz, F., Krucińska, I., Gliścińska, E., Chrzanowski, M., & Göktepe, F. (2009). Comparative analysis of various electrospinning methods of nanofibre formation. Fibres & Textiles in Eastern Europe, 72(1), 13–19.

    Google Scholar 

  62. Aziz, S. H., & Ansell, M. P. (2004). The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Composites Science and Technology, 64(9), 1219–1230.

    CAS  Google Scholar 

  63. Cheng, Q., Wang, S., Rials, T., & Lee, S.-H. (2007). Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose, 14(6), 593–602.

    CAS  Google Scholar 

  64. Tischer, P. C. S. F., Sierakowski, M. R., Westfahl, H., & Tischer, C. A. (2010). Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules, 11(5), 1217–1224.

    CAS  Google Scholar 

  65. Jonoobi, M., Harun, J., Tahir, P. M., Zaini, L. H., SaifulAzry, S., & Makinejad, M. D. (2010). Characteristic of nanofibers extracted from kenaf core. BioResources, 5(4), 2556–2566.

    Google Scholar 

  66. Jonoobi, M., Harun, J., Shakeri, A., Misra, M., & Oksman, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2), 626–639.

    CAS  Google Scholar 

  67. Isogai, A., Saito, T., & Fukuzumi, H. (2011). TEMPO-oxidized cellulose nanofibers. Nanoscale, 3(1), 71–85.

    CAS  Google Scholar 

  68. Melone, L., Altomare, L., Alfieri, I., Lorenzi, A., De Nardo, L., & Punta, C. (2013). Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: synthesis, characterization, and photocatalytic properties. Journal of Photochemistry and Photobiology A, 261, 53–60.

    CAS  Google Scholar 

  69. Eichhorn, S. J. (2011). Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 7(2), 303–315.

    CAS  Google Scholar 

  70. Henriksson, M., Henriksson, G., Berglund, L. A., & Lindström, T. (2007). An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. European Polymer Journal, 43(8), 3434–3441.

    CAS  Google Scholar 

  71. Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P. T., Ikkala, O., & Lindström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules, 8(6), 1934–1941.

    Google Scholar 

  72. Hayashi, N., Kondo, T., & Ishihara, M. (2005). Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains. Carbohydrate Polymer, 61(2), 191–197.

    CAS  Google Scholar 

  73. Shibakami, M., Tsubouchi, G., Nakamura, M., & Hayashi, M. (2013). Polysaccharide nanofiber made from euglenoid alga. Carbohydrate Polymer, 93(2), 499–505.

    CAS  Google Scholar 

  74. Chen, W., Yu, H., Li, Q., Liu, Y., & Li, J. (2011). Ultralight and highly flexible aerogels with long cellulose I nanofibers. Soft Matter, 7(21), 10360–10368.

    CAS  Google Scholar 

  75. Wang, B., Sain, M., & Oksman, K. (2007). Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials, 14(2), 89–103.

    Google Scholar 

  76. Dufresne, A. (2000). Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Composite Interfaces, 7(1), 53–67.

    CAS  Google Scholar 

  77. Dalmas, F., Chazeau, L., Gauthier, C., Cavaillé, J.-Y., & Dendievel, R. (2006). Large deformation mechanical behavior of flexible nanofiber filled polymer nanocomposites. Polymer, 47(8), 2802–2812.

    CAS  Google Scholar 

  78. Marcovich, N. E., Auad, M. L., Bellesi, N. E., Nutt, S. R., & Aranguren, M. I. (2006). Cellulose micro/nanocrystals reinforced polyurethane. Journal of Materials Research, 21(4), 870–881.

    CAS  Google Scholar 

  79. Bhatnagar, A., & Sain, M. (2005). Processing of cellulose nanofiber-reinforced composites. Journal of Reinforced Plastics and Composites, 24(12), 1259–1268.

    CAS  Google Scholar 

  80. Andresen, M., & Stenius, P. (2007). Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. Journal of Dispersion Science Technology, 28(6), 837–844.

    CAS  Google Scholar 

  81. Andresen, M., Stenstad, P., Moretro, T., Langsrud, S., Syverud, K., Johansson, L. S., & Stenius, P. (2007). Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose. Biomacromolecules, 8(7), 2149–2155.

    CAS  Google Scholar 

  82. Svagan, A. J., Samir, M. A., & Berglund, L. A. (2007). Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules, 8(8), 2556–2563.

    CAS  Google Scholar 

  83. Rodriguez, N. L. G., de Thielemans, W., & Dufresne, A. (2006). Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 13(3), 261–270.

    Google Scholar 

  84. Oksman, K., Mathew, A. P., Bondeson, D., & Kvien, I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15), 2776–2784.

    CAS  Google Scholar 

  85. Petersson, L., & Oksman, K. (2006). Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 66(13), 2187–2196.

    CAS  Google Scholar 

  86. Kose, R., Mitani, I., Kasai, W., & Kondo, T. (2011). “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules, 12(3), 716–720.

    CAS  Google Scholar 

  87. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., López-Gallego, F., Pessela, B. C. C., Hidalgo, A., Fernández-Lorente, G., Fernández-Lafuente, R., & Guisán, J. M. (2006). Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 39(2), 274–280.

    CAS  Google Scholar 

  88. Kosaka, P. M., Kawano, Y., El Seoud, O. A., & Petri, D. F. (2007). Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. Langmuir, 23(24), 12167–12173.

    CAS  Google Scholar 

  89. Lee, K., Ki, C., Baek, D., Kang, G., Ihm, D.-W., & Park, Y. (2005). Application of electrospun silk fibroin nanofibers as an immobilization support of enzyme. Fiber Polymer, 6(3), 181–185.

    CAS  Google Scholar 

  90. Agarwal, S., Greiner, A., & Wendorff, J. H. (2009). Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications. Advanced Functional Materials, 19(18), 2863–2879.

    CAS  Google Scholar 

  91. Hu, Z., Foston, M., & Ragauskas, A. J. (2011). Comparative studies on hydrothermal pretreatment and enzymatic saccharification of leaves and internodes of alamo switchgrass. Bioresource Technology, 102(14), 7224–7228.

    CAS  Google Scholar 

  92. Talbert, J. N., & Goddard, J. M. (2012). Enzymes on material surfaces. Colloids and Surfaces, B: Biointerfaces, 93, 8–19.

    CAS  Google Scholar 

  93. Petkar, M., Lali, A., Caimi, P., & Daminati, M. (2006). Immobilization of lipases for non-aqueous synthesis. Journal of Molecular Catalysis B: Enzymatic, 39(1–4), 83–90.

    CAS  Google Scholar 

  94. Shah, S., Solanki, K., & Gupta, M. N. (2007). Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chemistry Central Journal, 1, 30.

    Google Scholar 

  95. You, C.-C., De, M., Han, G., & Rotello, V. M. (2005). Tunable inhibition and denaturation of alpha-chymotrypsin with amino acid-functionalized gold nanoparticles. Journal of the American Chemical Society, 127(37), 12873–12881.

    CAS  Google Scholar 

  96. Rejikumar, S., & Devi, S. (2009). Hydrolysis of lactose and milk whey using a fixed-bed reactor containing β-galactosidase covalently bound onto chitosan and cross-linked poly(vinyl alcohol). International Journal of Food Science & Technology, 36(1), 91–98.

    Google Scholar 

  97. Fang, F., & Szleifer, I. (2002). Effect of molecular structure on the adsorption of protein on surfaces with grafted polymers. Langmuir, 18(14), 5497–5510.

    CAS  Google Scholar 

  98. Pessela, B. C. C., Fernandez-Lafuente, R., Fuentes, M., Vián, A., García, J. L., Carrascosa, A. V., Mateo, C., & Guisán, J. M. (2003). Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme Microbial Technology, 32(3–4), 369–374.

    CAS  Google Scholar 

  99. Lei, Z., Bi, S., & Yang, H. (2007). Chitosan-tethered the silica particle from a layer-by-layer approach for pectinase immobilization. Food Chemistry, 104(2), 577–584.

    CAS  Google Scholar 

  100. Mungikar, A. A., & Forciniti, D. (2004). Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study. Biomacromolecules, 5(6), 2147–59.

    CAS  Google Scholar 

  101. Goddard, J. M., & Hotchkiss, J. H. (2007). Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 32(7), 698–725.

    CAS  Google Scholar 

  102. Khalil, H. P. S. A., Ismail, H., Rozman, H. D., & Ahmad, M. N. (2001). The effect of acetylation on interfacial shear strength between plant fibres and various matrices. European Polymer Journal, 37(5), 1037–1045.

    CAS  Google Scholar 

  103. Ashori, A., Babaee, M., Jonoobi, M., & Hamzeh, Y. (2014). Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 102, 369–75.

    CAS  Google Scholar 

  104. Tserki, V., Zafeiropoulos, N. E., Simon, F., & Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composite Part A-Applied Science, 36(8), 1110–1118.

    Google Scholar 

  105. Sgriccia, N., Hawley, M. C., & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composite Part A-Applied Science, 39(10), 1632–1637.

    Google Scholar 

  106. Nacos, M. K., Katapodis, P., Pappas, C., Daferera, D., Tarantilis, P. A., Christakopoulos, P., & Polissiou, M. (2006). Kenaf xylan—a source of biologically active acidic oligosaccharides. Carbohydrate Polymer, 66(1), 126–134.

    CAS  Google Scholar 

  107. Troedec, M. L., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composite Part A-Applied Science, 39(3), 514–522.

    Google Scholar 

  108. Adebajo, M. O., Frost, R. L., Kloprogge, J. T., & Kokot, S. (2006). Raman spectroscopic investigation of acetylation of raw cotton. Spectrochimica Acta Part A, 64(2), 448–453.

    CAS  Google Scholar 

  109. Rehman, N., Miranda, M., Rosa, S. L., Pimentel, D., Nachtigall, S. B., & Bica, C. D. (2014). Cellulose and nanocellulose from maize straw: an insight on the crystal properties. Journal of Polymers and the Environment, 22(2), 252–259.

    CAS  Google Scholar 

  110. Gemeiner, P., Štefuca, V., & Báleš, V. (1993). Biochemical engineering of biocatalysts immobilized on cellulosic materials. Enzyme and Microbial Technology, 15(7), 551–566.

    CAS  Google Scholar 

  111. Rusmini, F., Zhong, Z., & Feijen, J. (2007). Protein immobilization strategies for protein biochips. Biomacromolecules, 8(6), 1775–1789.

    CAS  Google Scholar 

  112. Rao, S. V., Anderson, K. W., & Bachas, L. G. (1998). Oriented immobilization of proteins. Mikrochimica Acta, 128(3–4), 127–143.

    CAS  Google Scholar 

  113. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30(3), 489–511.

    CAS  Google Scholar 

  114. Owen, M. J. (2002). Chapter 9—coupling agents: chemical bonding at interfaces. In M. Chaudhury & A. V. Pocius (Eds.), Adhesion science and engineering (pp. 403–431). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  115. Redeker, E. S., Ta, D. T., Cortens, D., Billen, B., Guedens, W., & Adriaensens, P. (2013). Protein engineering for directed immobilization. Bioconjugate Chemistry, 24(11), 1761–1777.

    Google Scholar 

  116. Cunha, A. G., Fernandez-Lorente, G., Bevilaqua, J. V., Destain, J., Paiva, L. M., Freire, D. M., Fernandez-Lafuente, R., & Guisan, J. M. (2008). Immobilization of Yarrowia lipolytica lipase—a comparison of stability of physical adsorption and covalent attachment techniques. Biotechnology and Applied Biochemistry, 146(1–3), 49–56.

    CAS  Google Scholar 

  117. Hodneland, C. D., Lee, Y. S., Min, D. H., & Mrksich, M. (2002). Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proceedings of the National Academy of Science, 99(8), 5048–5052.

    CAS  Google Scholar 

  118. Huang, Q., Li, D., Kang, A., An, W., Fan, B., Ma, X., Ma, G., Su, Z., & Hu, T. (2013). PEG as a spacer arm markedly increases the immunogenicity of meningococcal group Y polysaccharide conjugate vaccine. Journal of Controlled Release, 172(1), 382–389.

    CAS  Google Scholar 

  119. Zhang, J., & Kováč, P. (1999). Studies on vaccines against cholera. Synthesis of neoglycoconjugates from the hexasaccharide determinant of Vibrio cholerae O:1, serotype Ogawa, by single-point attachment or by attachment of the hapten in the form of clusters. Carbohydrate Research, 321(3–4), 157–167.

    CAS  Google Scholar 

  120. Filho, M., Pessela, B. C., Mateo, C., Carrascosa, A. V., Fernandez-Lafuente, R., & Guisán, J. M. (2008). Immobilization–stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: selection of the optimal immobilization strategy. Enzyme and Microbial Technology, 42(3), 265–271.

    CAS  Google Scholar 

  121. Cowan, D. A., & Fernandez-Lafuente, R. (2011). Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme and Microbial Technology, 49(4), 326–346.

    CAS  Google Scholar 

  122. Rodrigues, R. C., Godoy, C. A., Filice, M., Bolivar, J. M., Palau-Ors, A., Garcia-Vargas, J. M., Romero, O., Wilson, L., Ayub, M. A. Z., Fernandez-Lafuente, R., & Guisan, J. M. (2009). Reactivation of covalently immobilized lipase from Thermomyces lanuginosus. Process Biochemistry, 44(6), 641–646.

    CAS  Google Scholar 

  123. Murty, V. R., Bhat, J., & Muniswaran, P. K. A. (2002). Hydrolysis of oils by using immobilized lipase enzyme: a review. Biotechnology and Bioprocess Engineering, 7(2), 57–66.

    CAS  Google Scholar 

  124. Elnashar, M. M. M. (2011). The Art of Immobilization using biopolymers, biomaterials and nanobiotechnology. In M. M. M. Elnashar (Ed.), Biotechnology of Biopolymers (p. 1). InTech.

  125. Poppe, J. K., Costa, A. P. O., Brasil, M. C., Rodrigues, R. C., & Ayub, M. A. Z. (2013). Multipoint covalent immobilization of lipases on aldehyde-activated support: Characterization and application in transesterification reaction. Journal of Molecular Catalysis B: Enzymatic, 94, 57–62.

    CAS  Google Scholar 

  126. Mateo, C., Abian, O., Bernedo, M., Cuenca, E., Fuentes, M., Fernandez-Lorente, G., Palomo, J. M., Grazu, V., Pessela, B. C. C., Giacomini, C., Irazoqui, G., Villarino, A., Ovsejevi, K., Batista-Viera, F., Fernandez-Lafuente, R., & Guisán, J. M. (2005). Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 37(4), 456–462.

    CAS  Google Scholar 

  127. Quirk, R. A., Chan, W. C., Davies, M. C., Tendler, S. J., & Shakesheff, K. M. (2001). Poly(l-lysine)-GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials, 22(8), 865–872.

    CAS  Google Scholar 

  128. Foley, T. L., & Burkart, M. D. (2007). Site-specific protein modification: advances and applications. Current Opinion in Chemical Biology, 11(1), 12–19.

    CAS  Google Scholar 

  129. Wu, P., Shui, W., Carlson, B. L., Hu, N., Rabuka, D., Lee, J., & Bertozzi, C. R. (2009). Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proceedings of the National Academy of Science, 106(9), 3000–3005.

    CAS  Google Scholar 

  130. Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilization. Biotechnology Letters, 31(11), 1639–1650.

    CAS  Google Scholar 

  131. Mateo, C., Grazu, V., Palomo, J. M., Lopez-Gallego, F., Fernandez-Lafuente, R., & Guisan, J. M. (2007). Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2(5), 1022–1033.

    CAS  Google Scholar 

  132. Wang, B., Guo, C., Zhang, M., Park, B., & Xu, B. (2012). High-resolution single-molecule recognition imaging of the molecular details of ricin-aptamer interaction. The Journal of Physical Chemistry. B, 116(17), 5316–5322. doi:10.1021/jp301765n.

    CAS  Google Scholar 

  133. Pei, Z., Anderson, H., Myrskog, A., Duner, G., Ingemarsson, B., & Aastrup, T. (2010). Optimizing immobilization on two-dimensional carboxyl surface: pH dependence of antibody orientation and antigen binding capacity. Analytical Biochemistry, 398(2), 161–168.

    CAS  Google Scholar 

  134. Zhu, J., & Sun, G. (2012). Lipase immobilization on glutaraldehyde-activated nanofibrous membranes for improved enzyme stabilities and activities. Reactive and Functional Polymers, 72(11), 839–845.

    CAS  Google Scholar 

  135. Jonkheijm, P., Weinrich, D., Schroder, H., Niemeyer, C. M., & Waldmann, H. (2008). Chemical strategies for generating protein biochips. Angewandte Chemie International Edition in English, 47(50), 9618–9647.

    CAS  Google Scholar 

  136. Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 48(2), 107–122.

    CAS  Google Scholar 

  137. Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angewandte Chemie, International Edition, 48(38), 6974–98.

    CAS  Google Scholar 

  138. Baslé, E., Joubert, N., & Pucheault, M. (2010). Protein chemical modification on endogenous amino acids. Chemistry and Biology, 17(3), 213–227.

    Google Scholar 

  139. Gauthier, M. A., & Klok, H.-A. (2008). Peptide/protein-polymer conjugates: synthetic strategies and design concepts. Chemical Communications (London), 0(23), 2591–611.

    CAS  Google Scholar 

  140. Joshi, N. S., Whitaker, L. R., & Francis, M. B. (2004). A three-component Mannich-type reaction for selective tyrosine bioconjugation. Journal of the American Chemical Society, 126(49), 15942–15943.

    CAS  Google Scholar 

  141. Novick, S., & Rozzell, J. D. (2005). Chapter 16—immobilization of enzymes by covalent attachment. In J. Barredo (Ed.), Microbial Enzymes and Biotransformations (Vol. 17, pp. 247–271). Humana Press.

  142. Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic, 11(2–3), 127–138.

    CAS  Google Scholar 

  143. Kang, G., Yu, H., Liu, Z., & Cao, Y. (2011). Surface modification of a commercial thin film composite polyamide reverse osmosis membrane by carbodiimide-induced grafting with poly(ethylene glycol) derivatives. Desalination, 275(1–3), 252–259.

    CAS  Google Scholar 

  144. Ferreira, L., Ramos, M. A., Dordick, J. S., & Gil, M. H. (2003). Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg). Journal of Molecular Catalysis B: Enzymatic, 21(4–6), 189–199.

    CAS  Google Scholar 

  145. Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 37(5), 790–806.

    CAS  Google Scholar 

  146. Delvaux, M., & Demoustier-Champagne, S. (2003). Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosensors and Bioelectronics, 18(7), 943–951.

    CAS  Google Scholar 

  147. Alila, S., Ferraria, A. M., do Rego Botelho, A. M., & Boufi, S. (2009). Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydrate Polymer, 77(3), 553–562.

    CAS  Google Scholar 

  148. Chen, H., Guo, Z., & Jia, L. (2012). Preparation and surface modification of highly dispersed nano-ZnO with stearic acid activated by N,N′-carbonyldiimidazole. Materials Letters, 82, 167–170.

    CAS  Google Scholar 

  149. Nobs, L., Buchegger, F., Gurny, R., & Allémann, E. (2003). Surface modification of poly(lactic acid) nanoparticles by covalent attachment of thiol groups by means of three methods. International Journal of Pharmaceutics, 250(2), 327–337.

    CAS  Google Scholar 

  150. Hu, W., Tedesco, S., Faedda, R., Petrone, G., Cacciola, S. O., O’Keefe, A., & Sheehan, D. (2010). Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics. Talanta, 80(4), 1569–1575.

    CAS  Google Scholar 

  151. Hermanson, G. T., Mallia, A. K., & Smith, P. K. (1992). Immobilized affinity ligand techniques. Academic Press.

  152. Petri, A., Gambicorti, T., & Salvadori, P. (2004). Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 27(2–3), 103–106.

    CAS  Google Scholar 

  153. Jurado, L. A., Mosley, J., & Jarrett, H. W. (2002). Cyanogen bromide activation and coupling of ligands to diol-containing silica for high-performance affinity chromatography: optimization of conditions. Journal of Chromatography. A, 971(1–2), 95–104.

    CAS  Google Scholar 

  154. Wilchek, M., & Miron, T. (2003). Oriented versus random protein immobilization. Journal of Biochemical and Biophysical Methods, 55(1), 67–70.

    CAS  Google Scholar 

  155. Tümtürk, H., Aksoy, S., & Hasırcı, N. (2000). Covalent immobilization of α-amylase onto poly(2-hydroxyethyl methacrylate) and poly(styrene −2-hydroxyethyl methacrylate) microspheres and the effect of Ca2+ ions on the enzyme activity. Food Chemistry, 68(3), 259–266.

    Google Scholar 

  156. Santos, J. C., Paula, A. V., Nunes, G. F. M., & de Castro, H. F. (2008). Pseudomonas fluorescens lipase immobilization on polysiloxane–polyvinyl alcohol composite chemically modified with epichlorohydrin. Journal of Molecular Catalysis B: Enzymatic, 52–53, 49–57.

    Google Scholar 

  157. Schaubroeck, D., De Baets, J., Desmet, T., Dubruel, P., Schacht, E., Van Vaeck, L., & Van Calster, A. (2010). Surface modification of an epoxy resin with polyamines via cyanuric chloride coupling. Applied Surface Science, 256(21), 6269–6278.

    CAS  Google Scholar 

  158. Khalafi-Nezhad, A., Parhami, A., Soltani Rad, M. N., & Zarea, A. (2005). Efficient method for the direct preparation of amides from carboxylic acids using tosyl chloride under solvent-free conditions. Tetrahedron Letters, 46(40), 6879–6882.

    CAS  Google Scholar 

  159. Matte, C. R., Nunes, M. R., Benvenutti, E. V., da Schöffer, J. N., Ayub, M. A. Z., & Hertz, P. F. (2012). Characterization of cyclodextrin glycosyltransferase immobilized on silica microspheres via aminopropyltrimethoxysilane as a “spacer arm”. Journal of Molecular Catalysis B: Enzymatic, 78, 51–56.

    CAS  Google Scholar 

  160. Moreno, J. M., & Sinisterra, J. V. (1994). Immobilization of lipase from Candida cylindracea on inorganic supports. Journal of Molecular Catalysis, 93(3), 357–369.

    CAS  Google Scholar 

  161. Bhatia, S. K., Cooney, M. J., Shriver-Lake, L. C., Fare, T. L., & Ligler, F. S. (1991). Immobilization of acetylcholinesterase on solid surfaces: chemistry and activity studies. Sensors and Actuators, B, 3(4), 311–317.

    CAS  Google Scholar 

  162. Megías, C., Pedroche, J., del Mar Yust, M., Alaiz, M., Girón-Calle, J., Millán, F., & Vioque, J. (2006). Immobilization of angiotensin-converting enzyme on glyoxyl-agarose. Journal of Agricultural and Food Chemistry, 54(13), 4641–4645.

    Google Scholar 

  163. Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J.-K. (2013). From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences, 14(1), 1232–1277.

    CAS  Google Scholar 

  164. Alzohairy, M. A., & Khan, A. A. (2010). Recent advances and applications of immobilized enzyme technologies: a review. Research Journal Biological Sciences, 5(8), 565–575.

    Google Scholar 

  165. Amine, A., Mohammadi, H., Bourais, I., & Palleschi, G. (2006). Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosensors and Bioelectronics, 21(8), 1405–1423.

    CAS  Google Scholar 

  166. Leung, A., Shankar, P. M., & Mutharasan, R. (2007). A review of fiber-optic biosensors. Sensors and Actuators, B, 125(2), 688–703.

    CAS  Google Scholar 

  167. Wang, Y., Li, Z., Wang, J., Li, J., & Lin, Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology, 29(5), 205–12.

    Google Scholar 

  168. Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: a medical perspective. International Journal of Nanotechnology, 10(1), 31.

    Google Scholar 

  169. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: current status and future prospects. FASEB Journal, 19(3), 311–330.

    CAS  Google Scholar 

  170. D’Orazio, P. (2003). Biosensors in clinical chemistry. Clinica Chimica Acta, 334(1), 41–69.

    Google Scholar 

  171. Malhotra, B. D., & Chaubey, A. (2003). Biosensors for clinical diagnostics industry. Sensors and Actuators, B, 91(1), 117–127.

    CAS  Google Scholar 

  172. Hoa, X. D., Kirk, A. G., & Tabrizian, M. (2007). Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors and Bioelectronics, 23(2), 151–160.

    CAS  Google Scholar 

  173. Piliarik, M., Homola, J., Maníkova, Z., & Čtyroký, J. (2003). Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber. Sensors and Actuators, B, 90(1–3), 236–242.

    CAS  Google Scholar 

  174. Maladkar, N. K. (1994). Enzymatic production of cephalexin. Enzyme and Microbial Technology, 16(8), 715–718.

    CAS  Google Scholar 

  175. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.

    CAS  Google Scholar 

  176. Fan, J., Shui, W., Yang, P., Wang, X., Xu, Y., Wang, H., Chen, X., & Zhao, D. (2005). Mesoporous silica nanoreactors for highly efficient proteolysis. Chemistry, 11(18), 5391–5396.

    CAS  Google Scholar 

  177. Shui, W., Fan, J., Yang, P., Liu, C., Zhai, J., Lei, J., Yan, Y., Zhao, D., & Chen, X. (2006). Nanopore-based proteolytic reactor for sensitive and comprehensive proteomic analyses. Analytical Chemistry, 78(14), 4811–4819.

    CAS  Google Scholar 

  178. Yamamoto, S., Imamura, A., Susanti, I., Hori, K., Tanji, Y., & Unno, H. (2005). Effect of spacer length on beta-lactoglobulin hydrolysis by trypsin covalently immobilized on a cellulosic support. Food and Bioproducts Processing, 83(1), 61–67.

    CAS  Google Scholar 

  179. Chen, J., Wang, L., & Zhu, Z. (1992). Preparation of enzyme immobilized membranes and their self-cleaning and anti-fouling abilities in protein separations. Desalination, 86(3), 301–315.

    CAS  Google Scholar 

  180. Walsh, M. K. (2007). Immobilized enzyme technology for food applications. In R. Rastall (Ed.), Novel enzyme technology for food applications (pp. pp. 60–84). Cambridge: Woodhead Publishing Limited.

    Google Scholar 

  181. Kaneko, T., Takahashi, S., & Saito, K. (2000). Characterization of acid-stable glucose isomerase from Streptomyces sp., and development of single-step processes for high-fructose corn sweetener (HFCS) production. Bioscience, Biotechnology, and Biochemistry, 64(5), 940–947.

    CAS  Google Scholar 

  182. Willner, I., Yan, Y.-M., Willner, B., & Tel-Vered, R. (2009). Integrated enzyme-based biofuel cells—a review. Fuel Cells, 9(1), 7–24.

    CAS  Google Scholar 

  183. Ha, S., Wee, Y., & Kim, J. (2012). Nanobiocatalysis for enzymatic biofuel cells. Topics in Catalysis, 55(16–18), 1181–1200.

    CAS  Google Scholar 

  184. Mano, N., Mao, F., & Heller, A. (2003). Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. Journal of the American Chemical Society, 125(21), 6588–94.

    CAS  Google Scholar 

  185. Akhtar, S., & Husain, Q. (2006). Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water. Chemosphere, 65(7), 1228–1235.

    CAS  Google Scholar 

  186. Moskovitz, Y., & Srebnik, S. (2005). Mean-field model of immobilized enzymes embedded in a grafted polymer layer. Biophysical Journal, 89(1), 22–31.

    CAS  Google Scholar 

  187. Monsan, P. (1981). Enzymes immobilized on a solid support containing cellulose and lignin. United States Patent.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by ScienceFund Research Grant from MOSTI (grant no. 02-01-04-SF1469) through the Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Noriznan Mokhtar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, S., Mokhtar, M.N., Naim, M.N. et al. A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions. Appl Biochem Biotechnol 175, 1817–1842 (2015). https://doi.org/10.1007/s12010-014-1417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1417-x

Keywords

Navigation