Skip to main content
Log in

Design optimization and cold RF test of a 2.6-cell cryogenic RF gun

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

To further improve the performance of accelerators, the first cryogenic normal-conducting RF gun in China was designed and manufactured. As a new and attractive trend, this optimized cryogenic RF gun can generate a low-emittance beam with a short-driven laser pulse because of its promising high gradient on the cathode. In this paper, optimization of the RF design and beam dynamics, including suppression of the peak RF field and elimination of the multipole mode, is presented. In addition, the emittance growth caused by the alignment deviation and RF jitter is discussed. After the gun was manufactured, a cold test was conducted at both room temperature and cryogenic conditions. At room temperature, the field distribution was obtained by the bead pull method. Under cryogenic conditions, the RF properties, such as the coupling coefficient and quality factor, varied with temperature. The test results agreed with the design. In the cryogenic test, vibration measurements were performed. Without vibration isolation, a maximum vibration of 50 \(\mu \text{m}\) was observed. These cold test results are the basis of the following high-power test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.P. Minitti, J.M. Budarz, A. Kirrander et al., Imaging molecular motion: femtosecond x-ray scattering of an electrocyclic chemical reaction. Phys. Rev. Lett. 114, 255501 (2015). https://doi.org/10.1103/PhysRevLett.114.255501

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Weathersby, G. Brown, M. Centurion et al., Mega-electron-volt ultrafast electron diffraction at slac national accelerator laboratory. Rev. Sci. Instrum. 86, 073702 (2015). https://doi.org/10.1063/1.4926994

    Article  Google Scholar 

  3. C. Wang, Z.H. Zhu, Z.G. Jiang et al., Design of a 16.25 mhz continuous-wave normal-conducting radiofrequency electron gun. Nucl. Sci. Tech. 31, 110 (2020). https://doi.org/10.1007/s41365-020-00817-3

    Article  Google Scholar 

  4. K. Liu, L. Li, C. Wang et al., Multi-port cavity model and low-level rf systems design for vhf gun. Nucl. Sci. Tech. 31, 8 (2020). https://doi.org/10.1007/s41365-019-0711-2

    Article  Google Scholar 

  5. J.F. Schmerge, J. Castro, J.E. Clendenin et al., The s-band 1.6 cell rf gun correlated energy spread dependence on \(\pi\) and 0 mode relative amplitude. Int. J. Modern Phys. A 22, 4061–4068 (2007). https://doi.org/10.1142/S0217751X07037639

    Article  ADS  Google Scholar 

  6. D. Ying-Chao, Y. Li-Xin, D. Qiang et al., First beam measurements of the s-band photocathode radio-frequency gun at tsinghua university. Chin. Phys. Letts. 24, 1876–1878 (2007). https://doi.org/10.1088/0256-307x/24/7/024

    Article  ADS  Google Scholar 

  7. Y. Chen, H.J. Qian, M. Krasilnikov et al., Frequency-detuning dependent transient coaxial rf coupler kick in an l-band long-pulse high-gradient rf photogun. Phys. Rev. Accel. Beams 23, 010101 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.010101

    Article  ADS  Google Scholar 

  8. W.E. White, A. Robert, M. Dunne, The linac coherent light source. J. Synchrotron Radiat. 22, 472–476 (2015). https://doi.org/10.1107/s1600577515005196

    Article  Google Scholar 

  9. J. Feldhaus, Flash-the first soft x-ray free electron laser (fel) user facility. J. Phys. B Atomic Mole. Optical Phys. 43, 194002 (2010)

    Article  ADS  Google Scholar 

  10. R. Ganter, Swissfel-Conceptual Design Report (Tech. rep Paul Scherrer Institute (PSI), Villigen, 2010)

    Google Scholar 

  11. C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

    Article  Google Scholar 

  12. H.P. Geng, J.H. Chen, Z.T. Zhao, Scheme for generating 1 nm x-ray beams carrying orbital angular momentum at the sxfel. Nucl. Sci. Tech. 31, 88 (2020). https://doi.org/10.1007/s41365-020-00794-7

    Article  Google Scholar 

  13. X. Li, J.Q. Zhang, G.Q. Lin et al., Performance of an electron linear accelerator for the first photoneutron source in China. Nucl. Sci. Tech. 30, 53 (2019). https://doi.org/10.1007/s41365-019-0576-4

    Article  ADS  Google Scholar 

  14. B.J. Claessens, S.B. van der Geer, G. Taban et al., Ultracold electron source. Phys. Rev. Lett. 95, 164801 (2005). https://doi.org/10.1103/PhysRevLett.95.164801

    Article  ADS  Google Scholar 

  15. S. Bettoni, M. Aiba, B. Beutner et al., Preservation of low slice emittance in bunch compressors. Phys. Rev. Accel. Beams 19, 034402 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.034402

    Article  ADS  Google Scholar 

  16. M. Altarelli, R. Brinkmann, M. Chergui et al., The european x-ray free-electron laser. Tech. Design Report DESY 97, 1–26 (2006). https://doi.org/10.1080/08940880601064968

    Article  Google Scholar 

  17. R. Akre, D. Dowell, P. Emma et al., Commissioning the linac coherent light source injector. Phys. Rev. Accel. Beams 11, 030703 (2008). https://doi.org/10.1103/PhysRevSTAB.11.030703

    Article  ADS  Google Scholar 

  18. W. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc. Rev. Sci. Instrum. 28, 824–826 (1957). https://doi.org/10.1063/1.1715731

    Article  ADS  Google Scholar 

  19. W. Fang, L. Wang, Z. Zhao, Conceptual study and design of a c-band photocathode injector. Radiat. Detect. Technol. Methods 3, 39 (2019). https://doi.org/10.1007/s41605-019-0117-z

    Article  Google Scholar 

  20. C. Limborg-Deprey, C. Adolphsen, D. McCormick, et al., Performance of a first generation x-band photoelectron rf gun. Phys. Rev. Accel. Beams. 19, 053401 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.053401

  21. A.D. Cahill, J.B. Rosenzweig, V.A. Dolgashev et al., High gradient experiments with \(x\)-band cryogenic copper accelerating cavities. Phys. Rev. Accel. Beams 21, 102002 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.102002

    Article  ADS  Google Scholar 

  22. E.Z. Engelberg, Y. Ashkenazy, M. Assaf, Stochastic model of breakdown nucleation under intense electric fields. Phys. Rev. Letts. 120, 124801 (2018). https://doi.org/10.1103/PhysRevLett.120.124801

    Article  ADS  Google Scholar 

  23. N.J. Simon, E.S. Drexler, R.P. Reed, Properties of copper and copper alloys at cryogenic temperatures. Final report. United States: N. p. (1992). https://www.osti.gov/biblio/5340308

  24. J.B. Rosenzweig, A. Cahill, V. Dolgashev et al., Next generation high brightness electron beams from ultra-high field cryogenic radiofrequency photocathode sources. Phys. Rev. Accel. Beams  22, 023403 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.023403

    Article  Google Scholar 

  25. A. Iino, S. Yamaguchi, T. Shintomi et al., Development of low-loss cryo-accelerating structure with high-purity copper. Nucl. Instrum. Meth. A  866, 40–47 (2017). https://doi.org/10.1016/j.nima.2017.04.012

    Article  ADS  Google Scholar 

  26. H. Lee, I. Bazarov, L. Cultrera, A cryogenically cooled high voltage dc photogun. in Proceedings of IPAC2017, Copenhagen, Denmark, 1618–1621 (2017)

  27. K. Halbach, R. Holsinger, Superfish—a computer program for evaluation of rf cavities with cylindrical symmetry. Particle Accel. 7, 213–222 (1976)

    Google Scholar 

  28. Cst studio suite, cst mircowave studio. https://www.3ds.com/products-services/simulia/products/cststudio-suite/

  29. A. Grudiev, S. Calatroni, W. Wuensch, New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. Accel. Beams 12, 102001 (2009). https://doi.org/10.1103/PhysRevSTAB.12.102001

    Article  ADS  Google Scholar 

  30. M.S. Chae, J.H. Hong, Y.W. Parc et al., Emittance growth due to multipole transverse magnetic modes in an rf gun. Phys. Rev. Accel. Beams 14, 104203 (2011). https://doi.org/10.1103/PhysRevSTAB.14.104203

    Article  ADS  Google Scholar 

  31. K. Floettmann, Astra, a space charge tracking algorithm. http://www.desy.de/mpyflo/

  32. C.C. Xiao, J.Q. Zhang, J.H. Tan et al., Design and preliminary test of the llrf in c band high-gradient test facility for sxfel. Nucl. Sci. Tech. 31, 100 (2020). https://doi.org/10.1007/s41365-020-00806-6

    Article  Google Scholar 

  33. Z.B. Li, A. Grudiev, W.C. Fang et al., Radio-frequency design of a new c-band variable power splitter. Nucl. Sci. Tech. 30, 100 (2019). https://doi.org/10.1007/s41365-019-0611-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Cheng Wang, Jian-Hao Tan, Xiao-Xia Huang and Yi-Xing Lu. The first draft of the manuscript was written by Cheng Wang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cheng Wang.

Additional information

This work was supported by the National Key R&D Program of China (No. 2018YFF0109203) and ANSO (ANSO-CR-KP-2020-16).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tan, JH., Huang, XX. et al. Design optimization and cold RF test of a 2.6-cell cryogenic RF gun. NUCL SCI TECH 32, 97 (2021). https://doi.org/10.1007/s41365-021-00925-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00925-8

Keywords

Navigation