Skip to main content
Log in

Radio-frequency design of a new C-band variable power splitter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A novel variable C-band radio-frequency (RF) power splitter was designed at Shanghai Institute of Applied Physics, Chinese Academy of Sciences. Using three RF impedance combiners, an H-bend, and an RF polarizer, this new power splitter is much more compact than a traditionally designed splitter, which comprises three 3-dB hybrids. The parameters were optimized to achieve good matching and minimize reflection. Here, the RF design of the new C-band variable power splitter is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Syratchev, Variable high power RF splitter and RF phase shifter for CLIC. CERN-OPEN-2003-2005 (2003)

  2. O.A. Ivanov, V.A. Isaev, M.A. Lobaev et al., High power microwave switch employing electron beam triggering with application to active RF pulse compressors. Phys. Rev. ST Accel. Beams 14, 061301 (2011). https://doi.org/10.1103/PhysRevSTAB.14.061301

    Article  Google Scholar 

  3. F. Tamura, S.G. Tantawi, Development of high power X-band semiconductor microwave switch for pulse compression systems of future linear colliders. Phys. Rev. ST Accel. Beams 5, 062001 (2002). https://doi.org/10.1103/PhysRevSTAB.5.062001

    Article  Google Scholar 

  4. L.M. Zhuang, B. Corcoran, C. Zhu et al., Photonic high-bandwidth RF splitter with arbitrary amplitude and phase offset. IEEE Photonics Technol. Lett. 26, 21 (2014). https://doi.org/10.1109/LPT.2014.2349010

    Article  Google Scholar 

  5. K.S. Reichel, R. Mendis, D.M. Mittleman, A broadband terahertz waveguide T-junction variable power splitter. SCI. REP.-UK 6: 28925 (2016). https://doi.org/10.1038/srep28925

  6. H. Zha, I. Syrachev, D. Gudkov et al., Design of a variable X-band RF power splitter. Nucl. Instrum. Meth. A (2017). https://doi.org/10.1016/j.nima.2017.04.006

    Article  Google Scholar 

  7. R.L. Eisenhart, N.W. Nevils, J.J. Gulick et al., A matched turnstile type 4-way divider/combiner. IEEE Int. Microw. Symp. Dig. 83, 166 (1983). https://doi.org/10.1109/MWSYM.1983.1130845

    Article  Google Scholar 

  8. A. Navarrini, R.L. Plambeck, A turnstile junction waveguide orthomode transducer. IEEE Trans. Microw. Theory Tech. 54, 1 (2006). https://doi.org/10.1109/TMTT.2005.860505

    Article  Google Scholar 

  9. M. Franzi, J.W. Wang, V. Dolgashev et al., Compact RF polarizer and its application to pulse compression systems. Phys. Rev. ST Accel. Beams 19, 062002 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.062002

    Article  Google Scholar 

  10. C. Chang, L. Guo, S. Tantawi et al., A new compact high-power microwave phase shifter. IEEE Trans. Microw. Theory Tech. 63, 1875 (2015). https://doi.org/10.1109/TMTT.2015.2423281

    Article  Google Scholar 

  11. C. Chang, S. Church, S. Tantawi et al., Theory and experiment of a compact waveguide dual circular polarizer. Prog. Electromagn. Res. 131, 211 (2012). https://doi.org/10.2528/PIER12072601

    Article  Google Scholar 

  12. A. Grudiev, Design of compact high power RF components at X-band, CLIC-Note-1067, Geneva, Switzerland (May, 2016)

  13. W.C. Fang, Q. Gu, D.C. Tong et al., Design optimization of a C-band Traveling-wave accelerating structure for a compact X-ray Free Electron Laser facility. Chin. Sci. Bull. 56, 32 (2011). https://doi.org/10.1007/s11434-011-4754-y

    Article  Google Scholar 

  14. W.C. Fang, Q. Gu, X. Sheng et al., Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP. Nucl. Instrum. Meth. A (2016). https://doi.org/10.1016/j.nima.2016.03.101

    Article  Google Scholar 

  15. C.P. Wang, W.C. Fang, D.C. Tong et al., Design and study of a C-band pulse compressor for the SXFEL linac. Nucl. Sci. Tech. 25, 020101 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020101

    Article  Google Scholar 

  16. Z.B. Li, W.C. Fang, Q. Gu et al., RF design of a C-band Compact spherical RF pulse compressor for SXFEL. Nucl. Instrum. Meth. A (2017). https://doi.org/10.1016/j.nima.2017.05.017

    Article  Google Scholar 

  17. J.H. Tan, Q. Gu, W.C. Fang et al., X-band deflection cavity design for ultra-short bunch length measurement of SXFEL at SINAP. Nucl. Sci. Tech. 25, 060101 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.060101

    Article  Google Scholar 

  18. J.H. Tan, Q. Gu, W.C. Fang et al., Two-mode polarized traveling wave deflecting structure. Nucl. Sci. Tech. 26, 040102 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.040102

    Article  Google Scholar 

  19. X.X. Huang, W.C. Fang, Q. Gu et al., Design of an X-band accelerating structure using a newly developed structural optimization procedure. Nucl. Instrum. Meth. A (2017). https://doi.org/10.1016/j.nima.2017.02.050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Cheng Fang or Zhen-Tang Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11675249).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZB., Grudiev, A., Fang, WC. et al. Radio-frequency design of a new C-band variable power splitter. NUCL SCI TECH 30, 100 (2019). https://doi.org/10.1007/s41365-019-0611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0611-5

Keywords

Navigation