Skip to main content
Log in

Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Optical vortices have the main features of helical wavefronts and spiral phase structures, and carry orbital angular momentum. This special structure of visible light has been produced and studied for various applications. These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes. In this article, we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths \(\sim 1\,{\hbox {nm}}\). Compared to other methods, this approach is easier to implement, cost-effective, and more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry et al., Roadmap on structured light. J. Opt. 19, 013001 (2016). https://doi.org/10.1088/2040-8978/19/1/013001

    Article  Google Scholar 

  2. J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 0012 (1974). https://doi.org/10.1098/rspa.1974.0012

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  Google Scholar 

  4. L. Allen, S.M. Barnett, M.J. Padgett (eds.), Optical Angular Momentum (Institute of Physics Pub, Bristol, 2003)

    Google Scholar 

  5. G. Molina-Terriza, J.P. Torres, L. Torner, Twisted photons. Nat. Phys. 3, 305 (2007). https://doi.org/10.1038/nphys607

    Article  Google Scholar 

  6. S. Franke-Arnold, L. Allen, M. Padgett, Advances in optical angular momentum. Laser Photonics Rev. 2, 299 (2008). https://doi.org/10.1002/lpor.200810007

    Article  Google Scholar 

  7. A.M. Yao, M.J. Padgett, Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161 (2011). https://doi.org/10.1364/AOP.3.000161

    Article  Google Scholar 

  8. J.P. Torres, L. Torner (eds.), Twisted Photon: Applications of Light with Orbital Angular Momentum (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011)

    Google Scholar 

  9. D.L. Andrews, M. Babiker (eds.), The Angular Momentum of Light (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  10. R.W. Bowman, M.J. Padgett, Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401

    Article  Google Scholar 

  11. M.J. Padgett, Orbital angular momentum 25 years on. Opt. Express 25, 11265 (2017). https://doi.org/10.1364/OE.25.011265

    Article  Google Scholar 

  12. Y.J. Shen, X.J. Wang, Z.W. Xie et al., Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8, 90 (2019). https://doi.org/10.1038/s41377-019-0194-2

    Article  Google Scholar 

  13. D.S. Bykov, S.R. Xie, R. Zeltner et al., Long-range optical trapping and binding of microparticles in hollow–core photonic crystal fibre. Light Sci. Appl. 7, 22 (2018). https://doi.org/10.1038/s41377-018-0015-z

    Article  Google Scholar 

  14. N.S. Huang, K. Li, H.X. Deng, BRIGHT: the three-dimensional X-ray crystal Bragg diffraction code. Nucl. Sci. Tech. 30, 39 (2019). https://doi.org/10.1007/s41365-019-0559-5

    Article  Google Scholar 

  15. H.L. Wu, J.H. Chen, Z.T. Zhao et al., Proposal for a high brightness \(\gamma\)-ray source at the SXFEL. Nucl. Sci. Tech. 26, 050103 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.050103

    Article  Google Scholar 

  16. A.G. Peele, P.J. McMahon, D. Paterson et al., Observation of an X-ray vortex. Opt. Lett. 27, 1752 (2002). https://doi.org/10.1364/OL.27.001752

    Article  Google Scholar 

  17. A.G. Peele, K.A. Nugent, A.P. Mancuso et al., X-ray phase vortices: theory and experiment. J. Opt. Soc. Am. A 21, 1575 (2004). https://doi.org/10.1364/JOSAA.21.001575

    Article  Google Scholar 

  18. B. Terhalle, A. Langner, V.A. Guzenko et al., Generation of extreme ultraviolet vortex beams using computer generated holograms. Opt. Lett. 36, 4143 (2011). https://doi.org/10.1364/OL.36.004143

    Article  Google Scholar 

  19. A. Sakdinawat, Y.W. Liu, Soft-X-ray microscopy using spiral zone plates. Opt. Lett. 32, 2635 (2007). https://doi.org/10.1364/OL.32.002635

    Article  Google Scholar 

  20. D. Cojoc, B. Kaulich, A. Carpentiero et al., X-ray vortices with high topological charge. Microelectron. Eng. 83, 1360 (2006). https://doi.org/10.1016/j.mee.2006.01.066

    Article  Google Scholar 

  21. Y. Kohmura, K. Sawada, M. Taguchi et al., Formation of X-ray vortex dipoles using a single diffraction pattern and direct phase measurement using interferometry. Appl. Phys. Lett. 94, 101112 (2009). https://doi.org/10.1063/1.3095828

    Article  Google Scholar 

  22. J.C.T. Lee, S.J. Alexander, S.D. Kevan et al., Laguerre–Gauss and Hermite–Gauss soft X-ray states generated using diffractive optics. Nat. Photonics 13, 205 (2019). https://doi.org/10.1038/s41566-018-0328-8

    Article  Google Scholar 

  23. L. Loetgering, M. Baluktsian, K. Keskinbora et al., Generation and characterization of focused helical X-ray beams. Sci. Adv. 6, eaax8836 (2020). https://doi.org/10.1126/sciadv.aax8836

    Article  Google Scholar 

  24. D. Seipt, A. Surzhykov, S. Fritzsche, Structured X-ray beams from twisted electrons by inverse Compton scattering of laser light. Phys. Rev. A 90, 012118 (2014). https://doi.org/10.1103/PhysRevA.90.012118

    Article  Google Scholar 

  25. V. Petrillo, G. Dattoli, I. Drebot et al., Compton scattered X-gamma rays with orbital momentum. Phys. Rev. Lett. 117, 123903 (2016). https://doi.org/10.1103/PhysRevLett.117.123903

    Article  Google Scholar 

  26. M. Zurch, C. Kern, P. Hansinger et al., Strong-field physics with singular light beams. Nat. Phys. 8, 743 (2012). https://doi.org/10.1038/nphys2397

    Article  Google Scholar 

  27. G. Gariepy, J. Leach, K.T. Kim et al., Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113, 153901 (2014). https://doi.org/10.1103/PhysRevLett.113.153901

    Article  Google Scholar 

  28. C. Hernandez-Garcia, J. Vieira, J.T. Mendonca et al., Generation and applications of extreme-ultraviolet vortices. Photonics 4, 28 (2017). https://doi.org/10.3390/photonics4020028

    Article  Google Scholar 

  29. L. Rego, K.M. Dorney, N.J. Brooks et al., Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486 (2019). https://doi.org/10.1126/science.aaw9486

    Article  Google Scholar 

  30. J. Vieira, R.M.G.M. Trines, E.P. Alves et al., Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016). https://doi.org/10.1038/ncomms10371

    Article  Google Scholar 

  31. J. Vieira, R.M.G.M. Trines, E.P. Alves et al., High orbital angular momentum harmonic generation. Phys. Rev. Lett. 117, 265001 (2016). https://doi.org/10.1103/PhysRevLett.117.265001

    Article  Google Scholar 

  32. A. Picon, A. Benseny, J. Mompart et al., Transferring orbital and spin angular momenta of light to atoms. New J. Phys. 12, 083053 (2010). https://doi.org/10.1088/1367-2630/12/8/083053

    Article  Google Scholar 

  33. A. Picon, J. Mompart, J.R.V. de Aldana et al., Photoionization with orbital angular momentum beams. Opt. Express 18, 3660 (2010). https://doi.org/10.1364/OE.18.003660

    Article  Google Scholar 

  34. M.V. Veenendaal, I. McNulty, Prediction of strong dichroism induced by X-rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401 (2007). https://doi.org/10.1103/PhysRevLett.98.157401

    Article  Google Scholar 

  35. M.V. Veenendaal, Interaction between X-ray and magnetic vortices. Phys. Rev. B 92, 245116 (2015). https://doi.org/10.1103/PhysRevB.92.245116

    Article  Google Scholar 

  36. G. Friesecke, R.D. James, D. Juestel, Twisted X-rays: incoming waveforms yielding discrete diffraction patterns for helical structures. SIAM J. Appl. Math. 76, 1191 (2016). https://doi.org/10.1137/15M1043418

    Article  MathSciNet  MATH  Google Scholar 

  37. D. Juestel, G. Friesecke, R.D. James, Bragg–von Laue diffraction generalized to twisted X-rays. Acta Cryst. A 72, 190 (2016). https://doi.org/10.1107/S2053273315024390

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Ye, J.R. Rouxel, S. Asban et al., Probing molecular chirality by orbital-angular-momentum-carrying X-ray pulses. J. Chem. Theory Comput. 15, 4180 (2019). https://doi.org/10.1021/acs.jctc.9b00346

    Article  Google Scholar 

  39. S. Sasaki, I. McNulty, Proposal for generating brilliant X-ray beams carrying orbital angular momentum. Phys. Rev. Lett. 100, 124801 (2008). https://doi.org/10.1103/PhysRevLett.100.124801

    Article  Google Scholar 

  40. J. Bahrdt, K. Holldack, P. Kuske et al., First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801 (2013). https://doi.org/10.1103/PhysRevLett.111.034801

    Article  Google Scholar 

  41. T. Kaneyasu, Y. Hikosaka, M. Fujimoto et al., Observation of an optical vortex beam from a helical undulator in the XUV region. J. Synchrotron Rad. 24, 934 (2017). https://doi.org/10.1107/S1600577517009626

    Article  Google Scholar 

  42. E. Hemsing, A. Knyazik, M. Dunning et al., Coherent optical vortices from relativistic electron beams. Nat. Phys. 9, 549 (2013). https://doi.org/10.1038/nphys2712

    Article  Google Scholar 

  43. E. Hemsing, M. Dunning, C. Hast et al., First characterization of coherent optical vortices from harmonic undulator radiation. Phys. Rev. Lett. 113, 134803 (2014). https://doi.org/10.1103/PhysRevLett.113.134803

    Article  Google Scholar 

  44. P.R. Ribic, D. Gauthier, G.D. Ninno, Generation of coherent extreme-ultraviolet radiation carrying orbital angular Momentum. Phys. Rev. Lett. 112, 203602 (2014). https://doi.org/10.1103/PhysRevLett.112.203602

    Article  Google Scholar 

  45. P.R. Ribic, B. Rosner, D. Gauthier et al., Extreme-ultraviolet vortices from a free-electron laser. Phys. Rev. X 7, 031036 (2017). https://doi.org/10.1103/PhysRevX.7.031036

    Article  Google Scholar 

  46. Z.T. Zhao, D. Wang, Q. Gu et al., Status of the SXFEL Facility. Appl. Sci. 7, 607 (2017). https://doi.org/10.3390/app7060607

    Article  Google Scholar 

  47. A. Afanasev, A. Mikhailichenko, On generation of photons carrying orbital angular momentum in the helical undulator (2011). arXiv:1109.1603

  48. M. Katoh, M. Fujimoto, H. Kawaguchi et al., Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett. 118, 094801 (2017). https://doi.org/10.1103/PhysRevLett.118.094801

    Article  Google Scholar 

  49. M. Katoh, M. Fujimoto, N.S. Mirian et al., Helical phase structure of radiation from an electron in circular motion. Sci. Rep. 7, 6130 (2017). https://doi.org/10.1038/s41598-017-06442-2

    Article  Google Scholar 

  50. H. Kawaguchi, M. Katoh, Orbital angular momentum of Lienard–Wiechert fields. Prog. Theor. Exp. Phys. 2019, 083A02 (2019). https://doi.org/10.1093/ptep/ptz059

    Article  Google Scholar 

  51. V. Epp, U. Guselnikova, Angular momentum of radiation from a charge in circular and spiral motion. Phys. Lett. A 383, 2668 (2019). https://doi.org/10.1016/j.physleta.2019.05.038

    Article  MathSciNet  Google Scholar 

  52. E. Hemsing, P. Musumeci, S. Reiche et al., Helical electron-beam microbunching by harmonic coupling in a helical undulator. Phys. Rev. Lett. 102, 174801 (2009). https://doi.org/10.1103/PhysRevLett.102.174801

    Article  Google Scholar 

  53. M.H. Jiang, X. Yang, H.J. Xu et al., Shanghai synchrotron radiation facility. Chin. Sci. Bull. 54, 4171 (2009). https://doi.org/10.1007/s11434-009-0689-y

    Article  Google Scholar 

  54. Z.C. Chen, Y.B. Leng, R.X. Yuan et al., Study of algorithms of phase advance measurement between BPMs and its application in SSRF. Nucl. Sci. Tech. 24, 010102 (2013). https://doi.org/10.13538/j.1001-8042/nst.2013.01.007

    Article  Google Scholar 

  55. Z.C. Chen, Y.B. Leng, R.X. Yuan et al., Beam position monitor troubleshooting by using principal component analysis in Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech. 25, 020102 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.020102

    Article  Google Scholar 

  56. T. Tanaka, H. Kitamura, SPECTRA: a synchrotron radiation calculation code. J. Synchrotron Radiat. 8, 1221 (2001). https://doi.org/10.1107/S090904950101425X

    Article  Google Scholar 

  57. C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). https://doi.org/10.1007/s41365-018-0490-1

    Article  Google Scholar 

  58. K.-J. Kim, Z.R. Huang, R. Lindberg, Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-Ray Generation (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  59. W. Ackermann, G. Asova, K. Zapfe et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336 (2007). https://doi.org/10.1038/nphoton.2007.76

    Article  Google Scholar 

  60. J. Galayda, J. Arthur, P. Anfinrud et al., Linac Coherent Light Source (LCLS) conceptual design report. SLAC, Report SLAC-R-593, 2002

  61. T. Shintake, H. Tanaka, T. Hara et al., A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region. Nat. Photonics 2, 555 (2008). https://doi.org/10.1038/nphoton.2008.134

    Article  Google Scholar 

  62. C.J. Bocchetta et al., FERMI@Elettra Conceptual Design Report. Technical Report ST/F-TN-07/12, Sincrotrone Trieste (2007). https://www.elettra.eu/lightsources/fermi/fermi-machine/fermicdr.html

  63. R. Brinkmann et al. TESLA XFEL: First stage of the X-ray laser laboratory (Technical Design Report, Supplement). DESY, Report TESLA FEL 2002-09 (2002)

  64. H.-S. Kang, K.-W. Kim, I.-S. Ko, Current status of PAL-XFEL project. Proc. IPAC 2014, 2897 (2014)

    Google Scholar 

  65. R. Ganter et al., SwissFEL-conceptual design report. Report, Paul Scherrer Institute (PSI) (2010)

  66. R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373 (1984). https://doi.org/10.1016/0030-4018(84)90105-6

    Article  Google Scholar 

  67. N. Kroll, W. McMullin, Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field. Phys. Rev. A 17, 300 (1978). https://doi.org/10.1103/PhysRevA.17.300

    Article  Google Scholar 

  68. T. Kaneyasu, Y. Hikosaka, M. Fujimoto et al., Limitations in photoionization of helium by an extreme ultraviolet optical vortex. Phys. Rev. A 95, 023413 (2017). https://doi.org/10.1103/PhysRevA.95.023413

    Article  Google Scholar 

  69. M. Eriksson, J.F. van der Veen, C. Quitmann, Diffraction-limited storage rings—a window to the science of tomorrow. J. Synchrotron Radiat. 21, 837 (2014). https://doi.org/10.1107/S1600577514019286

    Article  Google Scholar 

  70. E. Hemsing, Coherent photons with angular momentum in a helical after burner. Phys. Rev. Accel. Beams 23, 020703 (2020). https://doi.org/10.1103/PhysRevAccelBeams.23.020703

    Article  Google Scholar 

  71. T. Tanaka, SIMPLEX: simulator and postprocessor for free-electron laser experiments. J. Synchrotron Radiat. 22, 1319 (2015). https://doi.org/10.1107/S1600577515012850

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the stimulating discussions with Nanshun Huang, Zhichu Chen, Hailong Wu, Bo Liu, and Dong Wang of Shanghai Advanced Research Institute, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hui Chen.

Additional information

This work was supported by the National Development and Reform Commission ([2013]2347) and National Basic Research Program of China (No. 2015CB859700).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, HP., Chen, JH. & Zhao, ZT. Scheme for generating 1 nm X-ray beams carrying orbital angular momentum at the SXFEL. NUCL SCI TECH 31, 88 (2020). https://doi.org/10.1007/s41365-020-00794-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00794-7

Keywords

Navigation