Skip to main content

Advertisement

Log in

A critical overview of challenging roles of medicinal plants in improvement of wound healing technology

  • Review article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Purpose

Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration.

Methods

A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing ‘Wound healing and herbal combinations’, ‘Herbal wound dressing’, Nanotechnology and Wound dressing were used.

Result

This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment.

Conclusion

In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing concepts in Clinical Practice of OMFS. J Maxillofac Oral Surg. 2017;16(4):403–23. https://doi.org/10.1007/s12663-016-0880-z.

    Article  PubMed  Google Scholar 

  2. Sen CK. Human wound and its Burden: updated 2020 Compendium of estimates. Adv Wound Care (New Rochelle). 2021;10(5):281–92. https://doi.org/10.1089/wound.2021.0026.

    Article  PubMed  Google Scholar 

  3. Mieczkowski M, Mrozikiewicz-Rakowska B, Kowara M, Kleibert M, Czupryniak L. The problem of wound healing in diabetes—from molecular pathways to the design of an animal model. Int J Mol Sci. 2022;23: 7930. https://doi.org/10.3390/ijms23147930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Latalski M, Starobrat G, Fatyga M, Sowa I, Wojciak M, Wessely-Szponder J, et al. Wound-related complication in growth-friendly spinal surgeries for early-onset scoliosis—literature review. J Clin Med. 2022;11: 2669. https://doi.org/10.3390/jcm11092669.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Falanga V, Isseroff RR, Soulika AM, Romanelli M, Margolis D, Kapp S, et al. Chronic wounds. Nat Rev Dis Primers. 2022;8:50. https://doi.org/10.1038/s41572-022-00377-3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Oliveira A, Simoes S, Ascenso A, Reis CP. Therapeutic advances in wound healing. J Dermatolog Treat. 2022;33:2–22. https://doi.org/10.1080/09546634.2020.1730296.

    Article  CAS  PubMed  Google Scholar 

  7. Brown HL, Clayton A, Stephens P. The role of bacterial extracellular vesicles in chronic wound Infections: current knowledge and future challenges. Wound Repair Regen. 2021;29:864–80. https://doi.org/10.1111/wrr.12949.

    Article  PubMed  Google Scholar 

  8. Thomas RE, Thomas BC. Reducing biofilm Infections in burn patients’ wounds and biofilms on surfaces in hospitals, Medical Facilities and Medical Equipment to improve burn care: a systematic review. Int J Environ Res Public Health. 2021;18: 13195. https://doi.org/10.3390/ijerph182413195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sandoz H. An overview of the prevention and management of wound Infection. Nurs Standard. 2022;37:75–82. https://doi.org/10.7748/ns.2022.e11889.

    Article  Google Scholar 

  10. Lux CN. Wound healing in animals: a review of physiology and clinical evaluation. Vet Dermatol. 2022;33:91. https://doi.org/10.1111/vde.13032.

    Article  PubMed  Google Scholar 

  11. Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin Wound Healing. Cells. 2022;11: 2953. https://doi.org/10.3390/cells11192953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022;29:1161–80. https://doi.org/10.1016/j.stem.2022.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beura SK, Panigrahi AR, Yadav P, Agrawal S, Singh SK. Role of neurons and Glia Cells in Wound Healing as a Novel Perspective considering platelet as a conventional player. Mol Neurobiol. 2022;59:137–60. https://doi.org/10.1007/s12035-021-02587-4.

    Article  CAS  PubMed  Google Scholar 

  14. Wang XH, Guo W, Qiu W, Ao LQ, Yao MW, Xing W, et al. Fibroblast-like cells promote Wound Healing via PD-L1-mediated inflammation resolution. Int J Biol Sci. 2022;18:4388–99. https://doi.org/10.7150/ijbs.69890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mogren S, Berlin F, Ramu S, Sverrild A, Porsbjerg C, Uller L, et al. Mast cell tryptase enhances wound healing by promoting migration in human bronchial epithelial cells. Cell Adh Migr. 2021;15:202–14. https://doi.org/10.1080/19336918.2021.1950594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kandoi LPK, Misra S, V RS, Verma KR. The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9. https://doi.org/10.1016/j.cytogfr.2019.04.002.

    Article  CAS  PubMed  Google Scholar 

  17. Wang YX, Chen JJ, Cen Y, Li ZY, Zhang ZY. [Research advances on exosomes derived from adipose-derived mesenchymal stem cells in promoting diabetic wound healing]. Zhonghua Shao Shang Za Zhi. 2022;38:491–5. https://doi.org/10.3760/cma.j.cn501120-20210218-00057.

    Article  CAS  Google Scholar 

  18. Gao YX, Wang LF, Ba SJ, Cao JL, Li F, Li B, et al. Research advances on thymosin β4 in promoting wound healing. Zhonghua Shao Shang Za Zhi. 2022;38:378–84. https://doi.org/10.3760/cma.j.cn501120-20210221-00059.

    Article  CAS  Google Scholar 

  19. Derakhshanfar A, Moayedi J, Derakhshanfar G, Poostforoosh Fard A. The role of Iranian medicinal plants in experimental surgical skin wound healing: an integrative review. Iran J Basic Med Sci. 2019;22(6):590–600. https://doi.org/10.22038/ijbms.2019.32963.7873.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Thornfeldt CR. Therapeutic herbs confirmed by evidence-based medicine. Clin Dermatol. 2018;36(3):289–98. https://doi.org/10.1016/j.clindermatol.2018.03.003.

    Article  PubMed  Google Scholar 

  21. Kumar V, Nesari TM, Ghildiyal S, Sherkhane R. Pharmacodynamic appraisal of wound-healing herbs of Sushruta Samhita. Ayu. 2021;42(1):1–18. https://doi.org/10.4103/ayu.AYU_34_20.

    Article  PubMed  Google Scholar 

  22. Hosseinkhani A, Falahatzadeh M, Raoofi E, Zarshenas MM. An evidence-based review on Wound Healing Herbal remedies from reports of traditional Persian Medicine. J Evid Based Complementary Altern Med. 2017;22(2):334–43. https://doi.org/10.1177/2156587216654773.

    Article  PubMed  Google Scholar 

  23. Li Q, Niu Y, Xing P, Wang C. Bioactive polysaccharides from natural resources including Chinese medicinal herbs on tissue repair. Chin Med. 2018;13:7. https://doi.org/10.1186/s13020-018-0166-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddique Z, Shah GM, Ahmed HM, Nisa S, Khan A, Idrees M, et al. Ethnophytotherapy Practices for Wound Healing among populations of District Haripur, KPK, Pakistan. Evid Based Complement Alternat Med. 2019;2019: 4591675. https://doi.org/10.1155/2019/4591675.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hosein Farzaei M, Abbasabadi Z, Reza Shams-Ardekani M, Abdollahi M, Rahimi R. A comprehensive review of plants and their active constituents with wound healing activity in traditional Iranian medicine. Wounds. 2014;26(7):197–206.

    PubMed  Google Scholar 

  26. Ambika AP, Nair SN. Wound Healing activity of plants from the Convolvulaceae Family. Adv Wound Care (New Rochelle). 2019;8(1):28–37. https://doi.org/10.1089/wound.2017.0781.

    Article  PubMed  Google Scholar 

  27. Viaña-Mendieta P, Sánchez ML, Benavides J. Rational selection of bioactive principles for wound healing applications: growth factors and antioxidants. Int Wound J. 2022;19:100–13. https://doi.org/10.1111/iwj.13602.

    Article  PubMed  Google Scholar 

  28. Bassino E, Gasparri F, Munaron L. Natural dietary antioxidants containing flavonoids modulate keratinocytes physiology: in vitro tri-culture models. J Ethnopharmacol. 2019;238: 111844. https://doi.org/10.1016/j.jep.2019.111844.

    Article  CAS  PubMed  Google Scholar 

  29. Shirbeigi L, Mohebbi M, Karami S, Nejatbakhsh F. The Role of Nutrition and Edible Medicinal Plants in the treatment of chronic wounds based on the principles of Iranian traditional medicine. Iran J Med Sci. 2016;41(3 Suppl):72.

    Google Scholar 

  30. Nagoba B, Davane M. Studies on wound healing potential of topical herbal formulations- do we need to strengthen study protocol? J Ayurveda Integr Med. 2019;10(4):316–8. https://doi.org/10.1016/j.jaim.2019.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sheikh M, Khan HM, Zafar Khan MU, Sharif A. Formulation, evaluation and optimization of Antimicrobial potential of herbal cream containing Allium sativum, Moringa oleifera extracts and Thymus vulgaris oil. Curr Pharm Biotechnol. 2023. https://doi.org/10.2174/1389201024666230504124838.

    Article  Google Scholar 

  32. Dubey S, Dixit AK. Preclinical evidence of polyherbal formulations on wound healing: a systematic review on research trends and perspectives. J Ayurveda Integr Med. 2023;14(2): 100688. https://doi.org/10.1016/j.jaim.2023.100688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mandrika I, Kumar S, Zandersone B, Eranezhath SS, Petrovska R, Liduma I, et al. Antibacterial and anti-inflammatory potential of Polyherbal Formulation used in Chronic Wound Healing. Evid Based Complement Alternat Med. 2021;2021: 9991454. https://doi.org/10.1155/2021/9991454.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lim KM. Skin epidermis and barrier function. Int J Mol Sci. 2021;22(6): 3035. https://doi.org/10.3390/ijms22063035.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wong BJ, Hollowed CG. Current concepts of active vasodilation in human skin. Temp (Austin). 2016;4(1):41–59. https://doi.org/10.1080/23328940.2016.1200203.

    Article  Google Scholar 

  36. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med. 2014;6(265):265sr6. https://doi.org/10.1126/scitranslmed.3009337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58:81–94. https://doi.org/10.1159/000454919.

    Article  PubMed  Google Scholar 

  38. Albahri G, Badran A, Hijazi A, Daou A, Baydoun E, Nasser M, et al. The therapeutic Wound Healing bioactivities of various Medicinal plants. Life (Basel). 2023;13(2): 317. https://doi.org/10.3390/life13020317.

    Article  CAS  PubMed  Google Scholar 

  39. van Koppen CJ, Hartmann RW. Advances in the treatment of chronic wounds: a patent review. Expert Opin Ther Pat. 2015;25:931–7. https://doi.org/10.1517/13543776.2015.1045879.

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665–706. https://doi.org/10.1152/physrev.00067.2017.

    Article  CAS  PubMed  Google Scholar 

  41. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol. 2020;101(1–2):21–37. https://doi.org/10.1111/iep.12346.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeng RJ, Lin CQ, Lin ZH, Chen H, Lu WY, Lin CM, et al. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res. 2018;374:217–32. https://doi.org/10.1007/s00441-018-2830-1.

    Article  PubMed  Google Scholar 

  43. Dehkordi AN, Babaheydari FM, Chehelgerdi M, Dehkordi SR. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10:111. https://doi.org/10.1186/s13287-019-1212-2.

    Article  CAS  Google Scholar 

  44. Vitale S, Colanero S, Placidi M, Di Emidio G, Tatone C, Amicarelli F, et al. Phytochemistry and biological activity of medicinal plants in wound healing: an overview of current research. Molecules. 2022;27(11): 3566. https://doi.org/10.3390/molecules27113566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc. 2018;81(2):94–101. https://doi.org/10.1016/j.jcma.2017.11.002.

    Article  PubMed  Google Scholar 

  46. Li S, Renick P, Senkowsky J, Nair A, Tang L. Diagnostics for wound infections. Adv Wound Care (New Rochelle). 2021;10(6):317–27. https://doi.org/10.1089/wound.2019.1103.

    Article  PubMed  Google Scholar 

  47. Smet S, Probst S, Holloway S, Fourie A, Beele H, Beeckman D. The measurement properties of assessment tools for chronic wounds: a systematic review. Int J Nurs Stud. 2021;121: 103998. https://doi.org/10.1016/j.ijnurstu.2021.103998.

    Article  PubMed  Google Scholar 

  48. Ousey K, Roberts D, Gefen A. Early identification of wound Infection: understanding wound odour. J Wound Care. 2017;26(10):577–82. https://doi.org/10.12968/jowc.2017.26.10.577.

    Article  CAS  PubMed  Google Scholar 

  49. Stallard Y. When and how to perform cultures on chronic wounds? J Wound Ostomy Continence Nurs. 2018;45(2):179–86. https://doi.org/10.1097/WON.0000000000000414.

    Article  PubMed  Google Scholar 

  50. Nuutila K, Eriksson E. Moist wound healing with commonly available dressings. Adv Wound Care (New Rochelle). 2021;10(12):685–98. https://doi.org/10.1089/wound.2020.1232.

    Article  PubMed  Google Scholar 

  51. Davini G, Dini V, Janowska A, Macchia M, Gualtieri B, Granieri G, et al. Wound dehiscence after Achilles tendon trauma and repair: treatment with ultraportable negative pressure wound therapy and compression therapy. Wounds. 2021;33(12):E93-98.

    Article  PubMed  Google Scholar 

  52. Simoes D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 2018;127:130–41. https://doi.org/10.1016/j.ejpb.2018.02.022.

    Article  CAS  PubMed  Google Scholar 

  53. Skowronska W, Bazylko A. The potential of medicinal plants and natural products in the treatment of burns and sunburn-a review. Pharmaceutics. 2023;15(2): 633. https://doi.org/10.3390/pharmaceutics15020633.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Yu Q, Wang S, Wang G, Li T, Tang PF, et al. Impact of negative-pressure wound therapy on bacterial behaviour and bioburden in a contaminated full-thickness wound. Int Wound J. 2019;16(5):1214–21. https://doi.org/10.1111/iwj.13197.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tettelbach W, Arnold J, Aviles A, Barrett C, Bhatia A, Desvigne M, et al. Use of mechanically powered disposable negative pressure wound therapy: recommendations and reimbursement update. Wounds. 2019;31(2 Supp):1-S17.

    Google Scholar 

  56. Wang Z, Bai M, Zeng A, Liu Z, Zhao R, Wang X. The role of negative pressure wound therapy in managing Chinese patients with wound-derived acute severe Illness. Wounds. 2018;30(8):235–41.

    PubMed  Google Scholar 

  57. Xu Q, Shen L, Yang X, Peng H, Liu M. Comparison of changes in wound healing parameters following treatment with three topical wound care products using a laser wound model. Am J Transl Res. 2021;13(4):2644–52.

    PubMed  PubMed Central  Google Scholar 

  58. Westby MJ, Dumville JC, Soares MO, Stubbs N, Norman G. Dressings and topical agents for treating pressure ulcers. Cochrane Database Syst Rev. 2017;6(6):CD011947. https://doi.org/10.1002/14651858.CD011947.pub2.

    Article  PubMed  Google Scholar 

  59. Norman G, Westby MJ, Rithalia AD, Stubbs N, Soares MO, Dumville JC. Dressings and topical agents for treating venous leg ulcers. Cochrane Database Syst Rev. 2018;6(6):CD012583. https://doi.org/10.1002/14651858.CD012583.pub2.

    Article  PubMed  Google Scholar 

  60. Jarl G, Rusaw DF, Terrill AJ, Barnett CT, Woodruff MA, Lazzarini PA. Personalized offloading treatments for Healing Plantar Diabetic Foot Ulcers. J Diabetes Sci Technol. 2023;17(1):99–106. https://doi.org/10.1177/19322968221101632.

    Article  PubMed  Google Scholar 

  61. Fernando ME, Horsley M, Jones S, Martin B, Nube VL, Charles J, et al. Australian diabetes-related Foot Disease Guidelines & Pathways Project. Australian guideline on offloading treatment for foot ulcers: part of the 2021 Australian evidence-based guidelines for diabetes-related foot Disease. J Foot Ankle Res. 2022;15(1):31. https://doi.org/10.1186/s13047-022-00538-3.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J. 2013;10:9–14. https://doi.org/10.1111/iwj.12175.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gacto-Sanchez P. Surgical treatment and management of the severely burn patient: review and update. Med Intensiva. 2017;41(6):356–64. https://doi.org/10.1016/j.medin.2017.02.008.

    Article  CAS  PubMed  Google Scholar 

  64. Tyavambiza C, Dube P, Goboza M, Meyer S, Madiehe AM, Meyer M. Wound Healing activities and potential of selected African Medicinal plants and their synthesized biogenic nanoparticles. Plants (Basel). 2021;10(12): 2635. https://doi.org/10.3390/plants10122635.

    Article  CAS  PubMed  Google Scholar 

  65. Pang C, Ibrahim A, Bulstrode NW, Ferretti P. An overview of the therapeutic potential of regenerative medicine in cutaneous wound healing. Int Wound J. 2017;14(3):450–9. https://doi.org/10.1111/iwj.12735.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shi C, Wang C, Liu H, Li Q, Li R, Zhang Y, et al. Selection of appropriate wound dressing for various wounds. Front Bioeng Biotechnol. 2020;8: 182. https://doi.org/10.3389/fbioe.2020.00182.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Khanam S. A systematic review on wound healing and its promising medicinal plants. IP Int J Compr Adv Pharmacol. 2020;5(4):170–6. https://doi.org/10.18231/j.ijcaap.2020.036.

    Article  Google Scholar 

  68. Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, et al. Front Pharmacol. 2022;13: 900439. https://doi.org/10.3389/fphar.2022.900439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Quave CL. Wound healing with botanicals: a review and future perspectives. Curr Dermatol Rep. 2018;7(4):287–95. https://doi.org/10.1007/s13671-018-0247-4.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical drugs in traditional chinese medicine with wound healing properties. Front Pharmacol. 2022;13: 885484. https://doi.org/10.3389/fphar.2022.885484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, et al. Why traditional herbal medicine promotes wound healing: research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev. 2023;195: 114764. https://doi.org/10.1016/j.addr.2023.114764.

    Article  CAS  PubMed  Google Scholar 

  72. Marume A, Matope G, Katsande S, Khoza S, Mutingwende I, Mduluza T, et al. Wound Healing properties of selected plants used in Ethnoveterinary Medicine. Front Pharmacol. 2017;8: 544. https://doi.org/10.3389/fphar.2017.00544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Herman A, Herman AP. Herbal products in postsurgical wound healing - incision, excision and dead space wound models. Planta Med. 2020;86(11):732–48. https://doi.org/10.1055/a-1162-9988.

    Article  CAS  PubMed  Google Scholar 

  74. Moses RL, Prescott TAK, Mas-Claret E, Steadman R, Moseley R, et al. Evidence for natural products as alternative wound-healing therapies. Biomolecules. 2023;13(3): 444. https://doi.org/10.3390/biom13030444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Herman A, Herman AP. Herbal products and their active constituents for diabetic wound healing-preclinical and clinical studies: a systematic review. Pharmaceutics. 2023;15(1): 281. https://doi.org/10.3390/pharmaceutics15010281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kotian S, Bhat K, Pai S, Nayak J, Souza A, Gourisheti K, et al. The role of natural medicines on wound healing: a biomechanical, histological, biochemical and molecular study. Ethiop J Health Sci. 2018;28(6):759–70. https://doi.org/10.4314/ejhs.v28i6.11.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bahramsoltani R, Farzaei MH, Rahimi R. Medicinal plants and their natural components as future Drugs for the treatment of burn wounds: an integrative review. Arch Dermatol Res. 2014;306(7):601–17. https://doi.org/10.1007/s00403-014-1474-6.

    Article  CAS  PubMed  Google Scholar 

  78. El-Sherbeni SA, Negm WA. The wound healing effect of botanicals and pure natural substances used in in vivo models. Inflammopharmacology. 2023;31(2):755–72. https://doi.org/10.1007/s10787-023-01157-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nomoto T, Iizaka S. Effect of an oral nutrition supplement containing collagen peptides on stratum corneum hydration and skin elasticity in hospitalized older adults: a multicenter open-label randomized controlled study. Adv Skin Wound Care. 2020;33(4):186–91. https://doi.org/10.1097/01.ASW.0000655492.40898.55.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Birkbeck R, Donaldson R, Chan DL. Nutritional management of a kitten with thermal Burns and septicaemia. JFMS Open Rep. 2020;6(1): 2055116920930486. https://doi.org/10.1177/2055116920930486.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dorresteijn JA, Kriegsman DM, Assendelft WJ, Valk GD. Patient education for preventing diabetic foot ulceration. Cochrane Database Syst Rev. 2014;2014(12):CD001488. https://doi.org/10.1002/14651858.CD001488.pub5.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tobiano G, Walker RM, Chaboyer W, Carlini J, Webber L, Latimer S, et al. Patient experiences of, and preferences for, surgical wound care education. Int Wound J. 2023;20(5):1687–99. https://doi.org/10.1111/iwj.14030.

    Article  PubMed  Google Scholar 

  83. Ramalingam S, Chandrasekar MJN, Nanjan MJ. Plant-based natural products for wound healing: a critical review. Curr Drug Res Rev. 2022;14:37–60. https://doi.org/10.2174/2589977513666211005095613.

    Article  CAS  PubMed  Google Scholar 

  84. Chaniad P, Tewtrakul S, Sudsai T, Langyanai S, Kaewdana K. Anti-inflammatory, wound healing and antioxidant potential of compounds from Dioscorea bulbifera L. bulbils. PLoS ONE. 2020;15: e0243632. https://doi.org/10.1371/journal.pone.0243632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chaniad P, Wattanapiromsakul C, Pianwanit S, Tewtrakul S. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm Biol. 2016;54(6):1077–85. https://doi.org/10.3109/13880209.2015.1103272.

    Article  CAS  PubMed  Google Scholar 

  86. Juneja K, Mishra R, Chauhan S, Gupta S, Roy P, Sircar D, et al. Metabolite profiling and wound-healing activity of Boerhavia diffusa leaf extracts using in vitro and in vivo models. J Tradit Complement Med. 2019;10:52–9. https://doi.org/10.1016/j.jtcme.2019.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloglu MC, Zheleva-Dimitrova D, et al. LC-MS/HRMS Analysis, Anti-Cancer, Anti-enzymatic and Anti-oxidant effects of Boerhavia diffusa extracts: a potential raw material for functional applications. Antioxid (Basel). 2021;10: 2003. https://doi.org/10.3390/antiox10122003.

    Article  CAS  Google Scholar 

  88. Venthodika A, Chhikara N, Mann S, Garg MK, Sofi SA, Panghal A. Bioactive compounds of Aegle marmelos L., medicinal values and its food applications: a critical review. Phytother Res. 2021;35:1887–907. https://doi.org/10.1002/ptr.6934.

    Article  CAS  PubMed  Google Scholar 

  89. Azmi L, Shukla I, Goutam A, Allauddin, Rao CV, Jawaid T, et al. In vitro wound healing activity of 1-hydroxy-5,7-dimethoxy-2-naphthalene-carboxaldehyde (HDNC) and other isolates of Aegle marmelos L.: enhances keratinocytes motility via Wnt/β-catenin and RAS-ERK pathways. Saudi Pharm J. 2019;27:532–9. https://doi.org/10.1016/j.jsps.2019.01.017

  90. Dahmani M, Laoufi R, Selama O, Arab K. Gas chromatography coupled to mass spectrometry characterization, anti-inflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae). Indian J Pharmacol. 2018;50:123. https://doi.org/10.4103/ijp.IJP_65_17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ichimaru Y, Kanaeda N, Tominaga S, Suzui M, Maeda T, Fujii H, et al. Sasa veitchii extract induces anticancer effects via inhibition of cyclin D1 expression in MCF-7 cells. Nagoya J Med Sci. 2020;82:509–18. https://doi.org/10.18999/nagjms.82.3.509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tan HL, Chan KG, Pusparajah P, Lee LH, Goh BH. Gynura procumbens: an overview of the Biological activities. Front Pharmacol. 2016;7: 52. https://doi.org/10.3389/fphar.2016.00052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sutthammikorn N, Supajatura V, Yue H, Takahashi M, Chansakaow S, Nakano N, et al. Topical Gynura procumbens as a Novel Therapeutic improves Wound Healing in Diabetic mice. Plants (Basel). 2021;10: 1122. https://doi.org/10.3390/plants10061122.

    Article  CAS  PubMed  Google Scholar 

  94. Peng W, Qin R, Li X, Zhou H. Botany, phytochemistry, pharmacology, and potential application of Polygonum cuspidatum Sieb.et Zucc.: a review. J Ethnopharmacol. 2013;148:729–45. https://doi.org/10.1016/j.jep.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  95. Nawrot-Hadzik I, Matkowski A, Pitulaj A, Sterczala B, Olchowy C, Szewczyk A, et al. In Vitro Gingival Wound Healing activity of extracts from Reynoutria japonica Houtt Rhizomes. Pharmaceutics. 2021;13: 1764. https://doi.org/10.3390/pharmaceutics13111764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Figueiredo FF, Cechinel Filho V, Damazo AS, Arunachalam K, Colodel EM, Ribeiro M, et al. Sorocea Guilleminiana Gaudich.: Wound healing activity, action mechanisms, and chemical characterization of the leaf infusion. J Ethnopharmacol. 2020;248: 112307. https://doi.org/10.1016/j.jep.2019.112307.

    Article  CAS  PubMed  Google Scholar 

  97. Pereira LOM, Vilegas W, Tangerina MMP, Arunachalam K, Balogun SO, Orlandi-Mattos PE, et al. Lafoensia Pacari A. St.-Hil.: Wound healing activity and mechanism of action of standardized hydroethanolic leaves extract. J Ethnopharmacol. 2018;219:337–50. https://doi.org/10.1016/j.jep.2018.02.038.

    Article  CAS  PubMed  Google Scholar 

  98. Park KS, Park DH. The effect of Korean Red Ginseng on full-thickness skin wound healing in rats. J Ginseng Res. 2019;43:226–35. https://doi.org/10.1016/j.jgr.2017.12.006.

    Article  PubMed  Google Scholar 

  99. Namchaiw P, Jaisin Y, Niwaspragrit C, Malaniyom K, Auvuchanon A, Ratanachamnong P. The leaf extract of coccinia grandis (L.) Voigt Accelerated in Vitro Wound Healing by reducing oxidative stress Injury. Oxid Med Cell Longev. 2021;3963510. https://doi.org/10.1155/2021/3963510

  100. Al-Madhagy SA, Mostafa NM, Youssef FS, Awad GEA, Eldahshan OA, Singab ANB. Metabolic profiling of a polyphenolic-rich fraction of Coccinia grandis leaves using LC-ESI-MS/MS and in vivo validation of its antimicrobial and wound healing activities. Food Funct. 2019;10(10):6267–75. https://doi.org/10.1039/c9fo01532a.

    Article  CAS  PubMed  Google Scholar 

  101. Danna C, Bazzicalupo M, Ingegneri M, Smeriglio A, Trombetta D, Burlando B, et al. Anti-inflammatory and Wound Healing properties of Leaf and Rhizome extracts from the Medicinal Plant Peucedanum ostruthium (L.) W. D. J. Koch. Molecules. 2022;27: 4271. https://doi.org/10.3390/molecules27134271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Szopa A, Pajor J, Klin P, Rzepiela A, Elansary HO, Al-Mana FA, et al. Artemisia absinthium L.—Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants. 2020;9: 1063. https://doi.org/10.3390/plants9091063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sultan MH, Zuwaiel AA, Moni SS, Alshahrani S, Alqahtani SS, Madkhali O, et al. Bioactive principles and Potentiality of Hot Methanolic Extract of the leaves from Artemisia absinthium L in vitro cytotoxicity against human MCF-7 Breast Cancer cells, antibacterial study and wound healing activity. Curr Pharm Biotechnol. 2020;21:1711–21. https://doi.org/10.2174/1389201021666200928150519.

    Article  CAS  PubMed  Google Scholar 

  104. Zhou YX, Xin HL, Rahman K, Wang SJ, Peng C, Zhang H. Portulaca oleracea L.: a review of Phytochemistry and Pharmacological effects. Biomed Res Int. 2015;2015: 925631. https://doi.org/10.1155/2015/925631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo J, Peng J, Han J, Wang K, Si R, Shan H, et al. Extracts of Portulaca oleracea promote wound healing by enhancing angiology regeneration and inhibiting iron accumulation in mice. Chin Herb Med. 2022;14:263–72. https://doi.org/10.1016/j.chmed.2021.09.014.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Alsareii SA, Alzerwi NAN, AlAsmari MY, Alamri AM, Mahnashi MH, Shaikh IA. Topical application of Premna Integrifolia Linn on skin Wound Injury in rats accelerates the Wound Healing process: evidence from in Vitro and in vivo experimental models. Evid Based Complement Alternat Med. 2022;132022:1–14. https://doi.org/10.1155/2022/6449550.

    Article  Google Scholar 

  107. Devkota HP, Paudel KR, Khanal S, Baral A, Panth N, Adhikari-Devkota A, et al. Stinging nettle (Urtica dioica L.): nutritional composition, bioactive compounds, and food functional properties. Molecules. 2022;27: 5219. https://doi.org/10.3390/molecules27165219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kasouni AI, Chatzimitakos TG, Stalikas CD, Trangas T, Papoudou-Bai A, Troganis AN. The unexplored Wound Healing activity of Urtica dioica L. Extract: an in Vitro and in vivo study. Molecules. 2021;26: 6248. https://doi.org/10.3390/molecules26206248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zulkipli IN, Rajabalaya R, Idris A, Sulaiman NA, David SR. Clinacanthus nutans: a review on ethnomedicinal uses, chemical constituents and pharmacological properties. Pharm Biol. 2017;55:1093–113. https://doi.org/10.1080/13880209.2017.1288749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Roeslan MO, Ayudhya TDN, Yingyongnarongkul B, Koontongkaew S. Anti-biofilm, nitric oxide inhibition and wound healing potential of purpurin-18 phytyl ester isolated from Clinacanthus nutans leaves. Biomed Pharmacother. 2019;113:108724. https://doi.org/10.1016/j.biopha.2019.108724.

    Article  CAS  PubMed  Google Scholar 

  111. Daemi A, Lotfi M, Farahpour MR, Oryan A, Ghayour SJ, Sonboli A. Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice. Pharm Biol. 2019;57(1):799–806. https://doi.org/10.1080/13880209.2019.1687525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Farahpour MR, Sheikh S, Kafshdooz E, Sonboli A. Accelerative effect of topical Zataria multiflora essential oil against infected wound model by modulating inflammation, angiogenesis, and collagen biosynthesis. Pharm Biol. 2021;59(1):1–10. https://doi.org/10.1080/13880209.2020.1861029.

    Article  CAS  PubMed  Google Scholar 

  113. Assar DH, Elhabashi N, Mokhbatly AA, Ragab AE, Elbialy ZI, Rizk SA, et al. Wound healing potential of licorice extract in rat model: antioxidants, histopathological, immunohistochemical and gene expression evidences. Biomed Pharmacother. 2021;143: 112151. https://doi.org/10.1016/j.biopha.2021.112151.

    Article  CAS  PubMed  Google Scholar 

  114. Somwong P, Kamkaen N. Wound-healing activity and quantification of bioactive compounds from Derris scandens extract. J Adv Pharm Technol Res. 2022;13(1):38–43. https://doi.org/10.4103/japtr.japtr_208_21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Akbari F, Azadbakht M, Bagheri A, Vahedi L. Vitro and in vivo Wound Healing activity of Astragalus Floccosus Boiss. (Fabaceae). Adv Pharmacol Pharm Sci. 2022;2022:7865015. https://doi.org/10.1155/2022/7865015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ahmed SR, Mostafa EM, Musa A, Rateb EE, Al-Sanea MM, Abu-Baih DH, et al. Wound healing and antioxidant properties of Launaea procumbens supported by metabolomic profiling and molecular docking. Antioxid (Basel). 2022;11(11): 2258. https://doi.org/10.3390/antiox11112258.

    Article  CAS  Google Scholar 

  117. Lulseged K, Akele MZ, Abiye AA, Abebe B, Assefa Huluka S. Wound healing and antioxidant properties of 80% methanol leaf extract of Verbascum sinaiticum (Scrophulariaceae): an Ethiopian Medicinal Plant. Evid Based Complement Alternat Med. 2022;2022: 9836773. https://doi.org/10.1155/2022/9836773.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Selseleh M, Nejad ES, Aliahmadi A, Sonboli A, Mirjalili MH. Metabolic profiling, antioxidant, and antibacterial activity of some Iranian Verbascum L. species. Ind Crops Prod. 2020;153. https://doi.org/10.1016/j.indcrop.2020.112609.112609

  119. Zhao B, Zhang X, Han W, Cheng J, Qin Y. Wound healing effect of an Astragalus membranaceus polysaccharide and its mechanism. Mol Med Rep. 2017;15(6):4077–83. https://doi.org/10.3892/mmr.2017.6488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ahmad SU, Binti Aladdin NA, Jamal JA, Shuid AN, Mohamed IN. Evaluation of wound-healing and antioxidant effects of Marantodes Pumilum (Blume) Kuntze in an Excision Wound Model. Molecules. 2021;26(1): 228. https://doi.org/10.3390/molecules26010228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yeh CJ, Chen CC, Leu YL, Lin MW, Chiu MM, Wang SH. The effects of artocarpin on wound healing: in vitro and in vivo studies. Sci Rep. 2017;7(1):15599. https://doi.org/10.1038/s41598-017-15876-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aulanniam A, Ora KM, Ariandini NA, Wuragil DK, Permata FS, Riawan W, et al. Wound healing properties of Gliricidia sepium leaves from Indonesia and the Philippines in rats (Rattus norvegicus). Vet World. 2021;14(3):820–4. https://doi.org/10.14202/vetworld.2021.820-824.

    Article  CAS  PubMed  Google Scholar 

  123. Mehraein F, Sarbishegi M, Aslani A. Evaluation of effect of oleuropein on skin wound healing in aged male BALB/c mice. Cell J. 2014;16(1):25–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Prakoso YA, Rini CS, Rahayu A, Sigit M, Widhowati D. Celery (Apium graveolens) as a potential antibacterial agent and its effect on cytokeratin-17 and other healing promoters in skin wounds infected with methicillin-resistant Staphylococcus aureus. Vet World. 2020;13(5):865–71. https://doi.org/10.14202/vetworld.2020.865-871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chattopadhyay P, Goyary D, Mazumder PM, Veer V. Euphorbia hirta accelerates fibroblast proliferation and smad-mediated collagen production in rat excision wound. Pharmacogn Mag. 2014;10(Suppl 3):534–42. https://doi.org/10.4103/0973-1296.139801.

    Article  Google Scholar 

  126. Pang Y, Zhang Y, Huang L, Xu L, Wang K, Wang D, et al. Effects and mechanisms of total flavonoids from Blumea balsamifera (L.) DC. On skin wound in rats. Int J Mol Sci. 2017;18(12): 2766. https://doi.org/10.3390/ijms18122766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Americo AVLDS, Nunes KM, de Assis FFV, Dias SR, Passos CTS, Morini AC, et al. Efficacy of phytopharmaceuticals from the amazonian plant libidibia ferrea for wound healing in dogs. Front Vet Sci. 2020;12: 244. https://doi.org/10.3389/fvets.2020.00244.

    Article  Google Scholar 

  128. Lee SY, Chang WL, Li ZX, Kirkby NS, Tsai WC, Huang SF, et al. Astragaloside VI and cycloastragenol-6-O-beta-D-glucoside promote wound healing in vitro and in vivo. Phytomedicine. 2018;38:183–91. https://doi.org/10.1016/j.phymed.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  129. Abeje BA, Bekele T, Getahun KA, Asrie AB. Evaluation of Wound Healing activity of 80% hydromethanolic crude extract and solvent fractions of the leaves of Urtica simensis in mice. J Exp Pharmacol. 2022;14:221–41. https://doi.org/10.2147/JEP.S363676.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang CG, Lou YT, Tong MJ, Zhang LL, Zhang ZJ, Feng YZ, et al. Asperosaponin VI promotes angiogenesis and accelerates wound healing in rats via up-regulating HIF-1α/VEGF signaling. Acta Pharmacol Sin. 2018;39(3):393–404. https://doi.org/10.1038/aps.2017.161.

    Article  CAS  PubMed  Google Scholar 

  131. Agour A, Mssillou I, Es-Safi I, Conte R, Mechchate H, Slighoua M, et al. The antioxidant, Analgesic, anti-inflammatory, and Wound Healing activities of Haplophyllum tuberculatum (Forsskal) A. Juss Aqueous and Ethanolic Extract. Life (Basel). 2022;12(10): 1553. https://doi.org/10.3390/life12101553.

    Article  CAS  PubMed  Google Scholar 

  132. Abdulhafiz F, Reduan MFH, Hisam AH, Mohammad I, Abdul Wahab IR, Abdul Hamid FF, et al. LC-TOF-MS/MS and GC-MS based phytochemical profiling and evaluation of wound healing activity of Oroxylum Indicum (L.) Kurz (Beka). Front Pharmacol. 2022;13: 1050453. https://doi.org/10.3389/fphar.2022.1050453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ananda N, Ariawan D, Juniantito V. Effects of the hydnophytum formicarum plant extract on collagen density, angiogenesis, wound length, and re-epithelialization in wound healing: experimental study on rats. Dent Med Probl. 2022;59(1):67–73. https://doi.org/10.17219/dmp/140208.

    Article  PubMed  Google Scholar 

  134. Ren J, Yang M, Chen J, Ma S, Wang N. Anti-inflammatory and wound healing potential of kirenol in diabetic rats through the suppression of inflammatory markers and matrix metalloproteinase expressions. Biomed Pharmacother. 2020;129: 110475. https://doi.org/10.1016/j.biopha.2020.110475.

    Article  CAS  PubMed  Google Scholar 

  135. Rhimi W, Hlel R, Ben Salem I, Boulila A, Rejeb A, Saidi M. Dittrichia viscosa L. Ethanolic Extract based ointment with Antiradical, antioxidant, and Healing Wound activities. Biomed Res Int. 2019;2019: 4081253. https://doi.org/10.1155/2019/4081253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Duymus ME, Aydin HA, Bulgurcu A, Bayramoglu Z, Durhan A, Salih S, et al. Effect of topical application and/or systemic use of red ginseng extract on wound healing in rats with experimentally induced diabetes. Wound Manag Prev. 2022;68(6):28–37.

    Article  PubMed  Google Scholar 

  137. Rahman S, Karibasappa SN, Mehta DS. Evaluation of the wound-healing potential of the kiwifruit extract by assessing its effects on human gingival fibroblasts and angiogenesis. Dent Med Probl. 2023;60(1):71–7. https://doi.org/10.17219/dmp/146635.

    Article  PubMed  Google Scholar 

  138. Rezaei M, Dadgar Z, Noori-Zadeh A, Mesbah-Namin SA, Pakzad I, Davodian E. Evaluation of the antibacterial activity of the Althaea officinalis L. leaf extract and its wound healing potency in the rat model of excision wound creation. Avicenna J Phytomed. 2015;5(2):105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Hyun SW, Kim J, Jo K, Kim JS, Kim CS. Aster Koraiensis extract improves impaired skin wound healing during hyperglycemia. Integr Med Res. 2018;7(4):351–7. https://doi.org/10.1016/j.imr.2018.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Asante-Kwatia E, Adjei S, Jibira Y, Gyimah L, Adjei-Hinneh G, Amponsah IK, et al. Amphimas pterocarpoides harms.: an evaluation of flavonoid and phenolic contents, wound healing, anthelmintic and antioxidant activities of the leaves and stem bark. Heliyon. 2021;7(11): e08261. https://doi.org/10.1016/j.heliyon.2021.e08261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rujirachotiwat A, Suttamanatwong S. Curcumin promotes collagen Type I, Keratinocyte growth Factor-1, and epidermal growth factor receptor expressions in the In Vitro wound healing model of human gingival fibroblasts. Eur J Dent. 2021;15(1):63–70. https://doi.org/10.1055/s-0040-1715781.

    Article  PubMed  Google Scholar 

  142. Bueno FG, Moreira EA, Morais GR, Pacheco IA, Baesso ML, Leite-Mello EV, et al. Enhanced cutaneous wound healing in vivo by standardized crude extract of Poincianella Pluviosa. PLoS ONE. 2016;11(3): e0149223. https://doi.org/10.1371/journal.pone.0149223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: Concept of ayurveda. Pharmacogn Rev. 2014;8(16):73–80. https://doi.org/10.4103/0973-7847.134229.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Nagore SG, Kuber DH, Gupta VV, Patil PK. Design and development of a stable polyherbal formulation based on the results of compatibility studies. Pharmacognosy Res. 2011;3(2):122–9. https://doi.org/10.4103/0974-8490.81960.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Amin AH, Fatima F, Shafiq B, Rehman A, Haq NU, Gilani IU. Systematic review of polyherbal combinations used in metabolic syndrome. Front Pharmacol. 2021;12: 752926. https://doi.org/10.3389/fphar.2021.752926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Das R, Pal P, Bhutia S. Pharmacognostical characterization and formulation of herbal-based low-cost mosquito repellents from Elettaria cardamomum (Linn.) Seed by using natural binder. Futur J Pharm Sci. 2021;7:15. https://doi.org/10.1186/s43094-020-00166-3.

    Article  Google Scholar 

  147. Chi J, Sun L, Cai L, Fan L, Shao C, Shang L, et al. Chinese herb microneedle patch for wound healing. Bioact Mater. 2021;6:3507–14. https://doi.org/10.1016/j.bioactmat.2021.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Niknam S, Tofighi Z, Faramarzi MA, Abdollahifar MA, Sajadi E, Dinarvand R, et al. Polyherbal combination for wound healing: Matricaria chamomilla L. and Punica granatum L. Daru. 2021;29:133–45. https://doi.org/10.1007/s40199-021-00392-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu JR, Lu YC, Hung SJ, Lin JH, Chang KC, Chen JK, et al. Antimicrobial and immunomodulatory activity of Herb extracts used in burn Wound Healing: San Huang Powder. Evid Based Complement Alternat Med. 2021;2021:1–13. https://doi.org/10.1155/2021/2900060.

    Article  CAS  Google Scholar 

  150. Zhou Z, Chen L, Su Y, Li M, Zhong L, Liao L. A New Target of the four-Herb Chinese Medicine for Wound Repair promoted by mitochondrial metabolism using protein acetylation analysis. Med Sci Monit. 2022;28: e934816. https://doi.org/10.12659/MSM.934816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou H, Fang Q, Li N, Yu M, Chen H, Guo S. ASMq protects against early burn wound progression in rats by alleviating oxidative stress and secondary mitochondria associated apoptosis via the Erk/p90RSK/Bad pathway. Mol Med Rep. 2021;23:390. https://doi.org/10.3892/mmr.2021.12029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Porwal A, Kundu G, Bhagwat G, Butti R. Polyherbal formulation Anoac H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula. Mol Med Rep. 2021;24:736. https://doi.org/10.3892/mmr.2021.12376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Miyano K, Eto M, Hitomi S, Matsumoto T, Hasegawa S, Hirano A, et al. The Japanese herbal medicine Hangeshashinto enhances oral keratinocyte migration to facilitate healing of chemotherapy-induced oral ulcerative mucositis. Sci Rep. 2020;10:625. https://doi.org/10.1038/s41598-019-57192-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Her Y, Lee TK, Ahn JH, Lim SS, Kang BG, Park JS, et al. Chemical composition of a Novel Distillate from Fermented mixture of nine anti-inflammatory herbs and its UVB-Protective efficacy in mouse dorsal skin via Attenuating Collagen Disruption and Inflammation. Molecules. 2020;26: 124. https://doi.org/10.3390/molecules26010124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhong L, Shi C, Hou Q, Yang R, Li M, Fu X. Promotive effects of four herbal medicine ARCC on wound healing in mice and human. Health Sci Rep. 2022;5(3): e494. https://doi.org/10.1002/hsr2.494.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Elzayat EM, Auda SH, Alanazi FK, Al-Agamy MH. Evaluation of wound healing activity of henna, pomegranate and myrrh herbal ointment blend. Saudi Pharm J. 2018;26(5):733–8. https://doi.org/10.1016/j.jsps.2018.02.016.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mahboubi M, Taghizadeh M, Khamechian T, Tamtaji OR, Mokhtari R, Talaei SA. The Wound Healing effects of Herbal cream containing Oliveria Decumbens and Pelargonium Graveolens essential oils in Diabetic Foot Ulcer Model. World J Plast Surg. 2018;7(1):45–50.

    PubMed  PubMed Central  Google Scholar 

  158. Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F. Antioxidant and Wound Healing activity of Polyherbal fractions of Clinacanthus nutans and Elephantopus scaber. Evid Based Complement Alternat Med. 2016;2016: 4685246. https://doi.org/10.1155/2016/4685246.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ho TJ, Jiang SJ, Lin GH, Li TS, Yiin LM, Yang JS, et al. The in vitro and in vivo wound healing properties of the Chinese Herbal Medicine Jinchuang Ointment. Evid Based Complement Alternat Med. 2016;2016: 1654056. https://doi.org/10.1155/2016/1654056.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Talekar YP, Apte KG, Paygude SV, Tondare PR, Parab PB. Studies on wound healing potential of polyherbal formulation using in vitro and in vivo assays. J Ayurveda Integr Med. 2017;8(2):73–81. https://doi.org/10.1016/j.jaim.2016.11.007.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Galehdari H, Negahdari S, Kesmati M, Rezaie A, Shariati G. Effect of the herbal mixture composed of Aloe Vera, Henna, Adiantum capillus-veneris, and Myrrha on wound healing in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016;16(1):386. https://doi.org/10.1186/s12906-016-1359-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Akgun SG, Aydemir S, Ozkan N, Yuksel M, Sardas S. Evaluation of the wound healing potential of Aloe vera-based extract of Nerium oleander. North Clin Istanb. 2017;4(3):205–12. https://doi.org/10.14744/nci.2017.94914.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chumpolphant S, Suwatronnakorn M, Issaravanich S, Tencomnao T, Prasansuklab A. Polyherbal formulation exerts wound healing, anti-inflammatory, angiogenic and antimicrobial properties: potential role in the treatment of diabetic foot ulcers. Saudi J Biol Sci. 2022;29(7): 103330. https://doi.org/10.1016/j.sjbs.2022.103330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Fahimi S, Abdollahi M, Mortazavi SA, Hajimehdipoor H, Abdolghaffari AH, Rezvanfar MA. Wound Healing activity of a traditionally used Poly Herbal product in a burn Wound Model in rats. Iran Red Crescent Med J. 2015;17(9): e19960. https://doi.org/10.5812/ircmj.19960.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Negahdari S, Galehdari H, Kesmati M, Rezaie A, Shariati G. Wound Healing activity of extracts and formulations of Aloe vera, Henna, Adiantum capillus-veneris, and myrrh on mouse dermal fibroblast cells. Int J Prev Med. 2017;8:18. https://doi.org/10.4103/ijpvm.IJPVM_338_16.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Zhang XN, Ma ZJ, Wang Y, Li YZ, Sun B, Guo X, et al. The four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San accelerates cutaneous wound healing in streptozotocin-induced diabetic rats through reducing inflammation and increasing angiogenesis. J Diabetes Res. 2016;2016: 5639129. https://doi.org/10.1155/2016/5639129.

    Article  CAS  PubMed  Google Scholar 

  167. Xu X, Li X, Zhang L, Liu Z, Pan Y, Chen D, et al. Enhancement of wound healing by the traditional Chinese Medicine Herbal Mixture Sophora flavescens in a rat model of Perianal Ulceration. In Vivo. 2017;31(4):543–9. https://doi.org/10.21873/invivo.11092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jahandideh M, Hajimehdipoor H, Mortazavi SA, Dehpour A, Hassanzadeh G. Evaluation of the Wound Healing activity of a traditional compound Herbal Product using rat excision wound model. Iran J Pharm Res. 2017;16(Supp):153–63.

    PubMed  PubMed Central  Google Scholar 

  169. Liao J, Azelmat J, Zhao L, Yoshioka M, Hinode D, Grenier D. The Kampo medicine Rokumigan possesses antibiofilm, anti-inflammatory, and wound healing properties. Biomed Res Int. 2014;2014: 436206. https://doi.org/10.1155/2014/436206.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Chaushu L, Weinreb M, Beitlitum I, Moses O, Nemcovsky CE. Evaluation of a topical herbal patch for soft tissue wound healing: an animal study. J Clin Periodontol. 2015;42(3):288–93. https://doi.org/10.1111/jcpe.12372.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Tang N, Zheng Y, Cui D, Haick H. Multifunctional dressing for Wound diagnosis and Rehabilitation. Adv Healthc Mater. 2021;10: e2101292. https://doi.org/10.1002/adhm.202101292.

    Article  CAS  PubMed  Google Scholar 

  172. Kaur G, Narayanan G, Garg D, Sachdev A, Matai I. Biomaterials-based regenerative strategies for skin tissue Wound Healing. ACS Appl Bio Mater. 2022;5:2069–106. https://doi.org/10.1021/acsabm.2c00035.

    Article  CAS  PubMed  Google Scholar 

  173. Joorabloo A, Liu T. Recent advances in nanomedicines for regulation of macrophages in wound healing. J Nanobiotechnol. 2022;20:407. https://doi.org/10.1186/s12951-022-01616-1.

    Article  Google Scholar 

  174. Hawthorne B, Simmons JK, Stuart B, Tung R, Zamierowski DS, Mellott AJ. Enhancing wound healing dressing development through interdisciplinary collaboration. J Biomed Mater Res B Appl Biomater. 2021;109:1967–85. https://doi.org/10.1002/jbm.b.34861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Blanco-Fernandez B, Castano O, Mateos-Timoneda MA, Engel E, Perez-Amodio S. Nanotechnology approaches in Chronic Wound Healing. Adv Wound Care (New Rochelle). 2021;10:234–56. https://doi.org/10.1089/wound.2019.1094.

    Article  PubMed  Google Scholar 

  176. Bhadauria SS, Malviya R. Advancement in Nanoformulations for the management of Diabetic Wound Healing. Endocr Metab Immune Disord Drug Targets. 2022;22:911–26. https://doi.org/10.2174/1871530322666220304214106.

    Article  CAS  PubMed  Google Scholar 

  177. Nikam A, Thomas A, Giram P, Nagore D, Chitlange S. Herbal-based dressings in Wound Management. Curr Diabetes Rev. 2022;18. https://doi.org/10.2174/1573399818666220401105256

  178. Banerjee K, Madhyastha R, Nakajima Y, Maruyama M, Madhyastha H. Nanoceutical adjuvants as Wound Healing Material: precepts and prospects. Int J Mol Sci. 2021;22: 4748. https://doi.org/10.3390/ijms22094748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, et al. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv. 2023;13(31):21345–64. https://doi.org/10.1039/d3ra03477a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Chu W, Wang P, Ma Z, Peng L, Guo C, Fu Y, et al. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial Infection. Int J Biol Macromol. 2023;243: 125310. https://doi.org/10.1016/j.ijbiomac.2023.125310.

    Article  CAS  PubMed  Google Scholar 

  181. Sari MHM, Cobre AF, Pontarolo R, Ferreira LM. Status and future scope of Soft nanoparticles-based hydrogel in Wound Healing. Pharmaceutics. 2023;15(3): 874. https://doi.org/10.3390/pharmaceutics15030874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Montazeri S, Rastegari A, Mohammadi Z, Nazari M, Yousefi M, Samadi FY, et al. Chitosan nanoparticle loaded by epidermal growth factor as a potential protein carrier for wound healing: in vitro and in vivo studies. IET Nanobiotechnol. 2023;17(3):204–11. https://doi.org/10.1049/nbt2.12116.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Froelich A, Jakubowska E, Wojtylko M, Jadach B, Gackowski M, Gadzinski P, et al. Alginate-based materials loaded with nanoparticles in Wound Healing. Pharmaceutics. 2023;41142. https://doi.org/10.3390/pharmaceutics15041142

  184. Huang C, Dong L, Zhao B, Lu Y, Huang S, Yuan Z, et al. Anti-inflammatory hydrogel dressings and skin wound healing. Clin Transl Med. 2022;12(11): e1094. https://doi.org/10.1002/ctm2.1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, et al. Current Progress and Outlook of Nano-based hydrogel dressings for Wound Healing. Pharmaceutics. 2022;15(1): 68. https://doi.org/10.3390/pharmaceutics15010068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Chen Z, Wang L, Guo C, Qiu M, Cheng L, Chen K, et al. Vascularized polypeptide hydrogel modulates macrophage polarization for wound healing. Acta Biomater. 2023;155:218–34. https://doi.org/10.1016/j.actbio.2022.11.002.

    Article  CAS  PubMed  Google Scholar 

  187. Guan T, Li J, Chen C, Liu Y. Self-assembling peptide-based hydrogels for Wound tissue repair. Adv Sci (Weinh). 2022;9(10): e2104165. https://doi.org/10.1002/advs.202104165.

    Article  CAS  PubMed  Google Scholar 

  188. Zhang S, Ge G, Qin Y, Li W, Dong J, Mei J, et al. Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio. 2022;18: 100508. https://doi.org/10.1016/j.mtbio.2022.100508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Umar AK, Sriwidodo S, Maksum IP, Wathoni N. Film-forming spray of Water-Soluble Chitosan containing liposome-coated human epidermal growth factor for Wound Healing. Molecules. 2021;26(17): 5326. https://doi.org/10.3390/molecules26175326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Natsaridis E, Mouzoura P, Gkartziou F, Marazioti A, Antimisiaris SG. Development of growth factor-incorporating liposomes for integration into scaffolds as a method to improve tissue regeneration. Int J Dev Biol. 2022;66(1–2–3):137–54. https://doi.org/10.1387/ijdb.210108sa.

    Article  CAS  PubMed  Google Scholar 

  191. Cardoso-Daodu IM, Ilomuanya MO, Amenaghawon AN, Azubuike CP. Artificial neural network for optimizing the formulation of curcumin-loaded liposomes from statistically designed experiments. Prog Biomater. 2022;11(1):55–65. https://doi.org/10.1007/s40204-022-00179-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Eid HM, Ali AA, Ali AMA, Eissa EM, Hassan RM, Abo El-Ela FI, et al. Potential use of tailored citicoline Chitosan-Coated liposomes for Effective Wound Healing in Diabetic Rat Model. Int J Nanomedicine. 2022;17:555–75. https://doi.org/10.2147/IJN.S342504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tan G, Wang L, Pan W, Chen K. Polysaccharide Electrospun nanofibers for Wound Healing Applications. Int J Nanomedicine. 2022;17:3913–31. https://doi.org/10.2147/IJN.S371900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Patel Z, Gharat SA, Al-Tabakha MM, Ashames A, Boddu SHS, Momin MM. Recent advancements in Electrospun nanofibers for Wound Healing: polymers, Clinical and Regulatory Perspective. Crit Rev Ther Drug Carrier Syst. 2022;39:83–118. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2022039840.

    Article  PubMed  Google Scholar 

  195. Xu H, Zhang F, Wang M, Lv H, Yu DG, Liu X, et al. Electrospun hierarchical structural films for effective wound healing. Biomater Adv. 2022;136: 212795. https://doi.org/10.1016/j.bioadv.2022.212795.

    Article  CAS  PubMed  Google Scholar 

  196. Behere I, Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res. 2022;110:443–61. https://doi.org/10.1002/jbm.a.37290.

    Article  CAS  Google Scholar 

  197. Gwon K, Choi WI, Lee S, Lee JS, Shin JH. Biodegradable hyaluronic acid-based, nitric oxide-releasing nanofibers for potential wound healing applications. Biomater Sci. 2021;9:8160–70. https://doi.org/10.1039/d1bm01019k.

    Article  CAS  PubMed  Google Scholar 

  198. Zeng N, Jiang L, Miao Q, Zhi Y, Shan S, Su H. [Preparation and applications of the polymeric micelle/hydrogel nanocomposites as biomaterials]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021;38(3):609–20. https://doi.org/10.7507/1001-5515.202011024. (Chinese).

    Article  PubMed  Google Scholar 

  199. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble Drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Yt K. Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics. 2022;14(8): 1636. https://doi.org/10.3390/pharmaceutics14081636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polym (Basel). 2022;14(12): 2510. https://doi.org/10.3390/polym14122510.

    Article  CAS  Google Scholar 

  202. Yoshida C, Uchida Y, Ito T, Takami T, Murakami Y. Chitosan gel sheet containing polymeric micelles: synthesis and Gelation properties of PEG-Grafted Chitosan. Mater (Basel). 2017;10(9): 1075. https://doi.org/10.3390/ma10091075.

    Article  CAS  Google Scholar 

  203. Liao JL, Zhong S, Wang SH, Liu JY, Chen J, He G, et al. Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing. Exp Ther Med. 2017;14(3):2341–8. https://doi.org/10.3892/etm.2017.4752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ravanbakhsh H, Bao G, Mongeau L. Carbon nanotubes promote cell migration in hydrogels. Sci Rep. 2020;10(1):2543. https://doi.org/10.1038/s41598-020-59463-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Kittana N, Assali M, Abu-Rass H, Lutz S, Hindawi R, Ghannam L, et al. Enhancement of wound healing by single-wall/multi-wall carbon nanotubes complexed with chitosan. Int J Nanomedicine. 2018;13:7195–206. https://doi.org/10.2147/IJN.S183342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu J, Ismail NA, Yusoff M, Razali MH. Physicochemical Properties and Antibacterial Activity of Gellan Gum incorporating Zinc Oxide/Carbon nanotubes Bionanocomposite Film for Wound Healing. Bioinorg Chem Appl. 2022;2022: 3158404. https://doi.org/10.1155/2022/3158404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhao P, Feng Y, Zhou Y, Tan C, Liu M. Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing. Bioact Mater. 2022;20:355–67. https://doi.org/10.1016/j.bioactmat.2022.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ali Zahid A, Chakraborty A, Shamiya Y, Ravi SP, Paul A. Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications. Mater Horiz. 2022;9:1850–65. https://doi.org/10.1039/d2mh00115b.

    Article  CAS  PubMed  Google Scholar 

  209. Zulkiflee I, Masri S, Zawani M, Salleh A, Amirrah IN, Wee MFMR, et al. Silicon-based Scaffold for Wound Healing skin regeneration applications: a concise review. Polym (Basel). 2022;14: 4219. https://doi.org/10.3390/polym14194219.

    Article  CAS  Google Scholar 

  210. Sun L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound healing. J Tissue Viability. 2022;31:180–9. https://doi.org/10.1016/j.jtv.2021.09.003.

    Article  PubMed  Google Scholar 

  211. Hao R, Cui Z, Zhang X, Tian M, Zhang L, Rao F, et al. Rational design and preparation of functional hydrogels for skin wound healing. Front Chem. 2022;9:9. https://doi.org/10.3389/fchem.2021.839055.

    Article  CAS  Google Scholar 

  212. Sharma A, Puri V, Kumar P, Singh I. Biopolymeric, nanopatterned, fibrous carriers for wound healing applications. Curr Pharm Des. 2020;26:4894–908. https://doi.org/10.2174/1381612826666200701152217.

    Article  CAS  PubMed  Google Scholar 

  213. Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the features of biopolymers for emerging Wound Healing dressings: a review. Int J Mol Sci. 2022;23: 8778. https://doi.org/10.3390/ijms23158778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang C, Shirzaei Sani E, Gao W. Wearable bioelectronics for chronic wound management. Adv Funct Mater. 2022;32:2111022. https://doi.org/10.3760/cma.j.cn501120-20210218-00057.

    Article  CAS  PubMed  Google Scholar 

  215. Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci. 2021;28:3633–40. https://doi.org/10.1016/j.sjbs.2021.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Buranasukhon W, Athikomkulchai S, Tadtong S, Chittasupho C. Wound healing activity of Pluchea indica leaf extract in oral mucosal cell line and oral spray formulation containing nanoparticles of the extract. Pharm Biol. 2017;55:1767–74. https://doi.org/10.1080/13880209.2017.1326511.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Jakfar S, Lin TC, Chen ZY, Yang IH, Gani BA, Ningsih DS, et al. A polysaccharide isolated from the Herb Bletilla striata combined with methylcellulose to Form a Hydrogel via Self-Assembly as a Wound Dressing. Int J Mol Sci. 2022;23: 12019. https://doi.org/10.3390/ijms231912019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zahedi E, Esmaeili A, Eslahi N, Shokrgozar MA, Simchi A. Fabrication and characterization of Core-Shell electrospun fibrous mats containing medicinal herbs for wound healing and skin tissue engineering. Mar Drugs. 2019;17: 27. https://doi.org/10.3390/md17010027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ryall C, Chen S, Duarah S, Wen J. Chitosan-based microneedle arrays for dermal delivery of Centella asiatica. Int J Pharm. 2022;627: 122221. https://doi.org/10.1016/j.ijpharm.2022.122221.

    Article  CAS  PubMed  Google Scholar 

  220. Khezri K, Farahpour MR, Mounesi Rad S. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artif Cells Nanomed Biotechnol. 2019;47(1):980–8. https://doi.org/10.1080/21691401.2019.1582539.

    Article  CAS  PubMed  Google Scholar 

  221. Parastar H, Farahpour MR, Shokri R, Jafarirad S, Kalantari M. Acceleration in healing of infected full-thickness wound with novel antibacterial γ-AlOOH-based nanocomposites. Prog Biomater. 2023;12(2):123–36. https://doi.org/10.1007/s40204-022-00216-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Ali A, Garg P, Goyal R, Kaur G, Li X, Negi P, et al. A Novel Herbal Hydrogel Formulation of Moringa oleifera for Wound Healing. Plants (Basel). 2020;10(1): 25. https://doi.org/10.3390/plants10010025.

    Article  CAS  PubMed  Google Scholar 

  223. Aker SD, Tamburaci S, Tihminlioglu F. Development of Cissus quadrangularis-Loaded POSS-Reinforced Chitosan-based bilayer sponges for Wound Healing Applications: drug release and in Vitro Bioactivity. ACS Omega. 2023;8(22):19674–91. https://doi.org/10.1021/acsomega.3c00999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Beyranvand F, Gharzi A, Abbaszadeh A, Khorramabadi RM, Gholami M, Gharravi AM. Encapsulation of Satureja Khuzistanica extract in alginate hydrogel accelerate wound healing in adult male rats. Inflamm Regen. 2019;39:2. https://doi.org/10.1186/s41232-019-0090-4.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and in Vitro Wound Healing effects of the microniosomes containing Narcissus tazetta L. Bulb extract on primary human fibroblasts (HDFs). Daru. 2018;26(1):31–42. https://doi.org/10.1007/s40199-018-0211-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Namviriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci. 2019;14(1):63–77. https://doi.org/10.1016/j.ajps.2018.09.001.

    Article  PubMed  Google Scholar 

  227. Koshak AE, Algandaby MM, Mujallid MI, Abdel-Naim AB, Alhakamy NA, Fahmy UA, et al. Wound Healing activity of Opuntia ficus-indica fixed oil formulated in a self-nanoemulsifying formulation. Int J Nanomedicine. 2021;16:3889–905. https://doi.org/10.2147/IJN.S299696.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 2015;4(9):560–82. https://doi.org/10.1089/wound.2015.0635.

    Article  PubMed  Google Scholar 

  229. Sharifi S, Hajipour MJ, Gould L, Mahmoudi M. Nanomedicine in Healing Chronic wounds: opportunities and challenges. Mol Pharm. 2021;18(2):550–75. https://doi.org/10.1021/acs.molpharmaceut.0c00346.

    Article  CAS  PubMed  Google Scholar 

  230. Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Vet World. 2019;12(5):653. https://doi.org/10.14202/vetworld.2019.653-663.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Ghomi ER, Shakiba M, Ardahaei AS, Kenari MA, Faraji M, Ataei S, et al. Innovations in drug delivery for chronic wound healing. Curr Pharm Des. 2022;28(5):340–51. https://doi.org/10.2174/1381612827666210714102304.

    Article  CAS  PubMed  Google Scholar 

  232. Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. https://doi.org/10.1007/s12325-017-0478-y.

    Article  PubMed  PubMed Central  Google Scholar 

  233. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle). 2014;3(8):511–29. https://doi.org/10.1089/wound.2012.0401.

    Article  PubMed  Google Scholar 

  234. Park JW, Hwang SR, Yoon IS. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22(8): 1259. https://doi.org/10.3390/molecules22081259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Li Z, Yu A. Complications of negative pressure wound therapy: a mini review. Wound Repair Regen. 2014;22(4):457–61. https://doi.org/10.1111/wrr.12190.

    Article  CAS  PubMed  Google Scholar 

  236. Khansa I, Schoenbrunner AR, Kraft CT, Janis JE. Silver in Wound Care-Friend or Foe? A Comprehensive Review. Plast Reconstr Surg Glob Open. 2019;7(8): e2390. https://doi.org/10.1097/GOX.0000000000002390.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5. https://doi.org/10.1126/science.1253836.

    Article  CAS  PubMed  Google Scholar 

  238. Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, et al. Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem. 2015;36(1):1–23. https://doi.org/10.1159/000374049.

    Article  CAS  PubMed  Google Scholar 

  239. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, et al. Stem cells in wound healing: the future of Regenerative Medicine? A Mini-review. Gerontology. 2016;62(2):216–25. https://doi.org/10.1159/000381877.

    Article  CAS  PubMed  Google Scholar 

  240. Parani M, Lokhande G, Singh A, Gaharwar AK. Engineered nanomaterials for Infection control and Healing Acute and Chronic wounds. ACS Appl Mater Interfaces. 2016;8(16):10049–69. https://doi.org/10.1021/acsami.6b00291.

    Article  CAS  PubMed  Google Scholar 

  241. Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. Future J Pharm Sci. 2021;7(1):1–3. https://doi.org/10.1186/s43094-021-00202-w.

    Article  Google Scholar 

  242. Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evid-Based Complementary Altern Med. 2019;2019.https://doi.org/10.1155/2019/2684108

  243. Ghuman S, Ncube B, Finnie JF, McGaw LJ, Njoya EM, Coopoosamy RM, et al. Antioxidant, anti-inflammatory and wound healing properties of medicinal plant extracts used to treat wounds and dermatological disorders. South Afr J Bot. 2019;126:232–40. https://doi.org/10.1016/j.sajb.2019.07.013.

    Article  CAS  Google Scholar 

  244. Solati K, Karimi M, Rafieian-Kopaei M, Abbasi N, Abbaszadeh S, Bahmani M. Phytotherapy for wound healing: the most important herbal plants in wound healing based on Iranian ethnobotanical documents. Mini Rev Med Chem. 2021;21(4):500–19. https://doi.org/10.2174/1389557520666201119122608.

    Article  CAS  PubMed  Google Scholar 

  245. Malabadi RB, Kolkar KP, Acharya M, Nityasree BR, Chalannavar RK. Wound healing: role of traditional herbal medicine treatment. IJISRR. 2022;4(6):2856–74.

    Google Scholar 

  246. Pereira RF, Bartolo PJ. Traditional therapies for skin Wound Healing. Adv Wound Care (New Rochelle). 2016;5(5):208–29. https://doi.org/10.1089/wound.2013.0506.

    Article  PubMed  Google Scholar 

  247. Balap AR, Gaikwad AA. Challenges, advances and opportunities of herbal medicines in wound healing:a review. Int J Pharm Sci Rev Res. 2021;71(1):125–36. https://doi.org/10.47583/ijpsrr.2021.v71i01.015.

    Article  CAS  Google Scholar 

  248. Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in healing wound: role of complementary and alternative medicine. Front Nutr. 2022;8: 791899. https://doi.org/10.3389/fnut.2021.791899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ayaz M, Subhan F, Ahmed J, Khan AU, Ullah F, Ullah I, et al. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J Biol Res (Thessalon). 2015;22(1):4. https://doi.org/10.1186/s40709-015-0028-1.

    Article  CAS  PubMed  Google Scholar 

  250. Dev SK, Choudhury PK, Srivastava R, Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother. 2019;111:555–67. https://doi.org/10.1016/j.biopha.2018.12.075.

    Article  CAS  PubMed  Google Scholar 

  251. Lordani TVA, de Lara CE, Ferreira FBP, de Souza Terron Monich M, Mesquita da Silva C, Felicetti Lordani CR, et al. Therapeutic effects of Medicinal plants on Cutaneous Wound Healing in humans: a systematic review. Mediators Inflamm. 2018;2018: 7354250. https://doi.org/10.1155/2018/7354250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Carvalho AR Jr, Diniz RM, Suarez MA, Figueiredo CS, Zagmignan A, Grisotto MA, et al. Use of some asteraceae plants for the treatment of wounds: from ethnopharmacological studies to scientific evidences. Front Pharmacol. 2018;9: 784. https://doi.org/10.3389/fphar.2018.00784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Dorjsembe B, Lee HJ, Kim M, Dulamjav B, Jigjid T, Nho CW. Achillea Asiatica extract and its active compounds induce cutaneous wound healing. J Ethnopharmacol. 2017;206:306–14. https://doi.org/10.1016/j.jep.2017.06.006.

    Article  CAS  PubMed  Google Scholar 

  254. Neto JA, Tarôco BR, Dos Santos HB, Thomé RG, Wolfram E, de Ribeiro A. Using the plants of Brazilian cerrado for wound healing: from traditional use to scientific approach. J Ethnopharmacol. 2020;260: 112547. https://doi.org/10.1016/j.jep.2020.112547.

    Article  CAS  Google Scholar 

  255. Fazil M, Nikhat S. Topical medicines for wound healing: a systematic review of Unani literature with recent advances. J Ethnopharmacol. 2020;257: 112878. https://doi.org/10.1016/j.jep.2020.112878.

    Article  CAS  PubMed  Google Scholar 

  256. Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-Lopez N, Gutierrez-Grijalva EP, Jimenez-Ortega LA, Heredia JB. Wound healing properties of natural products: mechanisms of action. Molecules. 2023;28(2): 598. https://doi.org/10.3390/molecules28020598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Carvalho MT, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JS, Barreto RS. Wound healing properties of flavonoids: a systematic review highlighting the mechanisms of action. Phytomedicine. 2021;90: 153636. https://doi.org/10.1016/j.phymed.2021.153636.

    Article  CAS  PubMed  Google Scholar 

  258. Yazarlu O, Iranshahi M, Kashani HRK, Reshadat S, Habtemariam S, Iranshahy M, et al. Perspective on the application of medicinal plants and natural products in wound healing: a mechanistic review. Pharmacol Res. 2021;174: 105841. https://doi.org/10.1016/j.phrs.2021.105841.

    Article  CAS  PubMed  Google Scholar 

  259. Nejjari R, Benabbes M, Amrani M, Meddah B, Bouatia M, Taoufik J. Phytochemical screening and wound healing activity of Telephium Imperati (L.) in rats. South Afr J Bot. 2019;123:147–51. https://doi.org/10.1016/j.sajb.2019.03.023.

    Article  CAS  Google Scholar 

  260. Shrivastav A, Mishra AK, Ali SS, Ahmad A, Abuzinadah MF, Khan NA. In vivo models for assesment of wound healing potential: a systematic review. Wound Med. 2018;20:43–53. https://doi.org/10.1016/j.wndm.2018.01.003.

    Article  Google Scholar 

  261. Mehta P, Shah R, Lohidasan S, Mahadik KR. Pharmacokinetic profile of phytoconstituent(s) isolated from medicinal plants-A comprehensive review. J Tradit Complement Med. 2015;5(4):207–27. https://doi.org/10.1016/j.jtcme.2014.11.041.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ovais M, Ahmad I, Khalil AT, Mukherjee S, Javed R, Ayaz M, et al. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects. Appl Microbiol Biotechnol. 2018;102(10):4305–18. https://doi.org/10.1007/s00253-018-8939-z.

    Article  CAS  PubMed  Google Scholar 

  263. Zohra T, Ovais M, Khalil AT, Qasim M, Ayaz M, Shinwari ZK. Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat Prod Res. 2019;33(1):136–42. https://doi.org/10.1080/14786419.2018.1437428.

    Article  CAS  PubMed  Google Scholar 

  264. Jiang T, Li Q, Qiu J, Chen J, Du S, Xu X, et al. Nanobiotechnology: applications in Chronic Wound Healing. Int J Nanomedicine. 2022;17:3125–45. https://doi.org/10.2147/IJN.S372211.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and Synthetic polymer-based nanocomposites in Wound dressing applications: a review. Polym (Basel). 2021;13(12): 1962. https://doi.org/10.3390/polym13121962.

    Article  CAS  Google Scholar 

  266. Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, et al. Potential applications of nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine. 2020;15:9717–43. https://doi.org/10.2147/IJN.S276001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for Burns: preventing Infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64. https://doi.org/10.1016/j.addr.2017.08.001.

    Article  CAS  PubMed  Google Scholar 

  268. Kang HJ, Chen N, Dash BC, Hsia HC, Berthiaume F. Self-assembled nanomaterials for chronic skin Wound Healing. Adv Wound Care (New Rochelle). 2021;10(5):221–33. https://doi.org/10.1089/wound.2019.1077.

    Article  PubMed  Google Scholar 

  269. Guo S, Wang P, Song P, Li N. Electrospinning of botanicals for skin wound healing. Front Bioeng Biotechnol. 2022;10: 1006129. https://doi.org/10.3389/fbioe.2022.1006129.

    Article  PubMed  PubMed Central  Google Scholar 

  270. Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 2019;17(1):82. https://doi.org/10.1186/s12951-019-0514-y.

    Article  CAS  Google Scholar 

  271. Faraji A, Aghdaki M, Hessami K, Hosseinkhani A, Roozmeh S, Asadi N, et al. Episiotomy wound healing by Commiphora myrrha (Nees) Engl. And Boswellia carteri Birdw. In primiparous women: a randomized controlled trial. J Ethnopharmacol. 2021;264: 113396. https://doi.org/10.1016/j.jep.2020.113396.

    Article  CAS  PubMed  Google Scholar 

  272. Duric K, Kovcic Hadziabdic S, Duric M, Niksic H, Uzunovic A, Dzudzevic Cancar H. Efficacy and safety of three plant extracts based formulations of vagitories in the treatment of vaginitis: a randomized controlled trial. Med Glas (Zenica). 2021;18:47–54. https://doi.org/10.17392/1261-21.

    Article  PubMed  Google Scholar 

  273. Burusapat C, Supawan M, Pruksapong C, Pitiseree A, Suwantemee C. Topical Aloe Vera Gel for Accelerated Wound Healing of Split-Thickness skin graft Donor sites: a Double-Blind, randomized, controlled trial and systematic review. Plast Reconstr Surg. 2018;142(1):217–26. https://doi.org/10.1097/PRS.0000000000004515.

    Article  CAS  PubMed  Google Scholar 

  274. Mokhtari M, Razzaghi R, Momen-Heravi M. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot Ulcer: a randomized, double‐blind, placebo‐controlled trial. Phytother Res. 2021;35:2099–107. https://doi.org/10.1002/ptr.6957.

    Article  CAS  PubMed  Google Scholar 

  275. Damkerngsuntorn W, Rerknimitr P, Panchaprateep R, Tangkijngamvong N, Kumtornrut C, Kerr SJ, et al. The effects of a standardized extract of Centella asiatica on Postlaser Resurfacing Wound Healing on the Face: a Split-Face, Double-Blind, randomized, placebo-controlled trial. J Altern Complement Med. 2020;26:529–36. https://doi.org/10.1089/acm.2019.0325.

    Article  PubMed  Google Scholar 

  276. Toomari E, Hajian S, Mojab F, Omidkhah T, Nasiri M. Evaluation the effect of Silybum marianum ointment on episiotomy wound healing and pain intensity in primiparous women: a randomized triple-blind clinical trial. BMC Complement Med Ther. 2021;21:253. https://doi.org/10.1186/s12906-021-03413-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. lhashim M, Lombardo J. Effect of Topical Garlic on Wound Healing and Scarring: a clinical trial. Dermatol Surg. 2020;46:618–27. https://doi.org/10.1097/DSS.0000000000002123.

    Article  CAS  Google Scholar 

  278. Taleb S, Saeedi M. The effect of the Verbascum Thapsus on episiotomy wound healing in nulliparous women: a randomized controlled trial. BMC Complement Med Ther. 2021;21:166. https://doi.org/10.1186/s12906-021-03339-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Tonaco LAB, Gomes FL, Velasquez-Melendez G, Lopes MTP, Salas CE. The proteolytic fraction from latex of Vasconcellea cundinamarcensis (P1G10) enhances wound healing of diabetic foot ulcers: a double-blind Randomized Pilot Study. Adv Ther. 2018;35:494–502. https://doi.org/10.1007/s12325-018-0684-2.

    Article  CAS  PubMed  Google Scholar 

  280. Izadpanah A, Soorgi S, Geraminejad N, Hosseini M. Effect of grape seed extract ointment on cesarean section wound healing: a double-blind, randomized, controlled clinical trial. Complement Ther Clin Pract. 2019;35:323–8. https://doi.org/10.1016/j.ctcp.2019.03.011.

    Article  PubMed  Google Scholar 

  281. Hemmati AA, Foroozan M, Houshmand G, Moosavi ZB, Bahadoram M, Maram NS. The topical effect of grape seed extract 2% cream on Surgery wound healing. Glob J Health Sci. 2014;7(3):52–8. https://doi.org/10.5539/gjhs.v7n3p52.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Ikarashi N, Kaneko M, Fujisawa I, Fukuda N, Yoshida R, Kon R, et al. Wound-Healing and skin-moisturizing effects of Sasa veitchii Extract. Healthcare. 2021;9:761. https://doi.org/10.3390/healthcare9060761.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Pathak.

Ethics declarations

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Mazumder, A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. DARU J Pharm Sci 32, 379–419 (2024). https://doi.org/10.1007/s40199-023-00502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-023-00502-x

Keywords

Navigation