Skip to main content

Advertisement

Log in

Approaches to cutaneous wound healing: basics and future directions

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The skin provides essential functions, such as thermoregulation, hydration, excretion and synthesis of vitamin D. Major disruptions of the skin cause impairment of critical functions, resulting in high morbidity and death, or leave one with life-changing cosmetic damage. Due to the complexity of the skin, diverse approaches are needed, including both traditional and advanced, to improve cutaneous wound healing. Cutaneous wounds undergo four phases of healing. Traditional management, including skin grafts and wound dressings, is still commonly used in current practice but in combination with newer technology, such as using engineered skin substitutes in skin grafts or combining traditional cotton gauze with anti-bacterial nanoparticles. Various upcoming methods, such as vacuum-assisted wound closure, engineered skin substitutes, stem cell therapy, growth factors and cytokine therapy, have emerged in recent years and are being used to assist wound healing, or even to replace traditional methods. However, many of these methods still lack assessment by large-scale studies and/or extensive application. Conceptual changes, for example, precision medicine and the rapid advancement of science and technology, such as RNA interference and 3D printing, offer tremendous potential. In this review, we focus on the basics of wound treatment and summarize recent developments involving both traditional and hi-tech therapeutic methods that lead to both rapid healing and better cosmetic results. Future studies should explore a more cost-effective, convenient and efficient approach to cutaneous wound healing.

Combination of various materials to create advanced wound dressings

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasipour M, Mirjalili M, Khajavi R, Majidi MM (2014) Coated cotton gauze with Ag/ZnO/chitosan nanocomposite as a modern wound dressing. Journal of Engineered Fabrics & Fibers (JEFF) 9:

  • Abdelfatah M, Rostambeigi N, Podgaetz E, Sarr MG (2015) Long-term outcomes (> 5-year follow-up) with porcine acellular dermal matrix (Permacol) in incisional hernias at risk for infection. Hernia 19:135–140

    Article  CAS  PubMed  Google Scholar 

  • Ågren M (2016) Wound healing biomaterials—volume 1: therapies and regeneration Elsevier Science

  • Algzlan H, Varada S (2015) Three-dimensional printing of the skin. JAMA Dermatol 151:207–207

    Article  PubMed  Google Scholar 

  • Alrubaiy L, Al-Rubaiy KK (2009) Skin substitutes: a brief review of types and clinical applications. Oman Med J 24:4

    PubMed  PubMed Central  Google Scholar 

  • Amani H, Dougherty WR, Blome-Eberwein S (2006) Use of Transcyte® and dermabrasion to treat burns reduces length of stay in burns of all size and etiology. Burns 32:828–832

    Article  PubMed  Google Scholar 

  • Austin RE, Merchant N, Shahrokhi S, Jeschke MG (2015) A comparison of Biobrane and cadaveric allograft for temporizing the acute burn wound: cost and procedural time. Burns 41:749–753

    Article  PubMed  Google Scholar 

  • Auxenfans C, Menet V, Catherine Z, Shipkov H, Lacroix P, Bertin-Maghit M, Damour O, Braye F (2015) Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years. Burns 41:71–79

    Article  PubMed  Google Scholar 

  • Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  • Bee Y-S, Alonzo B, Ng JD (2015) Review of AlloDerm acellular human dermis regenerative tissue matrix in multiple types of oculofacial plastic and reconstructive surgery. Ophthalmic Plast Reconstr Surg 31:348–351

    Article  PubMed  Google Scholar 

  • Bellingeri A, Falciani F, Traspedini P, Moscatelli A, Russo A, Tino G, Chiari P, Peghetti A (2016) Effect of a wound cleansing solution on wound bed preparation and inflammation in chronic wounds: a single-blind RCT. J Wound Care 25:160–168

    Article  CAS  PubMed  Google Scholar 

  • Benichou G, Yamada Y, Yun S-H, Lin C, Fray M, Tocco G (2011) Immune recognition and rejection of allogeneic skin grafts. Immunotherapy 3:757–770

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez SF (2014) Care of Peripheral Venous Catheter Sites: advantages of transparent film dressings over tape and gauze. J Assoc Vasc Access 19:256–261

    Article  Google Scholar 

  • Bickers DR, Lim HW, Margolis D, Weinstock MA, Goodman C, Faulkner E, Gould C, Gemmen E, Dall T (2006) The burden of skin diseases: 2004: a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. J Am Acad Dermatol 55:490–500

    Article  PubMed  Google Scholar 

  • Blackburn JH, Boemi L, Hall WW, Jeffords K, Hauck RM, Banducci DR, Graham WP III (1998) Negative-pressure dressings as a bolster for skin grafts. Ann Plast Surg 40:453–457

    Article  PubMed  Google Scholar 

  • Borena BM, Martens A, Broeckx SY, Meyer E, Chiers K, Duchateau L, Spaas JH (2015) Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cell Physiol Biochem 36:1–23

    Article  CAS  PubMed  Google Scholar 

  • Böttcher Haberzeth S, Biedermann T, Klar AS, Widmer DS, Neuhaus K, Schiestl C, Meuli M, Reichmann E (2015) Characterization of pigmented dermo epidermal skin substitutes in a long term in vivo assay. Exp Dermatol 24:16–21

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LY, Ramez M, Gilad E, Singleton PA, Man M-Q, Crumrine DA, Elias PM, Feingold KR (2006) Hyaluronan–CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis. J Invest Dermatol 126:1356–1365

    Article  CAS  PubMed  Google Scholar 

  • Broughton G, Janis JE, Attinger CE (2006) The basic science of wound healing. Plast Reconstr Surg 117:12s–34s

    Article  CAS  PubMed  Google Scholar 

  • Brown A (2015) Antibiotic prescribing in wound care. Nurse Prescribing 13:446–450

    Article  Google Scholar 

  • Burnett LN, Carr E, Tapp D, Bouchal SR, Horch J, Biernaskie J, Gabriel V (2014) Patient experiences living with split thickness skin grafts. Burns 40:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Centanni JM, Straseski JA, Wicks A, Hank JA, Rasmussen CA, Lokuta MA, Schurr MJ, Foster KN, Faucher LD, Caruso DM (2011) StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: results from a prospective, randomized, controlled dose escalation trial. Ann Surg 253:672

    Article  PubMed  Google Scholar 

  • Cervelli V, Brinci L, Spallone D, Tati E, Palla L, Lucarini L, De Angelis B (2011) The use of MatriDerm® and skin grafting in post traumatic wounds. Int Wound J 8:400–405

    Article  PubMed  PubMed Central  Google Scholar 

  • Chand B, Indeck M, Needleman B, Finnegan M, Van Sickle KR, Ystgaard B, Gossetti F, Pullan RD, Giordano P, McKinley A (2014) A retrospective study evaluating the use of Permacol surgical implant in incisional and ventral hernia repair. Int J Surg 12:296–303

    Article  PubMed  Google Scholar 

  • Chen SG, Tzeng YS, Wang CH (2012) Treatment of severe burn with DermACELL(®), an acellular dermal matrix. Int J Burns and Trauma 2:105–109

    Google Scholar 

  • Chen L, Xu Y, Zhao J, Zhang Z, Yang R, Xie J, Liu X, Qi S (2014) Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One 9:e96161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choo J, Nixon J, Nelson EA, McGinnis E (2014) Autolytic debridement for pressure ulcers. The Cochrane Library

  • Clark RAF (2001) Fibrin and wound healing. Ann N Y Acad Sci 936:355–367

    Article  CAS  PubMed  Google Scholar 

  • Coban YK, Aytekin AH, Tenekeci G (2011) Skin graft harvesting and donor site selection. INTECH open access Publisher

  • Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  • Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5:32–41

    Article  Google Scholar 

  • Dargaville TR, Farrugia BL, Broadbent JA, Pace S, Upton Z, Voelcker NH (2013) Sensors and imaging for wound healing: a review. Biosens Bioelectron 41:30–42

    Article  CAS  PubMed  Google Scholar 

  • Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12:359–366

    Article  CAS  PubMed  Google Scholar 

  • David JA, Chiu ES (2018) Surgical debridement. Interventional Treatment of Wounds. Springer, pp 3–15

  • Dean R, Dean S, Smith G (2017) The use of Matriderm in epidermolysis bullosa to limit donor site problems. Int J Surg 47:S67

    Article  Google Scholar 

  • Dehkordi MB, Madjd Z, Chaleshtori MH, Meshkani R, Nikfarjam L, Kajbafzadeh A-M (2016) A simple, rapid, and efficient method for isolating mesenchymal stem cells from the entire umbilical cord. Cell Transplant 25:1287–1297

    Article  PubMed  Google Scholar 

  • Di Z, Shi Z, Ullah MW, Li S, Yang G (2017) A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate). International journal of biological macromolecules

  • Ding F, Deng H, Du Y, Shi X, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nano 6:9477–9493

    CAS  Google Scholar 

  • Dowsett C, Newton H (2005) Wound bed preparation: TIME in practice. WOUNDS UK 1:58

    Google Scholar 

  • Edmonds M, European Australian Apligraf Diabetic Foot Ulcer Study G (2009) Apligraf in the treatment of neuropathic diabetic foot ulcers. Int J Low Extrem Wounds 8:11–18

    Article  PubMed  Google Scholar 

  • Elmasry M, Steinvall I, Thorfinn J, Olofsson P, Abbas A, Abdelrahman I, Adly O, Sjoberg F (2016) Temporary coverage of burns with a xenograft and sequential excision, compared with total early excision and autograft. Ann Burns and Fire Dis 29:196

    CAS  Google Scholar 

  • Fife CE, Cartel MJ, Walker D, Thomson B (2012) Wound care outcomes and associated cost among patients treated in US outpatient wound centers: data from the US wound registry. Wounds 24:10–17

    PubMed  Google Scholar 

  • Fitzgerald DJ, Renick PJ, Forrest EC, Tetens SP, Earnest DN, McMillan J, Kiedaisch BM, Shi L, Roche ED (2017) Cadexomer iodine provides superior efficacy against bacterial wound biofilms in vitro and in vivo. Wound Repair Regen 25:13–24

    Article  PubMed  Google Scholar 

  • Fletcher J, Moore Z, Anderson I, Matsuzaki K (2011) Pressure ulcers and hydrocolloids. Made Easy Wounds International [Intenet] 2:

  • Frykberg RG, Banks J (2015) Challenges in the treatment of chronic wounds. Adv in wound care 4:560–582

    Article  Google Scholar 

  • Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 11:1551–1573

    Article  CAS  PubMed  Google Scholar 

  • Garg RK, Rennert RC, Duscher D, Sorkin M, Kosaraju R, Auerbach LJ, Lennon J, Chung MT, Paik K, Nimpf J (2014) Capillary force seeding of hydrogels for adipose derived stem cell delivery in wounds. Stem Cells Transl Med 3:1079–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons GW, Orgill DP, Serena TE, Novoung A, O’Connell JB, Li WW, Driver VR (2015) A prospective, randomized, controlled trial comparing the effects of noncontact, low-frequency ultrasound to standard care in healing venous leg ulcers. Ostomy Wound Manage 61:16–29

    PubMed  Google Scholar 

  • Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC (2016) Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol(Clifton, NJ) 1416:123–146

    Article  CAS  Google Scholar 

  • Golpanian S, Kassira W (2017) Full-thickness skin graft. Operative Dictations in Plastic and Reconstructive Surgery. Springer, pp 199–201

  • Gravante G, Di Fede M, Araco A, Grimaldi M, De Angelis B, Arpino A, Cervelli V, Montone A (2007) A randomized trial comparing ReCell® system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns 33:966–972

    Article  CAS  PubMed  Google Scholar 

  • Guasch G (2017) The epithelial stem cell niche in skin. In: Biology and engineering of stem cell niches. Elsevier, pp 127–143

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453:314

    Article  CAS  PubMed  Google Scholar 

  • Hamdan S, Pastar I, Drakulich S, Dikici E, Tomic-Canic M, Deo S, Daunert S (2017) Nanotechnology-driven therapeutic interventions in wound healing: potential uses and applications. ACS Central Sci 3:163–175

    Article  CAS  Google Scholar 

  • Hammer D, Rendon JL, Sabino J, Latham K, Fleming ME, Valerio IL (2017) Restoring full-thickness defects with spray skin in conjunction with dermal regenerate template and split thickness skin grafting: a pilot study. Journal of Tissue Engineering and Regenerative Medicine

    Google Scholar 

  • Hart CE, Loewen-Rodriguez A, Lessem J (2012) Dermagraft: use in the treatment of chronic wounds. Adv in wound care 1:138–141

    Article  Google Scholar 

  • Heidari F, Yari A, Rasoolijazi H, Soleimani M, Dehpoor A, Sajedi N, Joulai SV, Nobakht M (2016) Bulge hair follicle stem cells accelerate cutaneous wound healing in rats. Wounds: a compendium of clinical research and. Practice 28:132–141

    Google Scholar 

  • Hermans MH (2014) Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference? Burns 40:408–415

    Article  PubMed  Google Scholar 

  • Hilton J, Williams D, Beuker B, Miller D, Harding K (2004) Wound dressings in diabetic foot disease. Clin Infect Dis 39:S100–S103

    Article  PubMed  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72:545–549

    Article  CAS  Google Scholar 

  • Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP, Longaker MT (2014) The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle) 3:390–399

    Article  Google Scholar 

  • Hu MS-M, Rennert RC, McArdle A, Chung MT, Walmsley GG, Longaker MT, Lorenz HP (2014) The role of stem cells during scarless skin wound healing. Adv Wound Care 3:304–314

    Article  Google Scholar 

  • Hu MS, Leavitt T, Malhotra S, Duscher D, Pollhammer MS, Walmsley GG, Maan ZN, Cheung AT, Schmidt M, Huemer GM, Longaker MT, Lorenz HP (2015) Stem cell-based therapeutics to improve wound healing. Plastic Surg Int 2015:383581

    Article  Google Scholar 

  • Hu Z, Yang P, Zhou C, Li S, Hong P (2017) Marine collagen peptides from the skin of Nile tilapia (Oreochromis niloticus): characterization and wound healing evaluation. Marine drugs 15:102

    Article  PubMed Central  CAS  Google Scholar 

  • Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X (2012) Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci 66:29–36

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Leavitt T, Bayer LR, Orgill DP (2014) Effect of negative pressure wound therapy on wound healing. Curr Probl Surg 51:301–331

    Article  PubMed  Google Scholar 

  • Isakson M, de Blacam C, Whelan D, McArdle A, Clover A (2015) Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int 2015

  • Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  PubMed  Google Scholar 

  • Jere SW, Abrahamse H, Houreld NN (2017) The JAK/STAT signaling pathway and photobiomodulation in chronic wound healing. Cytokine Growth Factor Rev 38:73–79

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen LB, Sørensen JA, Jemec GB, Yderstræde KB (2016) Methods to assess area and volume of wounds—a systematic review. Int Wound J 13:540–553

    Article  PubMed  Google Scholar 

  • Junker JP, Kamel RA, Caterson E, Eriksson E (2013) Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care 2:348–356

    Article  Google Scholar 

  • Kalin M, Kuru S, Kismet K, Barlas AM, Akgun YA, Astarci HM, Ustun H, Ertas E (2015) The effectiveness of porcine dermal collagen (Permacol®) on wound healing in the rat model. Ind J Surg 77:407–411

    Article  PubMed  Google Scholar 

  • Kamolz L-P, Tuca A-C, Ertl J, Hingerl K, Pichlsberger M, Fuchs J, Wurzer P, Pfeiffer D, Bubalo V, Parvizi D (2016) Comparison of Matrigel and Matriderm as a carrier for human amnion-derived mesenchymal stem cells in wound healing. Placenta 48:99–103

    Article  PubMed  CAS  Google Scholar 

  • Khalid A, Khan R, Ul-Islam M, Khan T, Wahid F (2017) Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr Polym 164:214–221

    Article  CAS  PubMed  Google Scholar 

  • Klein MB (2011) Burn reconstruction. Phys Med Rehabil Clin N Am 22:311–325

    Article  PubMed  Google Scholar 

  • Kljenak A, Trcin MT, Bujic M, Dolenec T, Jevak M, Mrsic G, Zmis G, Barcot Z, Muljacic A, Popovic M (2016) Fibrin gel as a scaffold for skin substitute—production and clinical experience. Acta Clinica Croatica 55:279–289

    Article  PubMed  Google Scholar 

  • Kruse I, Edelman S (2006) Evaluation and treatment of diabetic foot ulcers. Clin Diabetes 24:91–93

    Article  Google Scholar 

  • Kuo Y-R, Wang C-T, Cheng J-T, Kao G-S, Chiang Y-C, Wang C-J (2016) Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant 25:71–81

    Article  PubMed  Google Scholar 

  • Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013a) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo S-S, Dai G, Karande P (2013b) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C: Methods 20:473–484

    Article  CAS  Google Scholar 

  • Lee DE, Ayoub N, Agrawal DK (2016) Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 7:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater Interfaces 9:21959–21970

    Article  CAS  PubMed  Google Scholar 

  • Li D, Wang A, Liu X, Meisgen F, Grünler J, Botusan IR, Narayanan S, Erikci E, Li X, Blomqvist L (2015) MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J Clin Invest 125:3008–3026

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim HW, Collins SA, Resneck JS, Bolognia JL, Hodge JA, Rohrer TA, Van Beek MJ, Margolis DJ, Sober AJ, Weinstock MA (2017) The burden of skin disease in the United States. J Am Acad Dermatol 76:958–972. e952

    Article  PubMed  Google Scholar 

  • Lipkin D, Chaikof M, Isseroff D, Silverstein M (2003) Effectiveness of bilayered cellular matrix in healing of neuropathic diabetic foot ulcers: results of a multicenter pilot trial. Wounds 15:230

    Google Scholar 

  • Liu J, Ko JH, Secretov E, Huang E, Chukwu C, West J, Piserchia K, Galiano RD (2015) Comparing the hydrosurgery system to conventional debridement techniques for the treatment of delayed healing wounds: a prospective, randomised clinical trial to investigate clinical efficacy and cost-effectiveness. Int Wound J 12:456–461

    Article  PubMed  Google Scholar 

  • Llanos S, Danilla S, Barraza C, Armijo E, Pineros JL, Quintas M, Searle S, Calderon W (2006) Effectiveness of negative pressure closure in the integration of split thickness skin grafts: a randomized, double-masked, controlled trial. Ann Surg 244:700–705

    Article  PubMed  PubMed Central  Google Scholar 

  • Longinotti C (2014) The use of hyaluronic acid based dressings to treat burns: a review. Burns & Trauma 2:162–168

    Article  Google Scholar 

  • Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y (2014) Immunobiology of mesenchymal stem cells. Cell Death & Differentiation 21:216–225

    Article  CAS  Google Scholar 

  • Marino D, Reichmann E, Meuli M (2014) Skingineering. Eur J Pediatr Surg 24:205–213

    Article  PubMed  Google Scholar 

  • Mast BA, Schultz GS (1996) Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen 4:411–420

    Article  CAS  PubMed  Google Scholar 

  • McFarlin K, Gao X, Liu YB, Dulchavsky DS, Kwon D, Arbab AS, Bansal M, Li Y, Chopp M, Dulchavsky SA (2006) Bone marrow-derived mesenchymal stromal cells accelerate wound healing in the rat. Wound Repair Regen 14:471–478

    Article  PubMed  Google Scholar 

  • Mcheik JN, Barrault C, Levard G, Morel F, Bernard F-X, Lecron J-C (2014) Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surg–Global Open 2:e218

    Article  Google Scholar 

  • Mehmood N, Hariz A, Fitridge R, Voelcker NH (2014) Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res B Appl Biomater 102:885–895

    Article  PubMed  CAS  Google Scholar 

  • Min JH, Yun IS, Lew DH, Roh TS, Lee WJ (2014) The use of Matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg 41:330

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittermayr R, Branski L, Moritz M, Jeschke MG, Herndon DN, Traber D, Schense J, Gampfer J, Goppelt A, Redl H (2016) Fibrin biomatrix conjugated platelet derived growth factor AB accelerates wound healing in severe thermal injury. J Tissue Eng Regen Med 10

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi AA, Johari HG, Eskandari S (2013) Effect of amniotic membrane on graft take in extremity burns. Burns 39:1137–1141

    Article  PubMed  Google Scholar 

  • Mohan A, Singh S (2017) Use of fat transfer to treat a chronic, non-healing, post-radiation ulcer: a case study. J Wound Care 26:272–273

    Article  CAS  PubMed  Google Scholar 

  • Moore C, Tejon G, Fuentes C, Hidalgo Y, Bono MR, Maldonado P, Fernandez R, Wood KJ, Fierro JA, Rosemblatt M (2015) Alloreactive regulatory T cells generated with retinoic acid prevent skin allograft rejection. Eur J Immunol 45:452–463

    Article  CAS  PubMed  Google Scholar 

  • Mostafalu P, Kiaee G, Giatsidis G, Khalilpour A, Nabavinia M, Dokmeci MR, Sonkusale S, Orgill DP, Tamayol A, Khademhosseini A (2017) A textile dressing for temporal and dosage controlled drug delivery. Adv Funct Mater 27

    Article  CAS  Google Scholar 

  • Muangman P, Opasanon S, Suwanchot S, Thangthed O (2011) A case report: efficiency of microbial cellulose dressing in partial thickness burn wounds. The Journal of the American College of Certified Wound Specialists

  • Mulder M (2011) The selection of wound care products for wound bed preparation: wound care. Prof Nursing Today 15:30–36

    Google Scholar 

  • Nam G, Rangasamy S, Purushothaman B, Song JM (2015) The application of bactericidal silver nanoparticles in wound treatment. Nanomater Nanotechnol 5:23

    Article  CAS  Google Scholar 

  • Navone SE, Pascucci L, Dossena M, Ferri A, Invernici G, Acerbi F, Cristini S, Bedini G, Tosetti V, Ceserani V, Bonomi A, Pessina A, Freddi G, Alessandrino A, Ceccarelli P, Campanella R, Marfia G, Alessandri G, Parati EA (2014) Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Res Ther 5:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholas MN, Jeschke MG, Amini-Nik S (2016) Methodologies in creating skin substitutes. Cell Mol Life Sci 73:3453–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noor S, Zubair M, Ahmad J (2015) Diabetic foot ulcer—a review on pathophysiology, classification and microbial etiology. Diab Metab Syndrome: Clin Res Rev 9:192–199

    Article  Google Scholar 

  • Nuschke A (2014) Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organ 10:29–37

    Google Scholar 

  • Nyame TT, Chiang HA, Orgill DP (2014) Clinical applications of skin substitutes. Surg Clin N Am 94:839–850

    Article  PubMed  Google Scholar 

  • Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP (2015) Tissue-engineered skin substitutes. Plast Reconstr Surg 136:1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Olczyk P, Mencner Ł, Komosinska-Vassev K (2014) The role of the extracellular matrix components in cutaneous wound healing. Biomed Res Int 2014

  • Orgill DP (2009) Excision and skin grafting of thermal burns. N Engl J Med 360:893–901

    Article  CAS  PubMed  Google Scholar 

  • Ouyang J, Chen Y-C, Luo G-X, Yan H, Peng Y-Z, Huang Y-S, Xia P-Y, Zhang Q, Liao Z-J, Li G-H, Yang X-D, Cai Y-Q (2014) A randomized and controlled multicenter prospective study of the Chinese medicinal compound Fufang Xuelian burn ointment for the treatment of superficial and deep second-degree burn wounds. Cell Biochem Biophys 69:467–474

    Article  CAS  PubMed  Google Scholar 

  • Patry J, Blanchette V (2017) Enzymatic debridement with collagenase in wounds and ulcers: a systematic review and meta-analysis. Int Wound J 14:1055–1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Pereira C, Gold W, Herndon D (2007) Review paper: burn coverage technologies: current concepts and future directions. J Biomater Appl 22:101–121

    Article  CAS  PubMed  Google Scholar 

  • Philp L, Umraw N, Cartotto R (2012) Late outcomes after grafting of the severely burned face: a quality improvement initiative. J Burn Care Res 33:46–56

    Article  PubMed  Google Scholar 

  • Pires ALR, Moraes ÂM (2015) Improvement of the mechanical properties of chitosan alginate wound dressings containing silver through the addition of a biocompatible silicone rubber. J Appl Polym Sci 132

  • Powers JG, Higham C, Broussard K, Phillips TJ (2016) Wound healing and treating wounds: chronic wound care and management. J Am Acad Dermatol 74:607–625 quiz 625-606

    Article  PubMed  Google Scholar 

  • Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, Rojewski M, Schrezenmeier H, Vander Beken S, Wlaschek M (2014) TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. J Invest Dermatol 134:526–537

    Article  CAS  PubMed  Google Scholar 

  • Qin Y (2008) The gel swelling properties of alginate fibers and their applications in wound management. Polym Adv Technol 19:6–14

    Article  CAS  Google Scholar 

  • Rajpaul K (2015) Biofilm in wound care. Br J Comm Nurs 20:

    Article  Google Scholar 

  • Ray S, Rao K (2011) Full thickness skin grafts. INTECH open access Publisher

  • Regan M, Barbul A (1994) The cellular biology of wound healing. Wound Healing, Germany 1:3–17

    CAS  Google Scholar 

  • Reichmann (2014) Phase I study for autologous dermal substitutes and dermo-epidermal skin substitutes for treatment of skin defects

  • Rodriguez-Menocal L, Shareef S, Salgado M, Shabbir A, Van Badiavas E (2015) Role of whole bone marrow, whole bone marrow cultured cells, and mesenchymal stem cells in chronic wound healing. Stem Cell Res Ther 6:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronfard V, Rives J-M, Neveux Y, Carsin H, Barrandon Y (2000) Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix1, 2. Transplantation 70:1588–1598

    Article  CAS  PubMed  Google Scholar 

  • Roper JA, Williamson RC, Bally B, Cowell CA, Brooks R, Stephens P, Harrison AJ, Bass MD (2015) Ultrasonic stimulation of mouse skin reverses the healing delays in diabetes and aging by activation of Rac1. J Invest Dermatol 135:2842–2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryssel H, Germann G, Kloeters O, Gazyakan E, Radu C (2010) Dermal substitution with Matriderm® in burns on the dorsum of the hand. Burns 36:1248–1253

    Article  CAS  PubMed  Google Scholar 

  • Sanluis-Verdes A, Yebra-Pimentel Vilar MT, Garcia-Barreiro JJ, Garcia-Camba M, Ibanez JS, Domenech N, Rendal-Vazquez ME (2015) Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent. Cell Tissue Bank 16:411–423

    Article  CAS  PubMed  Google Scholar 

  • Santamaria N, Gerdtz M, Sage S, McCann J, Freeman A, Vassiliou T, De Vincentis S, Ng AW, Manias E, Liu W, Knott J (2015) A randomised controlled trial of the effectiveness of soft silicone multi-layered foam dressings in the prevention of sacral and heel pressure ulcers in trauma and critically ill patients: the border trial. Int Wound J 12:302–308

    Article  PubMed  Google Scholar 

  • Schmidt A, Bekeschus S, Wende K, Vollmar B, Woedtke T (2017) A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26:156–162

    Article  CAS  PubMed  Google Scholar 

  • Schulz A, Depner C, Lefering R, Kricheldorff J, Kastner S, Fuchs PC, Demir E (2016) A prospective clinical trial comparing Biobrane((R)) Dressilk((R)) and PolyMem((R)) dressings on partial-thickness skin graft donor sites. Burns 42:345–355

    Article  PubMed  Google Scholar 

  • Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17:763–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyhan T (2011) Split-thickness skin grafts. INTECH open access Publisher

  • Shabbir A, Cox A, Rodriguez-Menocal L, Salgado M, Badiavas EV (2015) Mesenchymal stem cell exosomes induce proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro. Stem Cells Dev 24:1635–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y-I, Song H-HG, Papa AE, Burke JA, Volk SW, Gerecht S (2015) Acellular hydrogels for regenerative burn wound healing: translation from a porcine model. J Invest Dermatol 135:2519–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibbald RG, Coutts P, Woo KY (2012) Reduction of bacterial burden and pain in chronic wounds using a new polyhexamethylene biguanide antimicrobial foam dressing: clinical trial results : original research. Wound healing southern. Africa 5:31–36

    Google Scholar 

  • Sibbald RG, Elliott JA, Ayello EA, Somayaji R (2016) Optimizing the moisture management tightrope with wound bed preparation 2015©: wound care. Wound healing southern. Africa 9:9–15

    Google Scholar 

  • Soneja A, Drews M, Malinski T (2005) Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 57(Suppl):108–119

    PubMed  Google Scholar 

  • Spear M (2013) Acute or chronic? What’s the difference? Plast Surg Nurs 33:98–100

    Article  PubMed  Google Scholar 

  • Still J, Glat P, Silverstein P, Griswold J, Mozingo D (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29:837–841

    Article  PubMed  Google Scholar 

  • Su Z, Ma H, Wu Z, Zeng H, Li Z, Wang Y, Liu G, Xu B, Lin Y, Zhang P (2014) Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater Sci Eng C 44:440–448

    Article  CAS  Google Scholar 

  • Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346:941–945

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Jiang M, Cui J, Liu W, Yin L, Xu C, Wei Q, Yan X, Chen F (2016) A novel approach for the cryodesiccated preservation of tissue-engineered skin substitutes with trehalose. Mater Sci Eng C 60:60–66

    Article  CAS  Google Scholar 

  • Tahir H, Rakha A, Mukhtar M, Yaqoob R, Samiullah K, Ahsan M (2017) Evaluation of wound healing potential of spider silk using mice model. JAPS: Journal of Animal & Plant Sciences 27:

  • Tehan PE, Bray A, Chuter VH (2016) Non-invasive vascular assessment in the foot with diabetes: sensitivity and specificity of the ankle brachial index, toe brachial index and continuous wave Doppler for detecting peripheral arterial disease. J Diabetes Complicat 30:155–160

    Article  Google Scholar 

  • Teng M, Huang Y, Zhang H (2014) Application of stems cells in wound healing—an update. Wound Repair Regen 22:151–160

    Article  PubMed  Google Scholar 

  • Thorne CH (2007) Techniques and principles in plastic surgery. Grabb and Smith’s Plastic Surgery 6th ed Philadelphia: Lippincott-Raven 8:

  • Thornton JF (2004) Skin grafts and skin substitutes. Selected readings in plastic. Surgery 10:1–24

    Google Scholar 

  • Thu H-E, Zulfakar MH, Ng S-F (2012) Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 434:375–383

    Article  CAS  PubMed  Google Scholar 

  • Timsit J-F, Mimoz O, Mourvillier B, Souweine B, Garrouste-Orgeas M, Alfandari S, Plantefeve G, Bronchard R, Troche G, Gauzit R (2012) Randomized controlled trial of chlorhexidine dressing and highly adhesive dressing for preventing catheter-related infections in critically ill adults. Am J Respir Crit Care Med 186:1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Truong A-TN, Kowal-Vern A, Latenser BA, Wiley DE, Walter RJ (2005) Comparison of dermal substitutes in wound healing utilizing a nude mouse model. J Burns Wounds 4

  • Truong B, Grigson E, Patel M, Liu X (2016) Pressure ulcer prevention in the hospital setting using silicone foam dressings. Cureus 8:

  • Ullah H, Santos HA, Khan T (2016) Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23:2291–2314

    Article  CAS  Google Scholar 

  • Vashi C (2014) Clinical outcomes for breast cancer patients undergoing mastectomy and reconstruction with use of DermACELL, a sterile, room temperature acellular dermal matrix. Plast Surg Int 2014:704323

    PubMed  PubMed Central  Google Scholar 

  • Voigt J, Driver VR (2012) Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta analysis of randomized controlled trials. Wound Repair Regen 20:317–331

    Article  PubMed  Google Scholar 

  • Vojtassak J, Danisovic L, Kubes M, Bakos D, Jarabek L, Ulicna M, Blasko M (2006) Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuro Endocrinol Lett 27(Suppl 2):134–137

    PubMed  Google Scholar 

  • Von Woedtke T, Metelmann HR, Weltmann KD (2014) Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib Plasma Physics 54:104–117

    Article  CAS  Google Scholar 

  • Walker M, Metcalf D, Parsons D, Bowler P (2015) A real-life clinical evaluation of a next-generation antimicrobial dressing on acute and chronic wounds. J Wound Care 24

    Article  CAS  PubMed  Google Scholar 

  • Warriner RA III, Cardinal M, Investigators T (2011) Human fibroblast-derived dermal substitute: results from a treatment investigational device exemption (TIDE) study in diabetic foot ulcers. Adv Skin Wound Care 24:306–311

    Article  PubMed  Google Scholar 

  • Whitaker P (2017) Brazilian doctors use fish skin to treat burn victims

  • Wilcox JR, Carter MJ, Covington S (2013) Frequency of debridements and time to heal: a retrospective cohort study of 312 744 wounds. JAMA Dermatol 149:1050–1058

    Article  PubMed  Google Scholar 

  • Wolcott R, Sanford N, Gabrilska R, Oates J, Wilkinson J, Rumbaugh K (2016) Microbiota is a primary cause of pathogenesis of chronic wounds. J Wound Care 25:S33–S43

    Article  CAS  PubMed  Google Scholar 

  • Wosgrau ACC, da Silva Jeremias T, Leonardi DF, Pereima MJ, Di Giunta G, Trentin AG (2015) Comparative experimental study of wound healing in mice: pelnac versus integra. PLoS One 10:e0120322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao M, Attalla K, Ren Y, French MA, Driver VR (2013) Ease of use, safety, and efficacy of integra bilayer wound matrix in the treatment of diabetic foot ulcers in an outpatient clinical setting: a prospective pilot study. J Am Podiatr Med Assoc 103:274–280

    Article  PubMed  Google Scholar 

  • Yao M, Fabbi M, Hayashi H, Park N, Attala K, Gu G, French MA, Driver VR (2014) A retrospective cohort study evaluating efficacy in high-risk patients with chronic lower extremity ulcers treated with negative pressure wound therapy. Int Wound J 11:483–488

    Article  PubMed  Google Scholar 

  • Yim H, Cho YS, Seo CH, Lee BC, Ko JH, Kim D, Hur J, Chun W, Kim JH (2010) The use of AlloDerm on major burn patients: AlloDerm prevents post-burn joint contracture. Burns 36:322–328

    Article  PubMed  Google Scholar 

  • Zaulyanov L, Kirsner RS (2007) A review of a bi-layered living cell treatment (Apligraf®) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging 2:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelen CM, Serena TE, Denoziere G, Fetterolf DE (2013) A prospective randomised comparative parallel study of amniotic membrane wound graft in the management of diabetic foot ulcers. Int Wound J 10:502–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guan J, Niu X, Hu G, Guo S, Li Q, Xie Z, Zhang C, Wang Y (2015) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Stanley Lin for proofreading the article. Our gratefulness also goes to Dr. Weili Feng for his constructive suggestions. This work was supported by the National Undergraduate Training Program for Innovation and Entrepreneurship (201710560037), National Natural Science Foundation of China (81772102, 81471882, 81372084) and Natural Science Foundation of Guangdong Province (2017A030313776).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changmin Lin or Haihong Li.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, R., Lin, C., Lin, Z. et al. Approaches to cutaneous wound healing: basics and future directions. Cell Tissue Res 374, 217–232 (2018). https://doi.org/10.1007/s00441-018-2830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2830-1

Keywords

Navigation