Skip to main content

Advertisement

Log in

Recent progress and drug delivery applications of surface-functionalized inorganic nanoparticles in cancer therapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Cancer remains a major global health burden and existing therapeutic approaches face substantial challenges such as drug resistance, poor selectivity, heterogeneity, and the complex tumor microenvironment. Nanotechnology has evolved into a promising tool with huge potential for application in the field of medicine. Recently, inorganic nanoparticles (INPs) have been widely explored for cancer therapy because of their distinct tunable physicochemical properties, biocompatibility, and versatile preparation methods. In addition, surface functionalization of INPs has further improved therapeutics efficacy by modulating their features, such as poor aqueous solubility, in vivo stability, potential toxicity, enhanced cancer targeting, and reduced binding to healthy cells.

Area covered

In this review, we briefly highlight a few of the most commonly used INPs in cancer therapy, along with their basic features and fabrication methods. Strategies, commonly employed materials and reasons for surface functionalization of INPs have also been described. Furthermore, the latest drug delivery and therapeutic applications of surface-functionalized INPs in various cancers were extensively reviewed. This review concludes with a future outlook and a few limitations of surface-functionalized INPs that hinder their clinical application.

Expert opinion

The presented data undoubtedly prove the potential of surface-functionalized INPs to improve therapeutic efficacy, cellular uptake, and tumor growth inhibition of anti-tumor drugs, thereby minimizing their limitations in cancer therapy. However, functionalized INPs have a negligible presence in the market for cancer therapy despite their promising potential. Appropriate designing and clinically relevant testing may facilitate their clinical translation into safe and effective cancer therapy in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abedin MR, Umapathi S, Mahendrakar H, Laemthong T, Coleman H, Muchangi D, Santra S, Nath M, Barua S (2018) Polymer coated gold-ferric oxide superparamagnetic nanoparticles for theranostic applications. J Nanobiotechnol 16:80

    Article  CAS  Google Scholar 

  • Afsana S, Prashant K (2021) An insight into aptamer engineered dendrimer for cancer therapy. Eur Polym J 159:110746

    Article  Google Scholar 

  • Agwa MM, Sabra S (2021) Lactoferrin coated or conjugated nanomaterials as an active targeting approach in nanomedicine. Int J Biol Macromol 167:1527–1543

    Article  CAS  PubMed  Google Scholar 

  • Aisida SO, Akpa PA, Ahmad I, Zhao T-K, Maaza M, Ezema FI (2020) Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. Eur Polym J 122:109371

    Article  CAS  Google Scholar 

  • Al Faraj A, Shaik AS, Ratemi E, Halwani R (2016) Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 225:240–251

    Article  CAS  PubMed  Google Scholar 

  • Alalaiwe A, Roberts G, Carpinone P, Munson J, Roberts S (2017) Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats. Drug Deliv 24:591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alalaiwe A, Carpinone P, Alshahrani S, Alsulays B, Ansari M, Anwer M, Alshehri S, Alshetaili A (2019) Influence of chitosan coating on the oral bioavailability of gold nanoparticles in rats. Saudi Pharm J 27:171–175

    Article  PubMed  Google Scholar 

  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AlleBr MG, Kim TH, Park SH, Lee SH, Kim JC (2020) Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr Polym 229:115511

    Article  Google Scholar 

  • Amaldoss MJN, Yang J-L, Koshy P, Unnikrishnan A, Sorrell CC (2022) Inorganic nanoparticle-based advanced cancer therapies: Promising combination strategies. Drug Discov Today 27:103386

    Article  CAS  PubMed  Google Scholar 

  • Amin MU, Ali S, Ali MY, Tariq I, Nasrullah U, Pinnapreddy SR, Wölk C, Bakowsky U, Brüßler J (2021) Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur J Pharm Biopharm 165:31–40

    Article  CAS  PubMed  Google Scholar 

  • Amir M, Andrew MM, Michael BC (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22

    Google Scholar 

  • Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I (2022) Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast 66:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  • Aryal S, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 19:7879–7884

    Article  CAS  Google Scholar 

  • Asadishad B, Vossoughi M, Alemzadeh I (2010) Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles. Ind Eng Chem Res 49:1958–1963

    Article  CAS  Google Scholar 

  • Atlı Şekeroğlu Z, Şekeroğlu V, Aydın B, Kontaş Yedier S (2023) Cerium oxide nanoparticles exert antitumor effects and enhance paclitaxel toxicity and activity against breast cancer cells. J Biomed Mater Res B 111:579–589

    Article  Google Scholar 

  • Babaei M, Abnous K, Taghdisi SM, Taghavi S, Saljooghi SA, Ramezani M, Alibolandi M (2020) Targeted rod-shaped mesoporous silica nanoparticles for the co-delivery of camptothecin and survivin shRNA in to colon adenocarcinoma in vitro and in vivo. Eur J Pharm Biopharm 156:84–96

    Article  CAS  PubMed  Google Scholar 

  • Bailly A-L, Correard F, Popov A, Tselikov G, Chaspoul F, Appay R, Al-Kattan A, Kabashin AV, Braguer D, Esteve M-A (2019) In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci Rep 9:12890

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay A, Roy B, Shaw P, Mondal P, Mondal MK, Chowdhury P, Bhattacharya S, Chattopadhyay A (2020) Cytotoxic effect of green synthesized silver nanoparticles in MCF7 and MDA-MB-231 human breast cancer cells in vitro. Nucleus 63:191–202

    Article  Google Scholar 

  • Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2010) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B 93:557–561

    Article  Google Scholar 

  • Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N, Faheem SM, Premkumar K, Vasanthakumar G (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B 149:116–128

    Article  CAS  PubMed  Google Scholar 

  • Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, Rizzolio F (2018) Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem 25:4269–4303

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259

    Article  CAS  PubMed  Google Scholar 

  • Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1:57–65

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Luo Y, Zhang W, Du D, Lin Y (2016) pH-sensitive ZnO quantum dots-doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl Mater Interfaces 8:22442–22450

    Article  CAS  PubMed  Google Scholar 

  • Cháfer-Pericás C, Maquieira A, Puchades R (2012) Functionalized inorganic nanoparticles used as labels in solid-phase immunoassays. Trends Analyt Chem 31:144–156

    Article  Google Scholar 

  • Chakraborti S, Chakraborty S, Saha S, Manna A, Banerjee S, Adhikary A, Sarwar S, Hazra TK, Das T, Chakrabarti P (2017) PEG-functionalized zinc oxide nanoparticles induce apoptosis in breast cancer cells through reactive oxygen species-dependent impairment of DNA damage repair enzyme NEIL2. Free Radic Biol Med 103:35–47

    Article  CAS  PubMed  Google Scholar 

  • Chen W-H, Luo G-F, Qiu W-X, Lei Q, Hong S, Wang S-B, Zheng D-W, Zhu C-H, Zeng X, Feng J, Cheng S-X, Zhang X-Z (2016a) Programmed nanococktail for intracellular cascade reaction regulating self-synergistic tumor targeting therapy. Small 12:733–744

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xu Z, Zhu D, Tao X, Gao Y, Zhu H, Mao Z, Ling J (2016b) Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo. J Colloid Interface Sci 483:201–210

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Luo L, Fan S, Xiong Y, Ling Y, Peng S (2021) Zinc oxide nanoparticles synthesized from Aspergillus terreus induces oxidative stress-mediated apoptosis through modulating apoptotic proteins in human cervical cancer HeLa cells. J Pharm Pharmacol 73:221–232

    Article  PubMed  Google Scholar 

  • Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, Curcio M, Spizzirri UG, Hampel S (2019) Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells. Materials 12:2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde J, Tian F, Hernández Y, Bao C, Cui D, Janssen K-P, Ibarra MR, Baptista PV, Stoeger T, De La Fuente JM (2013) In vivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models. Biomaterials 34:7744–7753

    Article  CAS  PubMed  Google Scholar 

  • Dadfar SM, Roemhild K, Drude NI, Von Stillfried S, Knüchel R, Kiessling F, Lammers T (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darweesh RS, Ayoub NM, Nazzal S (2019) Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int J Nanomed 14:7643–7663

    Article  CAS  Google Scholar 

  • Das A, Soehnlen E, Woods S, Hegde R, Henry A, Gericke A, Basu S (2011) VEGFR-2 targeted cellular delivery of doxorubicin by gold nanoparticles for potential antiangiogenic therapy. J Nanopart Res 13:6283–6290

    Article  CAS  Google Scholar 

  • Das B, Tripathy S, Adhikary J, Chattopadhyay S, Mandal D, Dash SK, Das S, Dey A, Dey SK, Das D, Roy S (2017) Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study. J Biol Inorg Chem 22:893–918

    Article  CAS  PubMed  Google Scholar 

  • Datir SR, Das M, Singh RP, Jain S (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • De Matteis V, Cascione M, Toma CC, Leporatti S (2018) Silver nanoparticles: synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials 8:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T (2021) New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med 9:20503121211034370

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewi FRP, Shoukat N, Alifiyah NI, Wahyuningsih SPA, Rosyidah A, Prenggono MD, Hartono H (2022) Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-induced breast cancer. Heliyon 8:e11418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P (2022) Dendrimers as nanoscale vectors: unlocking the bars of cancer therapy. Semin Cancer Biol 86:396–419

    Article  PubMed  Google Scholar 

  • Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhamecha D, Jalalpure S, Jadhav K, Jagwani S, Chavan R (2016) Doxorubicin loaded gold nanoparticles: implication of passive targeting on anticancer efficacy. Pharmacol Res 113:547–556

    Article  CAS  PubMed  Google Scholar 

  • Di Martino A, Guselnikova OA, Trusova ME, Postnikov PS, Sedlarik V (2017) Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs. Int J Pharm 526:380–390

    Article  PubMed  Google Scholar 

  • Dumontel B, Canta M, Engelke H, Chiodoni A, Racca L, Ancona A, Limongi T, Canavese G, Cauda V (2017) Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J Mater Chem B 5:8799–8813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sonbaty SM (2013) Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol 4:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935

    Article  CAS  PubMed  Google Scholar 

  • Feliu N, Docter D, Heine M, Del Pino P, Ashraf S, Kolosnjaj-Tabi J, Macchiarini P, Nielsen P, Alloyeau D, Gazeau F, Stauber RH, Parak WJ (2016) In vivo degeneration and the fate of inorganic nanoparticles. Chem Soc Rev 45:2440–2457

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald G, Low D, Morgan L, Hilt C, Benford M, Akers C, Hornback S, Hilt JZ, Scott D (2023) Controlled release of DNA binding anticancer drugs from gold nanoparticles with near-infrared radiation. J Pharm Sci 112:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Chen K, Ma JL, Gao F (2014) Cerium oxide nanoparticles in cancer. Onco Targets Ther 7:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhong S, Xu L, He S, Dou Y, Zhao S, Chen P, Cui X (2019) Mesoporous silica nanoparticles capped with graphene quantum dots as multifunctional drug carriers for photo-thermal and redox-responsive release. Microporous Mesoporous Mater 278:130–137

    Article  CAS  Google Scholar 

  • Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D (2021) Gold nanoparticles in cancer theranostics. Front Bioeng Biotechnol 9:647905

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2013) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34:807–816

    Article  CAS  PubMed  Google Scholar 

  • Goddard ZR, Marín MJ, Russell DA, Searcey M (2020) Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 49:8774–8789

    Article  CAS  PubMed  Google Scholar 

  • Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC (2009) Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine 4:401–410

    Article  CAS  PubMed  Google Scholar 

  • Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S (2020) Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol 55:101376

    Article  CAS  Google Scholar 

  • Gupta U, Saren BN, Khaparkhuntikar K, Madan J, Singh PK (2022) Applications of lipid-engineered nanoplatforms in the delivery of various cancer therapeutics to surmount breast cancer. J Control Release 348:1089–1115

    Article  CAS  PubMed  Google Scholar 

  • He Y, Du Z, Ma S, Liu Y, Li D, Huang H, Jiang S, Cheng S, Wu W, Zhang K, Zheng X (2016) Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int J Nanomed 11:1879–1887

    Article  CAS  Google Scholar 

  • Hemben A, Chianella I, Leighton GJT (2021) Surface engineered iron oxide nanoparticles generated by inert gas condensation for biomedical applications. Bioengineering 8:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo DN, Yang DH, Moon H-J, Lee JB, Bae MS, Lee SC, Lee WJ, Sun I-C, Kwon IK (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33:856–866

    Article  CAS  PubMed  Google Scholar 

  • Herizchi R, Abbasi E, Milani M, Akbarzadeh A (2016) Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol 44:596–602

    Article  CAS  PubMed  Google Scholar 

  • Hoang Thi TT, Cao VD, Nguyen TNQ, Hoang DT, Ngo VC, Nguyen DH (2019) Functionalized mesoporous silica nanoparticles and biomedical applications. Mater Sci Eng C 99:631–656

    Article  CAS  Google Scholar 

  • Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH (2020) Protein-based nanoparticles as drug delivery systems. Pharmaceutics 12:604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JJ, Xiao D, Zhang XZ (2016) Advances in peptide functionalization on mesoporous silica nanoparticles for controlled drug release. Small 12:3344–3359

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  PubMed  Google Scholar 

  • Iannazzo D, Pistone A, Salamò M, Galvagno S, Romeo R, Giofré SV, Branca C, Visalli G, Di Pietro A (2017) Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 518:185–192

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA (2019) Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 109:1100–1111

    Article  CAS  PubMed  Google Scholar 

  • Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1062562

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Santiago I, Foord J (2020a) High-yield electrochemical synthesis of silver nanoparticles by enzyme-modified boron-doped diamond electrodes. Langmuir 36:6089–6094

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Chen J, Gong C, Wang Y, Gao Y, Yuan Y (2020b) Intravenous delivery of enzalutamide based on high drug loading multifunctional graphene oxide nanoparticles for castration-resistant prostate cancer therapy. J Nanobiotechnol 18:50

    Article  CAS  Google Scholar 

  • Jorge G-B, José L-D-L, Miguel M (2011) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Open Chem 9:7–19

    Article  Google Scholar 

  • Kang J-W, Cho H-J, Lee HJ, Jin H-E, Maeng H-J (2019) Polyethylene glycol-decorated doxorubicin/carboxymethyl chitosan/gold nanocomplex for reducing drug efflux in cancer cells and extending circulation in blood stream. Int J Biol Macromol 125:61–71

    Article  CAS  PubMed  Google Scholar 

  • Kankala RK, Han YH, Na J, Lee CH, Sun Z, Wang SB, Kimura T, Ok YS, Yamauchi Y, Chen AZ, Wu KC (2020) Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv Mater 32:e1907035

    Article  PubMed  Google Scholar 

  • Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK (2022) Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnol 20:152

    Article  CAS  Google Scholar 

  • Khan Z, Bisen PS (2013) Oncoapoptotic signaling and deregulated target genes in cancers: special reference to oral cancer. Biochim Biophys Acta Rev Cancer 1836:123–145

    Article  CAS  Google Scholar 

  • Khan K, Javed S (2018) Functionalization of inorganic nanoparticles to augment antimicrobial efficiency: a critical analysis. Curr Pharm Biotechnol 19:523–536

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Singh D, Ahmad A, Siddique HR (2021) Revisiting inorganic nanoparticles as promising therapeutic agents: a paradigm shift in oncological theranostics. Eur J Pharm Sci 164:105892

    Article  CAS  PubMed  Google Scholar 

  • Khodashenas B, Ardjmand M, Rad AS, Esfahani MR (2021) Gelatin-coated gold nanoparticles as an effective pH-sensitive methotrexate drug delivery system for breast cancer treatment. Mater Today Chem 20:100474

    Article  CAS  Google Scholar 

  • Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton K, Ludwig R, Dähring H, Ettelt V, Lazaro-Carrillo A, Calero M, Sader M, Courty J, Volkov Y, Prina-Mello A, Villanueva A, Somoza Á, Cortajarena AL, Miranda R, Hilger I (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res 17:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D (2017) Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4 & SiO2 core–shell nanoparticles. RSC Adv 7:8786–8797

    Article  CAS  Google Scholar 

  • Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10:2622–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Kakiuchi Y, Kikuchi S, Nishizaki M, Kagawa S, Tazawa H, Fujiwara T (2018) HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine 14:1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Wei T, Cao W, Zou G, Liang X-J (2012) Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33:1180–1189

    Article  CAS  PubMed  Google Scholar 

  • Kundu M, Sadhukhan P, Ghosh N, Chatterjee S, Manna P, Das J, Sil PC (2019) pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res 18:161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Chatterjee DK, Lee MH, Krishnan S (2014) Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett 347:46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q (2010) Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31:8410–8418

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Guo M, Lin Z, Zhao M, Xiao M, Wang C, Xu T, Chen T, Zhu B (2016) Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomed 11:6693–6702

    Article  CAS  Google Scholar 

  • Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X (2018a) Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int J Nanomed 13:1241–1256

    Article  CAS  Google Scholar 

  • Li Y, Duo Y, Zhai P, He L, Zhong K, Zhang Y, Huang K, Luo J, Zhang H, Yu X (2018b) Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Nanomedicine 13:1753–1772

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhang Y, Zhang K, Wu Z, Feng N (2018c) Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. Artif Cells Nanomed Biotechnol 46:578–587

    Article  PubMed  Google Scholar 

  • Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y (2019a) AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif Cells Nanomed Biotechnol 47:4222–4233

    Article  CAS  PubMed  Google Scholar 

  • Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J (2019b) Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat Commun 10:3349

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Jian M, Sun Y, Zhu Q, Wang Z (2021) The peptide functionalized inorganic nanoparticles for cancer-related bioanalytical and biomedical applications. Molecules 26:3228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QR, Xu HZ, Xiao RC, Liu Y, Tang JM, Li J, Yu TT, Liu B, Li LG, Wang MF, Han N, Xu YH, Wang C, Komatsu N, Zhao L, Peng XC, Li TF, Chen X (2022a) Platelets are highly efficient and efficacious carriers for tumor-targeted nano-drug delivery. Drug Deliv 29:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Su Y, Pan H, Deng W, Wang J, Liu D, Pan W (2022b) Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational therapy of orthotopic colon cancer. Pharmacol Res 176:106080

    Article  CAS  PubMed  Google Scholar 

  • Liao W-S, Ho Y, Lin Y-W, Naveen Raj E, Liu K-K, Chen C, Zhou X-Z, Lu K-P, Chao J-I (2019) Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater 86:395–405

    Article  CAS  PubMed  Google Scholar 

  • Lin KS, Chowdhury S (2010) Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review. Int J Mol Sci 11:3226–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liszbinski RB, Romagnoli GG, Gorgulho CM, Basso CR, Pedrosa VA, Kaneno R (2020) Anti-EGFR-coated gold nanoparticles in vitro carry 5-fluorouracil to colorectal cancer cells. Materials 13:375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z (2011) Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151

    Article  PubMed  Google Scholar 

  • Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9:9243–9257

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Dong J, Zhang T, Peng Q (2018a) Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 286:64–73

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang D, Lian S, Zheng J, Li B, Li T, Jia L (2018b) Redox-responsive hyaluronic acid-functionalized graphene oxide nanosheets for targeted delivery of water-insoluble cancer drugs. Int J Nanomed 13:7457–7472

    Article  CAS  Google Scholar 

  • Liu CM, Chen GB, Chen HH, Zhang JB, Li HZ, Sheng MX, Weng WB, Guo SM (2019) Cancer cell membrane-cloaked mesoporous silica nanoparticles with a pH-sensitive gatekeeper for cancer treatment. Colloids Surf B 175:477–486

    Article  CAS  Google Scholar 

  • Liu D, Su Y, Chen J, Pan H, Pan W (2023) Folic acid-chitosan oligosaccharide conjugates decorated nanodiamond as potential carriers for the oral delivery of doxorubicin. AAPS PharmSciTech 24:86

    Article  PubMed  Google Scholar 

  • Lu J, Liong M, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small 3:1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Wan L, Li X, Zhang M, Shakoor A, Li W, Zhang X (2022) Combined synthesis of cerium oxide particles for effective anti-bacterial and anti-cancer nanotherapeutics. Int J Nanomed 17:5733–5746

    Article  Google Scholar 

  • Luchini A, Vitiello G (2019) Understanding the Nano-bio interfaces: lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications. Front Chem 7:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malugin A, Ghandehari H (2010) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30:212–217

    Article  PubMed  Google Scholar 

  • Meena J, Gupta A, Ahuja R, Singh M, Bhaskar S, Panda AK (2020) Inorganic nanoparticles for natural product delivery: a review. Environ Chem Lett 18:2107–2118

    Article  CAS  Google Scholar 

  • Meena D, Vimala K, Kannan S (2022) Combined delivery of DOX and Kaempferol using PEGylated gold nanoparticles to target colon cancer. J Clust Sci 33:173–187

    Article  CAS  Google Scholar 

  • Mehra NK, Jain NK (2015) Cancer targeting propensity of folate conjugated surface engineered multi-walled carbon nanotubes. Colloids Surf B 132:17–26

    Article  CAS  Google Scholar 

  • Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674:36–44

    Article  CAS  PubMed  Google Scholar 

  • Mo J, He L, Ma B, Chen T (2016) Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier. ACS Appl Mater Interfaces 8:6811–6825

    Article  CAS  PubMed  Google Scholar 

  • Montalvo-Quiros S, Aragoneses-Cazorla G, Garcia-Alcalde L, Vallet-Regí M, González B, Luque-Garcia JL (2019) Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: insights into the action mechanisms using quantitative proteomics. Nanoscale 11:4531–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    Article  CAS  PubMed  Google Scholar 

  • Morais RP, Novais GB, Sangenito LS, Santos ALS, Priefer R, Morsink M, Mendonça MC, Souto EB, Severino P, Cardoso JC (2020) Naringenin-functionalized multi-walled carbon nanotubes: a potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells. Int J Mol Sci 21:4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad Z, Raza A, Ghafoor S, Naeem A, Naz SS, Riaz S, Ahmed W, Rana NF (2016) PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur J Pharm Sci 91:251–255

    Article  CAS  PubMed  Google Scholar 

  • Mussa Farkhani S, Asoudeh Fard A, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H (2017) Enhancing antitumor activity of silver nanoparticles by modification with cell-penetrating peptides. Artif Cells Nanomed Biotechnol 45:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Nadeem M, Khan R, Shah N, Bangash IR, Abbasi BH, Hano C, Liu C, Ullah S, Hashmi SS, Nadhman A, Celli J (2021) A review of microbial mediated iron nanoparticles (IONPs) and its biomedical applications. Nanomaterials 12:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Naghizadeh A, Mohammadi-Aghdam S, Mortazavi-Derazkola S (2020) Novel CoFe(2)O(4)@ZnO-CeO(2) ternary nanocomposite: sonochemical green synthesis using Crataegus microphylla extract, characterization and their application in catalytic and antibacterial activities. Bioorg Chem 103:104194

    Article  CAS  PubMed  Google Scholar 

  • Nakkala JR, Mata R, Raja K, Khub Chandra V, Sadras SR (2018) Green synthesized silver nanoparticles: catalytic dye degradation, in vitro anticancer activity and in vivo toxicity in rats. Mater Sci Eng C 91:372–381

    Article  CAS  Google Scholar 

  • Nam J, Won N, Bang J, Jin H, Park J, Jung S, Jung S, Park Y, Kim S (2013) Surface engineering of inorganic nanoparticles for imaging and therapy. Adv Drug Deliv Rev 65:622–648

    Article  CAS  PubMed  Google Scholar 

  • Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrollahi F, Varshosaz J, Khodadadi AA, Lim S, Jahanian-Najafabadi A (2016) Targeted delivery of docetaxel by use of Transferrin/Poly(allylamine hydrochloride)-functionalized graphene oxide nanocarrier. ACS Appl Mater Interfaces 8:13282–13293

    Article  CAS  PubMed  Google Scholar 

  • Navada MK, Karnikkar NG, D’souza JN, Kouser S, Aroor G, Kudva J, Jayappa MD (2023) Biosynthesis of phyto functionalized cerium oxide nanoparticles mediated from Scoparia dulsis L. for appraisal of anti-cancer potential against adenocarcinomic lung cancer cells and paracetamol sensing potentiality. Environ Sci Pollut Res Int 30:18901–18920

    Article  CAS  PubMed  Google Scholar 

  • Nejati K, Dadashpour M, Gharibi T, Mellatyar H, Akbarzadeh A (2022) Biomedical applications of functionalized gold nanoparticles: a review. J Clust Sci 33:1–16

    Article  CAS  Google Scholar 

  • Nirmala MJ, Kizhuveetil U, Johnson A, Balaji G, Nagarajan R, Muthuvijayan V (2023) Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 13:8606–8629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW (2020) Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 10:11292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nourmohammadi E, Khoshdel-Sarkarizi H, Nedaeinia R, Sadeghnia HR, Hasanzadeh L, Darroudi M, Kazemi Oskuee R (2019) Evaluation of anticancer effects of cerium oxide nanoparticles on mouse fibrosarcoma cell line. J Cell Physiol 234:4987–4996

    Article  CAS  PubMed  Google Scholar 

  • Nourmohammadi E, Khoshdel-Sarkarizi H, Nedaeinia R, Darroudi M, KazemiOskuee R (2020) Cerium oxide nanoparticles: a promising tool for the treatment of fibrosarcoma in-vivo. Mater Sci Eng C 109:110533

    Article  CAS  Google Scholar 

  • Ong C, Lim JZ, Ng CT, Li JJ, Yung LY, Bay BH (2013) Silver nanoparticles in cancer: therapeutic efficacy and toxicity. Curr Med Chem 20:772–781

    CAS  PubMed  Google Scholar 

  • Pandey PC, Shukla S, Pandey G, Narayan RJ (2021) Nanostructured diamond for biomedical applications. Nanotechnology 32:132001

    Article  CAS  PubMed  Google Scholar 

  • Pandita D, Munjal A, Poonia N, Awasthi R, Kalonia H, Lather V (2021) Albumin-coated mesoporous silica nanoparticles of docetaxel: preparation, characterization, and pharmacokinetic evaluation. Assay Drug Dev Technol 19:226–236

    Article  CAS  PubMed  Google Scholar 

  • Park T, Lee S, Amatya R, Cheong H, Moon C, Kwak HD, Min KA, Shin MC (2020) ICG-loaded PEGylated BSA-silver nanoparticles for effective photothermal cancer therapy. Int J Nanomed 15:5459–5471

    Article  CAS  Google Scholar 

  • Passeri D, Rinaldi F, Ingallina C, Carafa M, Rossi M, Terranova ML, Marianecci C (2015) Biomedical applications of nanodiamonds: an overview. J Nanosci Nanotechnol 15:972–988

    Article  CAS  PubMed  Google Scholar 

  • Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL, Yaszemski MJ, Reid JM, Ames MM, Mukherjee P, Mukhopadhyay D (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978

    Article  CAS  PubMed  Google Scholar 

  • Peikang B, Shengliang H, Taiping Z, Jing S, Shirui C (2010) Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation. Mater Res Bull 45:826–829

    Article  Google Scholar 

  • Peng Y, Song C, Yang C, Guo Q, Yao M (2017) Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomed 12:295–304

    Article  CAS  Google Scholar 

  • Pešić M, Podolski-Renić A, Stojković S, Matović B, Zmejkoski D, Kojić V, Bogdanović G, Pavićević A, Mojović M, Savić A, Milenković I, Kalauzi A, Radotić K (2015) Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem Biol Interact 232:85–93

    Article  PubMed  Google Scholar 

  • Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L (2014) Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8:10414–10425

    Article  CAS  PubMed  Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Reddy B, Rachamalla SS, Sistla R (2015) Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 80:48–56

    Article  CAS  PubMed  Google Scholar 

  • Poon W, Zhang YN, Ouyang B, Kingston BR, Wu JLY, Wilhelm S, Chan WCW (2019) Elimination pathways of nanoparticles. ACS Nano 13:5785–5798

    Article  CAS  PubMed  Google Scholar 

  • Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Qing Max LuG (2011) Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale 3:2801–2818

    Article  CAS  PubMed  Google Scholar 

  • Pouresmaeil V, Haghighi S, Raeisalsadati AS, Neamati A, Homayouni-Tabrizi M (2021) The anti-breast cancer effects of green-synthesized zinc oxide nanoparticles using carob extracts. Anticancer Agents Med Chem 21:316–326

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63:1340–1351

    Article  CAS  PubMed  Google Scholar 

  • Pramanik N, De T, Sharma P, Alakesh A, Jagirdar SK, Rangarajan A, Jhunjhunwala S (2022) Surface-coated cerium nanoparticles to improve chemotherapeutic delivery to tumor cells. ACS Omega 7:31651–31657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pugazhendhi A, Edison T, Karuppusamy I, Kathirvel B (2018) Inorganic nanoparticles: a potential cancer therapy for human welfare. Int J Pharm 539:104–111

    Article  CAS  PubMed  Google Scholar 

  • Puvanakrishnan P, Park J, Chatterjee D, Krishnan S, Tunnell JW (2012) In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. Int J Nanomed 7:1251–1258

    Article  CAS  Google Scholar 

  • Quan Z, Wang X, Li P, Nguyen KT, Wang X-J, Luo Z, Zhang H, Tan NS, Zhao Y (2014) Cancer treatment: biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 24:2413–2413

    Article  Google Scholar 

  • Rafique M, Sadaf I, Rafique MS, Tahir MB (2017) A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol 45:1272–1291

    Article  CAS  PubMed  Google Scholar 

  • Rafique M, Sohaib M, Tahir R, Bilal Tahir M, Rizwan M (2021) Plant-mediated green synthesis of zinc oxide nanoparticles using peel extract of citrus reticulate for boosting seed germination of brassica nigra seeds. J Nanosci Nanotechnol 21:3573–3579

    Article  PubMed  Google Scholar 

  • Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razzazan A, Atyabi F, Kazemi B, Dinarvand R (2016) In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C 62:614–625

    Article  CAS  Google Scholar 

  • Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, Zhang Q, Yang Y, He Q, Gao H (2015) Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials 37:425–435

    Article  CAS  PubMed  Google Scholar 

  • Ruan S, Hu C, Tang X, Cun X, Xiao W, Shi K, He Q, Gao H (2016) Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano 10:10086–10098

    Article  CAS  PubMed  Google Scholar 

  • Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhukhan P, Kundu M, Chatterjee S, Ghosh N, Manna P, Das J, Sil PC (2019) Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater Sci Eng C 100:129–140

    Article  CAS  Google Scholar 

  • Saikatendu Deb R, Krishna Chandra D, Siddhartha Sankar D (2021) Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: a short review. Inorg Chem Commun 134:109050

    Article  Google Scholar 

  • Salimi M, Sarkar S, Hashemi M, Saber R (2020) Treatment of breast cancer-bearing BALB/c mice with magnetic hyperthermia using dendrimer functionalized iron-oxide nanoparticles. Nanomaterials 10:2310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanginario A, Miccoli B, Demarchi D (2017) Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Saroj S, Rajput SJ (2018) Etoposide encased folic acid adorned mesoporous silica nanoparticles as potent nanovehicles for enhanced prostate cancer therapy: synthesis, characterization, cellular uptake and biodistribution. Artif Cells Nanomed Biotechnol 46:S1115–S1130

    Article  PubMed  Google Scholar 

  • Schmitt M, Greten FR (2021) The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol 21:653–667

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Gong X, Li J, Wen J, Li Y, Zhang Z (2022) Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 12:3028–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma JR, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Katti K, Meyer M (2023) Anticancer and drug-sensitizing activities of gold nanoparticles synthesized from cyclopia genistoides (honeybush) extracts. Appl Sci 13:3973

    Article  CAS  Google Scholar 

  • Shetty A, Chandra S (2020) Inorganic hybrid nanoparticles in cancer theranostics: understanding their combinations for better clinical translation. Mater Today Chem 18:100381

    Article  CAS  Google Scholar 

  • Shimasaki Y, Kitahara M, Shoji M, Shimojima A, Wada H, Kuroda K (2018) Preparation of ordered mesoporous Au using double gyroid mesoporous silica KIT-6 via a seed-mediated growth process. Chem Asian J 13:3935–3941

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK (2015) In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep 2:27–39

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA: Cancer J Clin 72:7–33

    PubMed  Google Scholar 

  • Singh RP, Sharma G, Sonali SS, Kumar M, Pandey BL, Koch B, Muthu MS (2016) Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf B 141:429–442

    Article  CAS  Google Scholar 

  • Singh KR, Nayak V, Sarkar T, Singh RP (2020) Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. RSC Adv 10:27194–27214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhai NJ, Maheshwari R, Ramteke S (2020) CD44 receptor targeted ‘smart’ multi-walled carbon nanotubes for synergistic therapy of triple-negative breast cancer. Colloids Interface Sci Commun 35:100235

    Article  CAS  Google Scholar 

  • Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47:1382–1395

    Article  CAS  Google Scholar 

  • Song T, Qu Y, Ren Z, Yu S, Sun M, Yu X, Yu X (2021) Synthesis and characterization of polyvinylpyrrolidone-modified ZnO quantum dots and their in vitro photodynamic tumor suppressive action. Int J Mol Sci 22:8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonia I, Ahmad Reza B, Amir MMM (2021) Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 442:213949

    Article  Google Scholar 

  • Soumya M, Rajeshkumar S, Venkat Kumar S (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Resour-Effic Technol 3:516–527

    Google Scholar 

  • Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci 368:1333–1383

    CAS  PubMed  Google Scholar 

  • Strojny B, Grodzik M, Sawosz E, Winnicka A, Kurantowicz N, Jaworski S, Kutwin M, Urbańska K, Hotowy A, Wierzbicki M, Chwalibog A (2016) Diamond nanoparticles modify curcumin activity: in vitro studies on cancer and normal cells and in ovo studies on chicken embryo model. PLoS ONE 11:e0164637

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulthana S, Banerjee T, Kallu J, Vuppala SR, Heckert B, Naz S, Shelby T, Yambem O, Santra S (2017) Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm 14:875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun IC, Na JH, Jeong SY, Kim DE, Kwon IC, Choi K, Ahn CH, Kim K (2014a) Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging. Pharm Res 31:1418–1425

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014b) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    Article  CAS  Google Scholar 

  • Sweta G, Ashish G, Nitendra KS, Awesh KY (2019) Synthesis and characterization of nanodiamond-anticancer drug conjugates for tumor targeting. Diam Relat Mater 94:172–185

    Article  Google Scholar 

  • Taghdisi SM, Danesh NM, Lavaee P, Emrani AS, Hassanabad KY, Ramezani M, Abnous K (2016) Double targeting, controlled release and reversible delivery of daunorubicin to cancer cells by polyvalent aptamers-modified gold nanoparticles. Mater Sci Eng C 61:753–761

    Article  CAS  Google Scholar 

  • Tai JT, Lai CS, Ho HC, Yeh YS, Wang HF, Ho RM, Tsai DH (2014) Protein-silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir 30:12755–12764

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z (2022) Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 15:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Tjo K, Varamini P (2022) Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. Drug Deliv Transl Res 12:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Tsai LC, Hsieh HY, Lu KY, Wang SY, Mi FL (2016) EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine 11:9–30

    Article  CAS  PubMed  Google Scholar 

  • Tummala S, Kumar MN, Pindiprolu SK (2016) Improved anti-tumor activity of oxaliplatin by encapsulating in anti-DR5 targeted gold nanoparticles. Drug Deliv 23:3505–3519

    Article  CAS  PubMed  Google Scholar 

  • Urata C, Yamauchi Y, Aoyama Y, Imasu J, Todoroki S, Sakka Y, Inoue S, Kuroda K (2008) Fabrication of hierarchically porous spherical particles by assembling mesoporous silica nanoparticles via spray drying. J Nanosci Nanotechnol 8:3101–3105

    Article  CAS  PubMed  Google Scholar 

  • Van Der Laan K, Hasani M, Zheng T, Schirhagl R (2018) Nanodiamonds for in vivo applications. Small 14:e1703838

    Article  PubMed  Google Scholar 

  • Vassie JA, Whitelock JM, Lord MS (2018) Targeted delivery and redox activity of folic acid-functionalized nanoceria in tumor cells. Mol Pharm 15:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Vinardell MP, Mitjans M (2015) Antitumor activities of metal oxide nanoparticles. Nanomaterials 5:1004–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Li C, Cheng J, Yuan Z (2016) Recent advances on inorganic nanoparticle-based cancer therapeutic agents. Int J Environ Res Public Health 13:1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Gao S, Wang S, Xu Z, Wei L (2018) Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int J Nanomed 13:3441–3450

    Article  CAS  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20:595–601

    Article  CAS  PubMed  Google Scholar 

  • Wiesmann N, Kluenker M, Demuth P, Brenner W, Tremel W, Brieger J (2019) Zinc overload mediated by zinc oxide nanoparticles as innovative anti-tumor agent. J Trace Elem Med Biol 51:226–234

    Article  CAS  PubMed  Google Scholar 

  • Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65:1964–2015

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang J (2018) Chitosan-based zinc oxide nanoparticle for enhanced anticancer effect in cervical cancer: a physicochemical and biological perspective. Saudi Pharm J 26:205–210

    Article  PubMed  Google Scholar 

  • Xiao J, Duan X, Yin Q, Zhang Z, Yu H, Li Y (2013) Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer. Biomaterials 34:9648–9656

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31:3016–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Li F, Zhang H, Lu Y, Lian S, Lin H, Gao Y, Jia L (2016) EpCAM aptamer-functionalized mesoporous silica nanoparticles for efficient colon cancer cell-targeted drug delivery. Eur J Pharm Sci 83:28–35

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Deng T, Li J, Shen H (2021) The camouflage of graphene oxide by red blood cell membrane with high dispersibility for cancer chemotherapy. J Colloid Interface Sci 591:290–299

    Article  CAS  PubMed  Google Scholar 

  • Xu ZP, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 61:1027–1040

    Article  CAS  Google Scholar 

  • Xu C, Shi S, Feng L, Chen F, Graves SA, Ehlerding EB, Goel S, Sun H, England CG, Nickles RJ, Liu Z, Wang T, Cai W (2016) Long circulating reduced graphene oxide–iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale 8:12683–12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Cheng Y, Yan J, Feng Y, Zheng R, Wu X, Wang Y, Song P, Zhang H (2019) Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy. Nano Res 12:2947–2953

    Article  CAS  Google Scholar 

  • Xuan M, Shao J, Dai L, Li J, He Q (2016) Macrophage cell membrane camouflaged au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interfaces 8:9610–9618

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y (2008) High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J Phys Chem C 112:17554–17558

    Article  CAS  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Phua SZF, Bindra AK, Zhao Y (2019) Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater 31:e1805730

    Article  PubMed  Google Scholar 

  • Yang HY, Li Y, Lee DS (2020) Recent advances of pH-induced charge-convertible polymer-mediated inorganic nanoparticles for biomedical applications. Macromol Rapid Commun 41:e2000106

    Article  PubMed  Google Scholar 

  • Yang R, Wu R, Mei J, Hu FR, Lei CJ (2021) Zinc oxide nanoparticles promotes liver cancer cell apoptosis through inducing autophagy and promoting p53. Eur Rev Med Pharmacol Sci 25:1557–1563

    CAS  PubMed  Google Scholar 

  • Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q (2022) Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 21:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon JH, Cho HJ, Jin HE, Maeng HJ (2019) Mitoxantrone-loaded PEGylated gold nanocomplexes for cancer therapy. J Nanosci Nanotechnol 19:687–690

    Article  CAS  PubMed  Google Scholar 

  • You Y, Wang N, He L, Shi C, Zhang D, Liu Y, Luo L, Chen T (2019) Designing dual-functionalized carbon nanotubes with high blood-brain-barrier permeability for precise orthotopic glioma therapy. Dalton Trans 48:1569–1573

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Tan L, Zheng R, Tan H, Zheng L (2016) Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater Sci Eng C 68:579–584

    Article  CAS  Google Scholar 

  • Yuan YG, Peng QL, Gurunathan S (2017) Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int J Nanomed 12:6487–6502

    Article  CAS  Google Scholar 

  • Zarschler K, Rocks L, Licciardello N, Boselli L, Polo E, Garcia KP, De Cola L, Stephan H, Dawson KA (2016) Ultrasmall inorganic nanoparticles: state-of-the-art and perspectives for biomedical applications. Nanomedicine 12:1663–1701

    Article  CAS  PubMed  Google Scholar 

  • Zavareh HS, Pourmadadi M, Moradi A, Yazdian F, Omidi M (2020) Chitosan/carbon quantum dot/aptamer complex as a potential anticancer drug delivery system towards the release of 5-fluorouracil. Int J Biol Macromol 165:1422–1430

    Article  CAS  PubMed  Google Scholar 

  • Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK (2020) Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12:1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeb A, Gul M, Nguyen T-T-L, Maeng H-J (2022) Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. J Pharm Investig 52:683–724

    Article  CAS  Google Scholar 

  • Zhang Q, Neoh KG, Xu L, Lu S, Kang ET, Mahendran R, Chiong E (2014a) Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir 30:6151–6161

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang X, Li P-Z, Nguyen KT, Wang X-J, Luo Z, Zhang H, Tan NS, Zhao Y (2014b) Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 24:2450–2461

    Article  CAS  Google Scholar 

  • Zhang Z, Niu B, Chen J, He X, Bao X, Zhu J, Yu H, Li Y (2014c) The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials 35:4565–4572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y (2018) Dual-responsive dithio-polydopamine coated porous CeO(2) nanorods for targeted and synergistic drug delivery. Int J Nanomed 13:2161–2173

    Article  CAS  Google Scholar 

  • Zhang H, Li Y, Pan Z, Chen Y, Fan Z, Tian H, Zhou S, Zhang Y, Shang J, Jiang B, Wang F, Luo F, Hou Z (2019a) Multifunctional nanosystem based on graphene oxide for synergistic multistage tumor-targeting and combined chemo-photothermal therapy. Mol Pharm 16:1982–1998

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang L, You X, Xian T, Wu J, Pang J (2019b) Nanoparticle therapy for prostate cancer: overview and perspectives. Curr Top Med Chem 19:57–73

    Article  PubMed  Google Scholar 

  • Zhang X, Song H, Canup BSB, Xiao B (2020a) Orally delivered targeted nanotherapeutics for the treatment of colorectal cancer. Expert Opin Drug Deliv 17:781–790

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tan J, Zhou L, Shan X, Liu J, Ma Y (2020b) Synthesis and application of AS1411-functionalized gold nanoparticles for targeted therapy of gastric cancer. ACS Omega 5:31227–31233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R, Li T, Zheng G, Jiang K, Fan L, Shao J (2017) Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 143:1–16

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lu M, Lai H, Lu H, Lalevée J, Barner-Kowollik C, Stenzel MH, Xiao P (2018a) Delivery of amonafide from fructose-coated nanodiamonds by oxime ligation for the treatment of human breast cancer. Biomacromol 19:481–489

    Article  CAS  Google Scholar 

  • Zhao P, Li L, Zhou S, Qiu L, Qian Z, Liu X, Cao X, Zhang H (2018b) TPGS functionalized mesoporous silica nanoparticles for anticancer drug delivery to overcome multidrug resistance. Mater Sci Eng C 84:108–117

    Article  CAS  Google Scholar 

  • Zhi F, Dong H, Jia X, Guo W, Lu H, Yang Y, Ju H, Zhang X, Hu Y (2013) Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS ONE 8:e60034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhifen C, Yu Z, Jichao Z, Huating K, Xiaoxing T, Liang P, Kai X, Ali A, Aiguo L, Renzhong T, Chunhai F, Ying Z (2016) Sodium alginate-functionalized nanodiamonds as sustained chemotherapeutic drug-release vectors. Carbon 97:78–86

    Article  Google Scholar 

  • Zhou F, Wu S, Wu B, Chen WR, Xing D (2011) Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy. Small 7:2727–2735

    Article  CAS  PubMed  Google Scholar 

  • Zou Z, He X, He D, Wang K, Qing Z, Yang X, Wen L, Xiong J, Li L, Cai L (2015) Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials 58:35–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (NRF-2021R1F1A1060378), and the Ministry of Education (NRF-2020R1A6A1A03043708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi-Thao-Linh Nguyen or Han-Joo Maeng.

Ethics declarations

Conflict of interest

All authors (A. Zeb, M. Gul, T.‑T.‑L. Nguyen, and H.‑J. Maeng) declare that they have no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, A., Gul, M., Nguyen, TTL. et al. Recent progress and drug delivery applications of surface-functionalized inorganic nanoparticles in cancer therapy. J. Pharm. Investig. 53, 743–779 (2023). https://doi.org/10.1007/s40005-023-00632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00632-z

Keywords

Navigation