Skip to main content
Log in

Biomedical Applications of Functionalized Gold Nanoparticles: A Review

  • Review
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal nanoparticles are widely applied in various biomedical applications because of their unique physicochemical properties. The new and unique properties of gold nanoparticles (AuNPs) including, biocompatibility, low cytotoxicity, and optical properties, make them valuable for applications of biomedical fields including, biosensing, bioimaging, cancer therapy of cancer, and drug delivery. Utilization of AuNPs in radiotherapy and photothermal therapy has created a novel platform for primary diagnosis and cancer therapy. Owing to AuNPs' large surface area, chemical functional groups or biological molecules like drug molecules can be immobilized on gold surface. Thus, the surface functionalization of AuNPs makes them a good carrier for targeted drug delivery. This review focuses on new progress in processes of the functionalization of AuNPs and their possible biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Ref. [131], 2016, IOP

Fig. 3

Adapted from Ref. [6], 2011, MDPI

Fig. 4

Similar content being viewed by others

References

  1. Balakrishnan, S., F.A. Bhat, and A. Jagadeesan, Applications of Gold Nanoparticles in Cancer, in Biomedical Engineering: Concepts, Methodologies, Tools, and Applications. 2018, IGI Global. p. 780–808.

  2. S. Lu, et al. (2018). Self-Assembly of Au Nanoparticles and Quantum Dots by Functional Sol-Gel Silica Layers. Journal of nanoscience and nanotechnology 18 (1), 288–295.

    Article  CAS  PubMed  Google Scholar 

  3. L. Nadav, O.-R. Tsion, and Z. Offer (2020). Improving the properties of a gold nanoparticle barium sensor through mixed-ligand shells. Talanta 208, 120370.

    Article  CAS  PubMed  Google Scholar 

  4. Jiye, X.G.C., Optical Biosensors Based on Localized Surface Plasmon Resonance Effect [J]. Progress in Chemistry, 2010. 1.

  5. A. Khan, et al. (2014). Gold nanoparticles: synthesis and applications in drug delivery. Tropical journal of pharmaceutical research 13 (7), 1169–1177.

    Article  CAS  Google Scholar 

  6. P. M. Tiwari, et al. (2011). Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1 (1), 31–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. H. Peng, H. Tang, and J. Jiang (2016). Recent progress in gold nanoparticle-based biosensing and cellular imaging. Science China Chemistry 59 (7), 783–793.

    Article  CAS  Google Scholar 

  8. H. Daraee, et al. (2016). Application of gold nanoparticles in biomedical and drug delivery. Artificial cells, nanomedicine, and biotechnology 44 (1), 410–422.

    Article  CAS  PubMed  Google Scholar 

  9. P. Baptista, et al. (2008). Gold nanoparticles for the development of clinical diagnosis methods. Analytical and bioanalytical chemistry 391 (3), 943–950.

    Article  CAS  PubMed  Google Scholar 

  10. J. Turkevich, P. C. Stevenson, and J. Hillier (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 11, 55–75.

    Article  Google Scholar 

  11. M. Shah, et al. (2014). Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci 19 (8), 1320–1344.

    Article  Google Scholar 

  12. A. J. Mieszawska, et al. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular pharmaceutics 10 (3), 831–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Brust, et al. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications 7, 801–802.

    Article  Google Scholar 

  14. R. Herizchi, et al. (2016). Current methods for synthesis of gold nanoparticles. Artificial cells, nanomedicine, and biotechnology 44 (2), 596–602.

    Article  CAS  PubMed  Google Scholar 

  15. E. L. L. Yeo, et al. (2017). Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy. Journal of Materials Chemistry B 5 (2), 254–268.

    Article  CAS  PubMed  Google Scholar 

  16. J. Piella, N. G. Bastús, and V. Puntes (2016). Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties. Chemistry of Materials 28 (4), 1066–1075.

    Article  CAS  Google Scholar 

  17. J. Niu, T. Zhu, and Z. Liu (2007). One-step seed-mediated growth of 30–150 nm quasispherical gold nanoparticles with 2-mercaptosuccinic acid as a new reducing agent. Nanotechnology 18 (32), 325607.

    Article  Google Scholar 

  18. S. Wang, et al. (2016). Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy. ACS applied materials & interfaces 8 (37), 24368–24384.

    Article  CAS  Google Scholar 

  19. L. Wang, et al. (2011). Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano letters 11 (2), 772–780.

    Article  CAS  PubMed  Google Scholar 

  20. X. Wang, et al. (2010). Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosensors and Bioelectronics 26 (2), 404–410.

    Article  PubMed  Google Scholar 

  21. J. Yu, et al. (2016). Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Materials Letters 166, 110–112.

    Article  CAS  Google Scholar 

  22. R. K. DeLong, et al. (2010). Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnology, science and applications 3, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. S. Suk, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews 99, 28–51.

    Article  CAS  PubMed  Google Scholar 

  24. N. S. Aminabad, M. Farshbaf, and A. Akbarzadeh (2019). Recent advances of gold nanoparticles in biomedical applications: State of the art. Cell biochemistry and biophysics 77 (2), 123–137.

    Article  CAS  PubMed  Google Scholar 

  25. Pellegrino, T., et al., On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. small, 2005. 1(1): p. 48–63.

  26. B. Liu, X. Sun, and F. He (2008). Preparation and characterization of a Cu2+ chemosensor based on fluorescent self-assembled sandwich bilayers. Thin solid films 516 (8), 2213–2217.

    Article  CAS  Google Scholar 

  27. R. H. Adnan, et al. (2015). Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catalysis Science & Technology 5 (2), 1323–1333.

    Article  CAS  Google Scholar 

  28. A. I. Abdelrahman, et al. (2006). Fabrication and electrochemical application of three-dimensional gold nanoparticles: self-assembly. The Journal of Physical Chemistry B 110 (6), 2798–2803.

    Article  CAS  PubMed  Google Scholar 

  29. G. Ajnai, et al. (2014). Trends of gold nanoparticle-based drug delivery system in cancer therapy. Journal of Experimental & Clinical Medicine 6 (6), 172–178.

    Article  CAS  Google Scholar 

  30. Locatelli, E., Synthesis and surface modification of silver and gold nanoparticles. Nanomedicine applications against Glioblastoma Multiforme. 2014, alma.

  31. S. Alex and A. Tiwari (2015). Functionalized gold nanoparticles: synthesis, properties and applications—a review. Journal of nanoscience and nanotechnology 15 (3), 1869–1894.

    Article  CAS  PubMed  Google Scholar 

  32. A. G. Kanaras, et al. (2002). Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chemical Communications 20, 2294–2295.

    Article  Google Scholar 

  33. J. Ruff, et al. (2018). CLPFFD–PEG functionalized NIR-absorbing hollow gold nanospheres and gold nanorods inhibit β-amyloid aggregation. Journal of Materials Chemistry B 6 (16), 2432–2443.

    Article  CAS  PubMed  Google Scholar 

  34. P. S. Ghosh, et al. (2008). Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS nano 2 (11), 2213–2218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Dhanya, et al. (2018). Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. International journal of biological macromolecules 120, 999–1008.

    Article  CAS  PubMed  Google Scholar 

  36. C. Thiruppathiraja, et al. (2011). An enhanced immuno-dot blot assay for the detection of white spot syndrome virus in shrimp using antibody conjugated gold nanoparticles probe. Aquaculture 318 (3–4), 262–267.

    Article  CAS  Google Scholar 

  37. A. L. Ginzburg, et al. (2018). Synergistic toxicity produced by mixtures of biocompatible gold nanoparticles and widely used surfactants. ACS nano 12 (6), 5312–5322.

    Article  CAS  PubMed  Google Scholar 

  38. Sasidharan, A. and N. Monteiro-Riviere, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol, 2015. 7: p. 779–796.

  39. X. Li, et al. (2018). The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids and Surfaces B: Biointerfaces 167, 260–266.

    Article  CAS  PubMed  Google Scholar 

  40. M. Tsoli, et al. (2005). Cellular uptake and toxicity of Au55 clusters. Small 1 (8–9), 841–844.

    Article  CAS  PubMed  Google Scholar 

  41. Dykman, L. and N. Khlebtsov, Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae (aнглoязычнaя вepcия), 2011. 3(2 (9)).

  42. Li, X., et al., Biocompatibility and toxicity of nanoparticles and nanotubes. Journal of Nanomaterials, 2012. 2012.

  43. Rani, K., Biomedical applications of silver and gold nanoparticles: effective and safe non-viral delivery vehicles. Journal of Applied Biotechnology and Bioengineering, 2017. 3(2).

  44. J.-G. Piao, et al. (2018). pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Research 11 (6), 3193–3204.

    Article  CAS  Google Scholar 

  45. N. Pantidos and L. E. Horsfall (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine & Nanotechnology 5 (5), 1.

    Article  Google Scholar 

  46. K. Nejati-Koshki, A. Akbarzadeh, and M. Pourhassan-Moghaddam (2014). Curcumin inhibits leptin gene expression and secretion in breast cancer cells by estrogen receptors. Cancer cell international 14 (1), 1–7.

    Article  Google Scholar 

  47. S. Rasouli, et al. (2020). Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence. Journal of Drug Delivery Science and Technology 55, 101402.

    Article  CAS  Google Scholar 

  48. E. Priyadarshini and N. Pradhan (2017). Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sensors and Actuators B: Chemical 238, 888–902.

    Article  CAS  Google Scholar 

  49. R. A. Reynolds, C. A. Mirkin, and R. L. Letsinger (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. Journal of the American Chemical Society 122 (15), 3795–3796.

    Article  CAS  Google Scholar 

  50. V. Raj, A. N. Vijayan, and K. Joseph (2014). Naked eye detection of infertility using fructose blue–A novel gold nanoparticle based fructose sensor. Biosensors and Bioelectronics 54, 171–174.

    Article  CAS  PubMed  Google Scholar 

  51. N. N. Vinita and R. Prakash (2018). One step synthesis of AuNPs@ MoS2-QDs composite as a robust peroxidase-mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sensors Actuators B Chem 263, 109–119.

    Article  CAS  Google Scholar 

  52. N. R. Nirala, P. S. Saxena, and A. Srivastava (2018). Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 190, 506–512.

    Article  CAS  Google Scholar 

  53. M. António, et al. (2018). Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein. Nanomaterials 8 (4), 200.

    Article  PubMed Central  Google Scholar 

  54. V. Raj and K. Sreenivasan (2010). Selective detection and estimation of C-reactive protein in serum using surface-functionalized gold nano-particles. Analytica chimica acta 662 (2), 186–192.

    Article  CAS  PubMed  Google Scholar 

  55. K. E. Sapsford, L. Berti, and I. L. Medintz (2006). Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie International Edition 45 (28), 4562–4589.

    Article  CAS  PubMed  Google Scholar 

  56. J. Shi, et al. (2015). A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosensors and Bioelectronics 67, 595–600.

    Article  CAS  PubMed  Google Scholar 

  57. A. N. Shipway, E. Katz, and I. Willner (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1 (1), 18–52.

    Article  CAS  PubMed  Google Scholar 

  58. ZHAO, J., et al., Gold nanoparticles-based biosensors for biomedical application. Nano Life, 2012. 2(04): p. 1230008.

  59. I. Bhatnagar, et al. (2018). Chitosan stabilized gold nanoparticle mediated self-assembled glip nanobiosensor for diagnosis of invasive aspergillosis. International journal of biological macromolecules 110, 449–456.

    Article  CAS  PubMed  Google Scholar 

  60. Mohammadi, H., G. Yammouri, and A. Amine, Current advances in electrochemical genosensors for detecting microRNA cancer markers. Current Opinion in Electrochemistry, 2019.

  61. L. Tian, et al. (2018). Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosensors and Bioelectronics 99, 564–570.

    Article  CAS  PubMed  Google Scholar 

  62. V. Buk, M. E. Pemble, and K. Twomey (2019). Fabrication and evaluation of a carbon quantum dot/gold nanoparticle nanohybrid material integrated onto planar micro gold electrodes for potential bioelectrochemical sensing applications. Electrochimica Acta 293, 307–317.

    Article  CAS  Google Scholar 

  63. L. Cui, et al. (2018). An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Biosensors and Bioelectronics 99, 1–7.

    Article  CAS  PubMed  Google Scholar 

  64. M. H. Ghalehno, M. Mirzaei, and M. Torkzadeh-Mahani (2019). Electrochemical aptasensor for activated protein C using a gold nanoparticle–Chitosan/graphene paste modified carbon paste electrode. Bioelectrochemistry 130, 107322.

    Article  Google Scholar 

  65. B. A. Du, Z. P. Li, and C. H. Liu (2006). One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angewandte Chemie International Edition 45 (47), 8022–8025.

    Article  CAS  PubMed  Google Scholar 

  66. T. Špringer, et al., Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. (Chemical, Sensors and Actuators B, 2020), p. 128146.

    Google Scholar 

  67. Y. Wang, et al. (2007). SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chemical Communications 48, 5220–5222.

    Article  Google Scholar 

  68. E. A. Vitol, et al. (2009). In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. Acs Nano 3 (11), 3529–3536.

    Article  CAS  PubMed  Google Scholar 

  69. J. H. Choi, W. A. El-Said, and J.-W. Choi (2020). Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Applied Surface Science 506, 144669.

    Article  CAS  Google Scholar 

  70. G. Maiorano, et al. (2010). Effects of cell culture media on the dynamic formation of protein− nanoparticle complexes and influence on the cellular response. ACS nano 4 (12), 7481–7491.

    Article  CAS  PubMed  Google Scholar 

  71. Y. Zhang, H. Hong, and W. Cai (2010). Imaging with Raman spectroscopy. Current pharmaceutical biotechnology 11 (6), 654–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102–1106.

  73. J. He, et al. (2019). Design of Raman tag-bridged core–shell Au@ Cu 3 (BTC) 2 nanoparticles for Raman imaging and synergistic chemo-photothermal therapy. Nanoscale 11 (13), 6089–6100.

    Article  CAS  PubMed  Google Scholar 

  74. Soni, J., Use of nanostructures based on noble metals in nanobiomedicine, in Nanostructures for Novel Therapy. 2017, Elsevier. p. 685–712.

  75. Aioub, M., L.A. Austin, and M.A. El-Sayed, Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy, in Inorganic Frameworks as Smart Nanomedicines. 2018, Elsevier. p. 41–91.

  76. T. Gong, et al. (2013). Engineering bioconjugated gold nanospheres and gold nanorods as label-free plasmon scattering probes for ultrasensitive multiplex dark-field imaging of cancer cells. Journal of biomedical nanotechnology 9 (6), 985–991.

    Article  CAS  PubMed  Google Scholar 

  77. W. Li and X. Chen (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine 10 (2), 299–320.

    Article  CAS  PubMed  Google Scholar 

  78. Conde, J., et al., Multifunctional Gold Nanocarriers for Cancer Theranostics: From Bench to Bedside and Back Again?, in Nano-Oncologicals. 2014, Springer. p. 295–328.

  79. J. A. Copland, et al. (2004). Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography. Molecular Imaging & Biology 6 (5), 341–349.

    Article  Google Scholar 

  80. X. Xu, et al. (2019). Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta biomaterialia 84, 328–338.

    Article  CAS  PubMed  Google Scholar 

  81. I.-C. Sun, et al. (2019). Photoacoustic imaging of cancer cells with glycol-chitosan-coated gold nanoparticles as contrast agents. Journal of biomedical optics 24 (12), 121903.

    Article  CAS  PubMed Central  Google Scholar 

  82. H. Liu, et al. (2013). Targeted dendrimer-stabilized gold nanoparticles for computed tomography imaging of cancer cells. Journal of Controlled Release 1 (172), e37–e38.

    Article  Google Scholar 

  83. J. Beik, et al. (2017). A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and therapy: folate-conjugated gold nanoparticles. Current Medicinal Chemistry 24 (39), 4399–4416.

    Article  CAS  PubMed  Google Scholar 

  84. M. Keshavarz, et al. (2018). Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. Journal of biomaterials applications 33 (2), 161–169.

    Article  CAS  PubMed  Google Scholar 

  85. S. Khademi, et al. (2019). Targeted gold nanoparticles enable molecular CT imaging of head and neck cancer: an in vivo study. The international journal of biochemistry & cell biology 114, 105554.

    Article  CAS  Google Scholar 

  86. L. Zou, et al. (2016). Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 6 (6), 762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. J.-L. Li and M. Gu (2009). Gold-nanoparticle-enhanced cancer photothermal therapy. IEEE Journal of selected topics in quantum electronics 16 (4), 989–996.

    Google Scholar 

  88. Y. Panahi, et al. (2017). Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug research 11 (02), 77–87.

    Google Scholar 

  89. M. A. Khiavi, et al. (2019). Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 572, 333–344.

    Article  Google Scholar 

  90. N. S. Abadeer and C. J. Murphy (2016). Recent progress in cancer thermal therapy using gold nanoparticles. The Journal of Physical Chemistry C 120 (9), 4691–4716.

    Article  CAS  Google Scholar 

  91. E. C. Dreaden, et al. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 41 (7), 2740–2779.

    Article  CAS  PubMed  Google Scholar 

  92. I. Grabowska-Jadach, et al. (2019). Synthesis, characterization and application of plasmonic hollow gold nanoshells in a photothermal therapy—New particles for theranostics. Biomedicine & Pharmacotherapy 111, 1147–1155.

    Article  CAS  Google Scholar 

  93. H. S. Kim and D. Y. Lee (2018). Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles. Polymers 10 (9), 961.

    Article  PubMed Central  Google Scholar 

  94. S. Pan, et al. (2018). The effect of photothermal therapy on osteosarcoma with polyacrylic acid–coated gold nanorods. Dose-Response 16 (3), 1559325818789841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. S. E. Skrabalak, et al. (2008). Gold nanocages: synthesis, properties, and applications. Accounts of chemical research 41 (12), 1587–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. E. J. Hong, et al. (2018). Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles. Journal of Industrial and Engineering Chemistry 67, 429–436.

    Article  CAS  Google Scholar 

  97. J. Narang, et al. (2015). Electrochemical impediometric detection of anti-HIV drug taking gold nanorods as a sensing interface. Biosensors and Bioelectronics 66, 332–337.

    Article  CAS  PubMed  Google Scholar 

  98. N. Kutsevol, et al. (2019). New hybrid composites for photodynamic therapy: synthesis, characterization and biological study. Applied Nanoscience 9 (5), 881–888.

    Article  CAS  Google Scholar 

  99. K. Haume, et al. (2016). Gold nanoparticles for cancer radiotherapy: a review. Cancer nanotechnology 7 (1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. D. R. Cooper, D. Bekah, and J. L. Nadeau (2014). Gold nanoparticles and their alternatives for radiation therapy enhancement. Frontiers in chemistry 2, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  101. S. Her, D. A. Jaffray, and C. Allen (2017). Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Advanced drug delivery reviews 109, 84–101.

    Article  CAS  PubMed  Google Scholar 

  102. Liu, M., et al., Radiotherapy enhancement with gold nanoparticles. Nuclear Techniques, 2015. 38(9).

  103. L. Sancey, et al. (2014). The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. The British journal of radiology 87 (1041), 20140134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. X.-D. Zhang, et al. (2012). Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33 (27), 6408–6419.

    Article  CAS  PubMed  Google Scholar 

  105. N. Ma, et al. (2017). Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS applied materials & interfaces 9 (15), 13037–13048.

    Article  CAS  Google Scholar 

  106. A. Kefayat, et al. (2019). Investigation of different targeting decorations effect on the radiosensitizing efficacy of albumin-stabilized gold nanoparticles for breast cancer radiation therapy. European Journal of Pharmaceutical Sciences 130, 225–233.

    Article  CAS  PubMed  Google Scholar 

  107. X. Yang, et al. (2015). Gold nanomaterials at work in biomedicine. Chemical reviews 115 (19), 10410–10488.

    Article  CAS  PubMed  Google Scholar 

  108. P. Ghosh, et al. (2008). Gold nanoparticles in delivery applications. Advanced drug delivery reviews 60 (11), 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  109. A. Madhusudhan, et al. (2014). Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. International journal of molecular sciences 15 (5), 8216–8234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. C. M. Cobley, et al. (2011). Gold nanostructures: a class of multifunctional materials for biomedical applications. Chemical Society Reviews 40 (1), 44–56.

    Article  CAS  PubMed  Google Scholar 

  111. S. Guo, et al. (2010). Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS nano 4 (9), 5505–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. S. Fekri Aval, et al. (2016). Gene silencing effect of SiRNA-magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line. Artificial cells, nanomedicine, and biotechnology 44 (1), 188–193.

    Article  CAS  PubMed  Google Scholar 

  113. A. Graczyk, et al. (2020). Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules 25 (1), 204.

    Article  CAS  PubMed Central  Google Scholar 

  114. J. Karnoosh-Yamchi, et al. (2014). Preparation of pH sensitive insulin-loaded Nano hydrogels and evaluation of insulin releasing in different pH conditions. Molecular biology reports 41 (10), 6705–6712.

    Article  CAS  PubMed  Google Scholar 

  115. K. Nejati, et al. (2020). GDNF gene-engineered adipose-derived stem cells seeded Emu oil-loaded electrospun nanofibers for axonal regeneration following spinal cord injury. Journal of Drug Delivery Science and Technology 60, 102095.

    Article  CAS  Google Scholar 

  116. H. Mellatyar, et al. (2018). 17-DMAG-loaded nanofibrous scaffold for effective growth inhibition of lung cancer cells through targeting HSP90 gene expression. Biomedicine & Pharmacotherapy 105, 1026–1032.

    Article  CAS  Google Scholar 

  117. M. Dadashpour, et al. (2017). Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytotherapy Research 31 (11), 1651–1668.

    Article  PubMed  Google Scholar 

  118. P. Luo, et al. (2014). Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosensors and Bioelectronics 54, 217–221.

    Article  CAS  PubMed  Google Scholar 

  119. D. Pissuwan, T. Niidome, and M. B. Cortie (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. Journal of controlled release 149 (1), 65–71.

    Article  CAS  PubMed  Google Scholar 

  120. B. Saha, et al. (2007). In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Research Letters 2 (12), 614.

    Article  CAS  PubMed Central  Google Scholar 

  121. H. Gu, et al. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano letters 3 (9), 1261–1263.

    Article  CAS  Google Scholar 

  122. M. Pourhassan-Moghaddam, et al. (2014). Watercress-based gold nanoparticles: biosynthesis, mechanism of formation and study of their biocompatibility in vitro. Micro & Nano Letters 9 (5), 345–350.

    Article  CAS  Google Scholar 

  123. Y.-H. Chen, et al. (2007). Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Molecular pharmaceutics 4 (5), 713–722.

    Article  CAS  PubMed  Google Scholar 

  124. A. E. Kel, et al. (2016). Multi-omics “upstream analysis” of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EuPA open proteomics 13, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. R. Agabeigi, et al. (2020). Novel Chemo-Photothermal Therapy in Breast Cancer Using Methotrexate-Loaded Folic Acid Conjugated Au@ SiO 2 Nanoparticles. Nanoscale Research Letters 15 (1), 1–14.

    Article  Google Scholar 

  126. J. Akinyelu and M. Singh (2019). Folate-tagged chitosan-functionalized gold nanoparticles for enhanced delivery of 5-fluorouracil to cancer cells. Applied Nanoscience 9 (1), 7–17.

    Article  CAS  Google Scholar 

  127. V. Ramalingam, et al. (2018). Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Scientific reports 8 (1), 1–12.

    Article  Google Scholar 

  128. Kesharwani, P., et al., Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging. Progress in Materials Science, 2019.

  129. L. Lin, et al. (2018). UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics 8 (7), 1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. K. Kalimuthu, et al. (2018). Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. Journal of nanobiotechnology 16 (1), 34.

    Article  PubMed  PubMed Central  Google Scholar 

  131. N. Rizk, N. Christoforou, and S. Lee (2016). Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles. Nanotechnology 27 (18), 185704.

    Article  PubMed  Google Scholar 

  132. B. Cheng, et al. (2016). Gold nanosphere gated mesoporous silica nanoparticle responsive to near-infrared light and redox potential as a theranostic platform for cancer therapy. Journal of biomedical nanotechnology 12 (3), 435–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Q. Zhao, Z.-J. Yang, and J. He (2018). Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Frontiers of Physics 13 (3), 137801.

    Article  Google Scholar 

  134. A. R. Rastinehad, et al. (2019). Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proceedings of the National Academy of Sciences 116 (37), 18590–18596.

    Article  CAS  Google Scholar 

  135. B. K. Poudel, et al. (2018). In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. International journal of pharmaceutics 548 (1), 92–103.

    Article  CAS  PubMed  Google Scholar 

  136. J. Y. Zeng, et al. (2018). Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Advanced Functional Materials 28 (8), 1705451.

    Article  Google Scholar 

  137. J.-T. Cao, et al. (2018). Graphene oxide@ gold nanorods-based multiple-assisted electrochemiluminescence signal amplification strategy for sensitive detection of prostate specific antigen. Biosensors and Bioelectronics 99, 92–98.

    Article  CAS  PubMed  Google Scholar 

  138. Y.-Y. Cai, et al. (2018). Photoluminescence of gold nanorods: Purcell effect enhanced emission from hot carriers. Acs Nano 12 (2), 976–985.

    Article  CAS  PubMed  Google Scholar 

  139. X. Wang, et al. (2019). Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Optical Materials Express 9 (4), 1872–1881.

    Article  CAS  Google Scholar 

  140. L. Li, et al. (2019). Gap-mode excitation, manipulation, and refractive-index sensing application by gold nanocube arrays. Nanoscale 11 (12), 5467–5473.

    Article  CAS  PubMed  Google Scholar 

  141. R. Liang, et al. (2018). Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@ manganese dioxide to inhibit tumor growth and metastases. Biomaterials 177, 149–160.

    Article  CAS  PubMed  Google Scholar 

  142. C. Wang, et al. (2018). Pretreated Macrophage-Membrane-Coated Gold Nanocages for Precise Drug Delivery for Treatment of Bacterial Infections. Advanced Materials 30 (46), 1804023.

    Article  Google Scholar 

  143. S. Abalde-Cela, et al. (2018). Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Scientific reports 8 (1), 1–6.

    Article  CAS  Google Scholar 

  144. Y. Zou, et al. (2019). Synthesis of mesoporous-silica coated multi-branched gold nanoparticles for surface enhanced Raman scattering evaluation of 4-bromomethcathinone. Journal of Saudi Chemical Society 23 (3), 378–383.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the pharmaceutical sciences research center of Ardabil University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazem Nejati or Abolfazl Akbarzadeh.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejati, K., Dadashpour, M., Gharibi, T. et al. Biomedical Applications of Functionalized Gold Nanoparticles: A Review. J Clust Sci 33, 1–16 (2022). https://doi.org/10.1007/s10876-020-01955-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01955-9

Keywords

Navigation