Skip to main content
Log in

Biocompatible Glycol Chitosan-Coated Gold Nanoparticles for Tumor-Targeting CT Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The application of gold nanoparticles (AuNPs) in biomedical field was limited due to the low stability in the biological condition. Herein, to enhance stability and tumor targeting ability of AuNPs, their surface was modified with biocompatible glycol chitosan (GC) and the in vivo biodistribution of GC coated AuNPs (GC-AuNPs) were studied through computed tomography (CT).

Methods

Polymer-coated gold nanoparticles were produced using GC as a reducing agent and a stabilizer. Their feasibility in biomedical application was explored through CT in tumor-bearing mice.

Results

Stability of gold nanoparticles increased in the physiological condition due to the GC coating layer on the surface. Tomographic images of tumor were successfully obtained in the tumor-xenografted animal model when the GC-AuNPs were used as a CT contrast agent. The tumor targeting property of the gold nanoparticles was due to the properties of GC because GC-AuNPs were accumulated in the tumor, while most of heparin-coated nanoparticles were found in the liver and spleen.

Conclusions

The polymer properties on the surface played an important role in the behavior of gold nanoparticles in the biological condition and the enhanced stability and tumor targeting property of nanoparticles were inherited from GC on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AuNPs:

Gold nanoparticles

CT:

Computed tomography

EDC:

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride

GC:

Glycol chitosan

GC-AuNPs:

Glycol chitosan coated gold nanoparticles

HEPA-AuNPs:

Heparin coated gold nanoparticles

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NHS:

N-hydroxy succinimide

PBS:

Phosphate-buffered saline

TEM:

Transmission electron microscopy

REFERENCES

  1. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  2. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41(12):1721–30.

    Article  CAS  PubMed  Google Scholar 

  3. Lee S, Cha EJ, Park K, Lee SY, Hong JK, Sun IC, et al. A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed. 2008;47(15):2804–7.

    Article  CAS  Google Scholar 

  4. Mu CJ, LaVan DA, Langer RS, Zetter BR. Self-assembled gold nanoparticle molecular probes for detecting proteolytic activity in vivo. Acs Nano. 2010;4(3):1511–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11(3):169–83.

    Article  CAS  PubMed  Google Scholar 

  6. Ganesh T. Improved biochemical strategies for targeted delivery of taxoids. Bioorg Med Chem. 2007;15(11):3597–623.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Haba Y, Kojima C, Harada A, Ura T, Horinaka H, Kono K. Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir. 2007;23(10):5243–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84(6):4023–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kim D, Park S, Lee JH, Jeong YY, Jon S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging. J Am Chem Soc. 2007;129(24):7661–5.

    Article  CAS  PubMed  Google Scholar 

  10. Sun IC, Eun DK, Na JH, Lee S, Kim IJ, Youn IC, et al. Heparin-coated gold nanoparticles for liver-specific CT imaging. Chem Eur J. 2009;15(48):13341–7.

    Article  CAS  PubMed  Google Scholar 

  11. Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007;24(8):1415–26.

    Article  CAS  PubMed  Google Scholar 

  12. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–9.

    Article  PubMed  Google Scholar 

  13. Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kim B, Han G, Toley BJ, Kim CK, Rotello VM, Forbes NS. Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol. 2010;5(6):465–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang GD, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30(10):1928–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Desai KGH, Park HJ. Preparation and characterization of drug-loaded chitosan-tripolyphosphate microspheres by spray drying. Drug Dev Res. 2005;64(2):114–28.

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhang MQ. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62(3):378–86.

    Article  CAS  PubMed  Google Scholar 

  18. Na JH, Lee SY, Lee S, Koo H, Min KH, Jeong SY, et al. Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. J Control Release: Off J Controlled Release Soc. 2012;163(1):2–9.

    Article  CAS  Google Scholar 

  19. Huh MS, Lee SY, Park S, Lee S, Chung H, Lee S, et al. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J Control Release: Off J Controlled Release Soc. 2010;144(2):134–43.

    Article  CAS  Google Scholar 

  20. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. Biomaterials. 2008;29(12):1920–30.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release: Off J Controlled Release Soc. 2011;152(1):21–9.

    Article  CAS  Google Scholar 

  22. Na JH, Koo H, Lee S, Min KH, Park K, Yoo H, et al. Real-time and non-invasive optical imaging of tumor-targeting glycol chitosan nanoparticles in various tumor models. Biomaterials. 2011;32(22):5252–61.

    Article  CAS  PubMed  Google Scholar 

  23. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol. 2006;79(939):248–53.

    Article  CAS  PubMed  Google Scholar 

  24. Krause W. Liver-specific X-ray contrast agents. Top Curr Chem Contrast Agents II. 2002;222:173–200.

    Article  CAS  Google Scholar 

  25. Sun IC, Eun DK, Koo H, Ko CY, Kim HS, Yi DK, et al. Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed. 2011;50(40):9348–51.

    Article  CAS  Google Scholar 

  26. Underwood S, Mulvaney P. Effect of the solution refractive-index on the color of gold colloids. Langmuir. 1994;10(10):3427–30.

    Article  CAS  Google Scholar 

  27. Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao DL, et al. Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B. 2002;106(28):7005–12.

    Article  CAS  Google Scholar 

  28. Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47(1):83–97.

    Article  CAS  PubMed  Google Scholar 

  29. Wang XH, Ma JB, Wang YN, He BL. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 2001;22(16):2247–55.

    Article  CAS  PubMed  Google Scholar 

  30. Crayton SH, Tsourkas A. pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments. Acs Nano. 2011;5(12):9592–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hiebert L. The uptake of heparin by liver sinusoidal cells in normal and atherosclerotic rabbits. Thromb Res. 1981;21(4–5):383–90.

    Article  CAS  PubMed  Google Scholar 

  32. Frieboes HB, Wu M, Lowengrub J, Decuzzi P, Cristini V. A computational model for predicting nanoparticle accumulation in tumor vasculature. PLoS ONE. 2013;8(2):e56876. doi:10.1371/journal.pone.0056876.

  33. Pearson HJ, Anderson J, Chamberlain J, Bell PRF. The effect of kupffer cell stimulation or depression on the development of liver metastases in the rat. Cancer Immunol Immunother. 1986;23(3):214–6.

    Article  CAS  PubMed  Google Scholar 

  34. Malter M, Friedrich E, Suss R. Liver as a tumor-cell killing organ - kupffer cells and natural killers. Cancer Res. 1986;46(6):3055–60.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

In-Cheol Sun and Jin Hee Na contributed equally to this work. This work was financially supported by the Intramural Research Program of KIST, GRL Program, and M.D.-Ph.D. Program (2010–0019863, 2010–0019864).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheol-Hee Ahn or Kwangmeyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, IC., Na, J.H., Jeong, S.Y. et al. Biocompatible Glycol Chitosan-Coated Gold Nanoparticles for Tumor-Targeting CT Imaging. Pharm Res 31, 1418–1425 (2014). https://doi.org/10.1007/s11095-013-1142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1142-0

KEY WORDS

Navigation