Skip to main content
Log in

Improvement of floricultural traits in ornamental crops using genome editing tools

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Floriculture is one of the most promising sectors of the horticulture industry with immense aesthetic, social, medicinal and economic value. Ornamentals are rich in natural pigments and they belong to diverse groups with distinct biochemical pathways. Recently, genome editing has gained significant attention owing to its potential in modifying the traits in plants. Development of in vitro transformation protocols coupled with availability of gene sequences for commercial traits could accelerate the improvement of cut flowers, particularly, chrysanthemum, rose, lily, freesia, gerbera, tulip, carnation, alstroemeria, hydrangea and lisianthus. In this review, we discussed about basic mechanism of clustered regularly interspaced short palindromic repeats–CRISPR-associated (CRISPR-Cas) systems, its types and its potential in accelerating breeding programmes for improvement of ornamental crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats

crRNAs:

CRISPR RNAs

tracrRNA:

Trans-acting CRISPR RNA

PAM:

Protospacer adjacent motif

gRNA:

Guide RNA

TALEN:

Transcription activator-like effector nucleases

ZFN:

Zinc finger nucleases

ssDNA:

Single-stranded (ss) DNA

RuvC:

Resolvase

CRISPRa:

CRISPR activation

CRISPRi:

CRISPR interference

RFN:

RNA-guided FokI nuclease

FLS:

Enzyme flavonol synthase

DFR:

Dihydroflavonol 4-reductase

nptII:

Neomycin phosphotransferase

DFR-B:

Dihydroflavonol-4-reductase-B

CCD4:

Carotenoid cleavage dioxygenase

F3H:

Flavanone 3-hydroxylase

RNPs:

Ribonucleoproteins

PDS:

Phytoene desaturase

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

CAT:

Catalase

POD:

Peroxidase

APX:

Ascorbate peroxidase

RGEN:

RNA-guided endonuclease

SI:

Self-incompatibility

SLF:

Pollen-specific S-locus F-box

SCF:

Skp1–Cullin1–F-box

CUL1-P:

Cullin1 subunit

PiSSK1:

Skp1 subunit

CAGR:

Compound annual crop rate

AMD:

Age-related macular degeneration

CCDs:

Carotenoid cleavage dioxygenase

NCED:

9-Cis epoxy carotenoid cleavage dioxygenase

EIN:

Ethylene insensitive

ORP:

Oxysterol-binding protein

References

  • Aalifar M, Aliniaeifard S, Arab M, Zare Mehrjerdi M, Dianati Daylami S, Serek M, Woltering E, Li T (2020) Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Front Plant Sci 11:511

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353(6299):aaf5573

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudayyeh OO, Gootenberg JS, Kellner MJ, Zhang F (2019) Nucleic acid detection of plant genes using CRISPR-Cas13. The CRISPR J 2(3):165–171

    Article  CAS  PubMed  Google Scholar 

  • Adak S, Upadrasta L, Kumar SJ, Soni R, Banerjee R (2011) Quorum quenching–an alternative antimicrobial therapeutics. Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz (586 – 93)

    Google Scholar 

  • Aglawe SB, Magar ND, Dhawane Y, Bhamare D, Shah P, Devi SJ, Kumar SP, Barbadikar KM (2022) Genome editing crops in food and futuristic crops. Recent advances in food biotechnology. Springer, Singapore, pp 401–445

    Chapter  Google Scholar 

  • Ahn CH, Ramya MA, Park HR, Kim PM, Lee YJ, Su Y (2020) Progress and challenges in the improvement of ornamental plants by genome editing. Plants 9(6):687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aman R, Mahas A, Butt H, Ali Z, Aljedaani F, Mahfouz M (2018) Engineering RNA virus interference via the CRISPR/Cas13 machinery in Arabidopsis. Viruses 10(12):732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576(7785):149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF (2016) Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34(6):1073–1090

    Article  PubMed  Google Scholar 

  • Barbadikar KM, Aglawe SB, Mangrauthia SK, Madhav MS, Kumar SJ (2019) Genome editing: New breeding technologies in plants. OMICS-Based Approaches Plant Biotechnol pp 245 – 85

  • BBC Research (2022) The Global market for carotenoids. Carotenoids market size, share & growth analysis report (bccresearch.com)

  • Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    Article  CAS  PubMed  Google Scholar 

  • Bombarely A, Moser M, Amrad A, Bao M, Bapaume L, Barry CS, Bliek M, Boersma MR, Borghi L, Bruggmann R, Bucher M (2016) Insight into the evolution of the solanaceae from the parental genomes of Petunia hybrida. Nat plant 2(6):1–9

    Article  Google Scholar 

  • Bourke PM, Arens P, Voorrips RE, Esselink GD, Koning-Boucoiran CF, Van’t Westende WP, Santos Leonardo T, Wissink P, Zheng C, van Geest G, Visser RG, Krens FA, Smulders MJ, Maliepaard C (2017) Partial preferential chromosome pairing is genotype dependent in tetraploid rose. Plant J 90:330–343

    Article  CAS  PubMed  Google Scholar 

  • Burmistrz M, Krakowski K, Krawczyk-Balska A (2020) RNA-targeting CRISPR–Cas systems and their applications. Int J Mol Sci 21(3):1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF (2017) New CRISPR-Cas systems from uncultivated microbes. Nature 542(7640):237–241

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee P, Jakimo N, Lee J, Amrani N, Rodriguez T, Koseki SR, Tysinger E, Qing R, Hao S, Sontheimer EJ, Jacobson J (2020) An engineered ScCas9 with broad PAM range and high specificity and activity. Nat Biotechnol 38(10):1154–1158

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Yu Q, Wang Y, Wang H, Dong Y, Ji Y, Zhou X, Li Y, Jiang CZ, Gan SS, Zhao L (2021) Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). Plant Cell 33(4):1229–1251

    Article  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung RW, Leanderson P, Lundberg AK, Jonasson L (2017) Lutein exerts anti-inflammatory effects in patients with coronary artery disease. Atherosclerosis 262:87–93

    Article  CAS  PubMed  Google Scholar 

  • Csörgő B, León LM, Chau-Ly IJ, Vasquez-Rifo A, Berry JD, Mahendra C, Crawford ED, Lewis JD, Bondy-Denomy J (2020) A compact Cascade–Cas3 system for targeted genome engineering. Nat Methods 17(12):1183–1190

    Article  PubMed  PubMed Central  Google Scholar 

  • Darqui FS, Radonic LM, Hopp HE, Lopez Bilbao MG (2017) Biotechnological improvement of ornamental plants. Ornament Horticult 23(3):279–88

    Article  Google Scholar 

  • Ding L, Zhao K, Zhang X, Song A, Su J, Hu Y, Zhao W, Jiang J, Chen F (2019) Comprehensive characterization of a floral mutant reveals the mechanism of hooked petal morphogenesis in Chrysanthemum morifolium. Plant Biotechnol J 17(12):2325–2340s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan AE, Hou Z, Xiao Y, Gramelspacher MJ, Heo J, Howden SE, Freddolino PL, Ke A, Zhang Y (2019) Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-Cas. Mol cell 74(5):936–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA (2020) The promise and challenge of therapeutic genome editing. Nature 578(7794):229–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz V (2010) Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5(2):e9288

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A et al (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation 103(24):2922–2927

    Article  CAS  PubMed  Google Scholar 

  • Feng S, He R, Lu J, Jiang M, Shen X, Jiang Y, Wang Z, Wang H (2016) Development of SSR markers and assessment of genetic diversity in medicinal Chrysanthemum morifolium cultivars. Front Genet 7:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrante A, Trivellini A, Scuderi D, Romano D, Vernieri P (2015) Post-production physiology and handling of ornamental potted plants. Postharvest Biol Technol 100:99–108

    Article  CAS  Google Scholar 

  • Friedland AE, Baral R, Singhal P, Loveluck K, Shen S, Sanchez M, Marco E, Gotta GM, Maeder ML, Kennedy EM, Kornepati AV (2015) Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16(1):1–10

    Article  Google Scholar 

  • Future MI (2022) Lutein market outlook (2022–2032). https://www.futuremarketinsights.com/reports/lutein-market

  • Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS One 6(5):e20463

  • Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A  T to G  C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Z, Zheng L, Zhao Y, Jiang J, Zhang EJ, Liu T, Gu H, Qu LJ (2019) Engineered xCas9 and SpCas9-NG variants broaden PAM recognition sites to generate mutations in Arabidopsis plants. Plant Biotechnol J 17(10):1865

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannini A, Laura M, Nesi B, Savona M, Cardi T (2021) Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Rep 40(3):461–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Smith JR, Swanson HM, Rubin LP (2018) Carotenoid lutein selectively inhibits breast cancer cell growth and potentiates the effect of chemotherapeutic agents through ROS-mediated mechanisms. Mol 23(4):905

    Article  Google Scholar 

  • Gong C, Huang S, Song R, Qi W (2021) Comparative study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 systems for multiplex gene editing in maize. Agriculture 11(5):429

    Article  CAS  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res W35:W52-57

    Article  Google Scholar 

  • Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6):577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Cai G, Li YQ, Zhang YX, Su YN, Yuan DY, Zhang ZC, Liu ZZ, Cai XW, Guo J, Li L (2022) Comprehensive characterization of three classes of Arabidopsis SWI/SNF chromatin remodelling complexes. Nat Plants 5:1–7

    Google Scholar 

  • Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q (2015) CRISPR Inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162(4):900-910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurel F, Wu Y, Pan C, Cheng Y, Li G, Zhang T, Qi Y (2023) On-and off-target analyses of crispr-Cas12b genome editing systems in rice. CRISPR J 6(1):62–74

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Wang Q, Li J, Yang S, Zheng Y, Peng W (2022) Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering. Open Biol 12(1):210241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF, Doudna JA (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Sci 362(6416):839–842

    Article  CAS  Google Scholar 

  • Hoshino Y, Eiraku N, Ohata Y, Komai F (2016) Dynamics of nuclear phase changes during pollen tube growth by using in vitro culture in Petunia. Sci Hortic 210:143–149

    Article  Google Scholar 

  • Hsu CT, Cheng YJ, Yuan YH, Hung WF, Cheng QW, Wu FH, Lee LY, Gelvin SB, Lin CS (2019) Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Mol Biol 101:355–371

    Article  CAS  PubMed  Google Scholar 

  • Hsu CT, Lee WC, Cheng YJ, Yuan YH, Wu FH, Lin CS (2021) Genome editing and protoplast regeneration to study plant–pathogen interactions in the model plant Nicotiana benthamiana. Front Genome Ed 2:627803

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua K, Tao X, Yuan F, Wang D, Zhu JK (2018) Precise A T to G  C base editing in the rice genome. Mol plant 11(4):627–630

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Yang D, Zhang J, Xu J, Chen YE (2022) Recent advances in improving gene-editing specificity through CRISPR–Cas9 nuclease engineering. Cells 11(14):2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TP, Heins ZJ, Miller SM, Wong BG, Balivada PA, Wang T, Khalil AS, Liu DR (2023) High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nat Biotechnol 41(1):96–107

    Article  CAS  PubMed  Google Scholar 

  • Hunker AC,Soden ME, Krayushkina D, Heymann G, Awatramani R, Zweifel LS (2020) Conditional single vector CRISPR/SaCas9 viruses for efficient mutagenesis in the adult mouse nervous system. Cell Rep 30:4303–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda A, Fujii W, Sugiura K, Naito K (2019) High-fidelity endonuclease variant HypaCas9 facilitates accurate allele-specific gene modification in mouse zygotes. Commun biol 2(1):1–7

    Article  CAS  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014-1028. https://doi.org/10.1111/j.1365-313X.2009.04065.x

    Article  CAS  PubMed  Google Scholar 

  • Irish V (2017) The ABC model of floral development. Curr Biol 27(17):R887–R890

    Article  CAS  PubMed  Google Scholar 

  • Jain I, Minakhin L, Mekler V, Sitnik V, Rubanova N, Severinov K, Semenova E (2019) Defining the seed sequence of the Cas12b CRISPR-Cas effector complex. RNA Biol 16:413–422

    Article  PubMed  Google Scholar 

  • Jia H, Xu J, Orbović V, Zhang Y, Wang N (2017) Editing citrus genome via SaCas9/sgRNA system. Front Plant Sci 12(8):2135

    Article  Google Scholar 

  • Jiang Z, Hong X, Zhang S, Yao R, Xiao YI (2020) CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synth Syst Biotechnol 5(4):277–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Lavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavuri NR, Ramasamy M, Qi Y, Mandadi K (2022) Applications of CRISPR/Cas13-based rna editing in plants. Cells 11(17):2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MZ, Haider S, Mansoor S, Amin I (2019) Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol 37(8):800–804

    Article  CAS  PubMed  Google Scholar 

  • Khan MZ, Haider S, Mansoor S, Amin I (2019) Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends Biotechnol 37(8):800–804

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Hager M, Brant E, Budak H (2021) Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Funct Integr Genomics 21:355–366

    Article  PubMed  Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2017) Generation of gene-edited chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant Cell Physiol 58(2):216–226

    CAS  PubMed  Google Scholar 

  • Kishi-Kaboshi M, Aida R, Sasaki K (2018) Genome engineering in ornamental plants: current status and future prospects. Plant Physiol Biochem 131:47–52

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver B, Prew M, Tsai S et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6(9):688–698

    Article  CAS  PubMed  Google Scholar 

  • Kui L, Haitao C, Zhang W, Simei H, Zijun X, Yesheng Z, Liang Y, Chaofang Z et al (2017) Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the Orchid, Dendrobium officinale. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.02036

    Article  Google Scholar 

  • Kumar N, Stanford W, De Solis C, Abraham ND, Dao TM, Thaseen S, Sairavi A, Gonzalez CU, Ploski JE (2018) The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and cre-recombinase. Front Mol Neurosci 11:413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 4(10):766–770

    Article  CAS  PubMed  Google Scholar 

  • Leus L, Laere KV, Riek JD, Huylenbroeck JV (2018) Rose. Ornamental crops. Springer, Cham, pp 719–767

    Chapter  Google Scholar 

  • Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat plants 3(12):930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang X, Wang W, Guo X, Wu Z, Du W, Zhao Y, Xia L (2018) Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol Plant 11(7):995–998

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Kim DH, Jung JA, Hyung NI, Youn Y, Lee JY (2022) Silencing of dihydroflavonol 4-reductase in chrysanthemum ray florets enhances flavonoid biosynthesis and antioxidant capacity. Plants 11(13):1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang D, Liu D, Li F, Lu H (2013) Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Rep 32(2):227–237

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li J, Zhou C, Meng B, Wei Y, Yang G, Lu Z, Shen Q, Zhang Y, Yang H, Qiao Y (2019) Allele-specific genome editing of imprinting genes by preferentially targeting non-methylated loci using Staphylococcus aureus Cas9 (SaCas9). Sci Bull 64(21):1592–1600

    Article  CAS  Google Scholar 

  • Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H (2021) The flavonoid biosynthesis network in plants. Int J Mol Sci 22(23):12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loureiro A, da Silva GJ (2019) CRISPR-Cas: converting a bacterial defence mechanism into a state-of-the-art genetic manipulation tool. Antibiot 28(1):8

    Google Scholar 

  • Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-Act systems. Mol Plant 11(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2. 0 and mTALE-Act systems. Mol Plant 11(2):245–256

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming M, Ren Q, Pan C, He Y, Zhang Y, Liu S, Zhong Z, Wang J, Malzahn AA, Wu J, Zheng X (2020) CRISPR–Cas12b enables efficient plant genome engineering. Nat Plants 6(3):202–208

    Article  CAS  PubMed  Google Scholar 

  • Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, Karlin-Neumann GA, Conklin BR (2016) Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 6(1):23549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morisaka H, Yoshimi K, Okuzaki Y, Gee P, Kunihiro Y, Sonpho E, Xu H, Sasakawa N, Naito Y, Nakada S, Yamamoto T (2019) CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 10(1):1–13

    Article  Google Scholar 

  • Mozgova I (2021) Application of aptamers improves crispr-based live imaging of plant telomeres. Targeting and recruitment of chromatin modifiers, Chromatin stability and dynamics

    Google Scholar 

  • Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK (2022) Role of ethylene biosynthesis genes in the regulation of salt stress and drought stress tolerance in petunia. Front Plant Sci 13:844449

    Article  PubMed  PubMed Central  Google Scholar 

  • Najafi S, Bertini E, D’Incà E, Fasoli M, Zenoni S (2023) DNA-free genome editing in grapevine using CRISPR/Cas9 ribonucleoprotein complexes followed by protoplast regeneration. Hortic Res 10(1):uhac240

    Article  PubMed  Google Scholar 

  • Nakagawa R, Ishiguro S, Okazaki S, Mori H, Tanaka M, Aburatani H, Yachie N, Nishimasu H, Nureki O (2022) Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Commun Biol 5(1):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazir R, Mandal S, Mitra S, Ghorai M, Das N, Jha NK, Majumder M, Pandey DK, Dey A (2022) Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome‐editing toolkit to enhance salt stress tolerance in rice and wheat. Physiol Plant 174(2):e13642

    Article  CAS  PubMed  Google Scholar 

  • Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305):aaf8729

    Article  PubMed  Google Scholar 

  • Nishihara M, Higuchi A, Watanabe A, Tasaki K (2018) Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biol 18(1):1–9

    Article  Google Scholar 

  • Nitarska D, Boehm R, Debener T, Lucaciu RC, Halbwirth H (2021) First genome edited poinsettias: targeted mutagenesis of flavonoid 3′-hydroxylase using CRISPR/Cas9 results in a colour shift. Plant Cell Tiss Organ Cult 147(1):49–60

    Article  CAS  Google Scholar 

  • Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda G, Ray A (2022) Decrypting the mechanistic basis of CRISPR/Cas9 protein. Prog Biophys Mol Biol 172:60–76

    Article  CAS  PubMed  Google Scholar 

  • Pandita D, Puli COR, Palakolanu SR (2021) CRISPR/Cas13: A novel and emerging tool for RNA editing in plants. In: Tang G, Teotia S, Tang X, Singh D (eds) RNA-Based technologies for functional genomics in plants. Concepts and strategies in plant sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64994-4_14

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108(7):1225–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013a) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128

    Article  CAS  PubMed  Google Scholar 

  • Roberson E (2019) A catalog of CasX genome editing sites in common model organisms. BMC Genom 20(1):1–5

    Article  CAS  Google Scholar 

  • Sandmann G (2015) Carotenoids of biotechnological importance. Adv Biochem Eng Biotechnol. 148:449-467. https://doi.org/10.1007/10_2014_277

    Article  CAS  PubMed  Google Scholar 

  • Sarangi S, Mandal C, Dutta S, Mukherjee P, Mondal R, Kumar SJ, Choudhury PR, Singh VP, Tripathi DK, Mandal AB (2019) Microprojectile based particle bombardment in development of transgenic indica rice involving AmSOD gene to impart tolerance to salinity. Plant Gene 19:100183

    Article  CAS  Google Scholar 

  • Sasaki K, Ohtsubo N (2020) Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. Planta 251:1–16

    Article  Google Scholar 

  • Sasaki K, Ohtsubo N (2020) Production of multi-petaled Torenia fournieri flowers by functional disruption of two class-C MADS-box genes. Planta 251:1–16

    Article  Google Scholar 

  • Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592(12):1954–1967

    Article  CAS  PubMed  Google Scholar 

  • Sheela VL, Sheena A (2014) Novel trends and achievements in breeding of tropical ornamental crops especially orchids and anthuriums: the mutation breeding approach. In: Mutagenesis: exploring genetic diversity of crops. Wageningen Academic Publishers, pp 716–725

  • Shibuya K, Shimizu K, Niki T, Ichimura K (2014) Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in japanese morning glory. Plant J 79:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Yamada T, Ichimura K (2016) Morphological changes in senescing petal cells and the regulatory mechanism of petal senescence. J Exp Bot 67:5909–5918

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Watanabe K, Ono M (2018) CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in japanese morning glory. Plant Physiol Biochem 131:53–57

    Article  CAS  PubMed  Google Scholar 

  • Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  CAS  PubMed  Google Scholar 

  • Smargon AA, Shi YJ, Yeo GW (2020) RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 22(2):143–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smulders MJ, Arens P, Bourke PM, Debener T, Linde M, De Riek J, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J (2019) In the name of the rose: a roadmap for rose research in the genome era. Horticul Res 6:65. https://doi.org/10.1038/s41438-019-0156-0

    Article  Google Scholar 

  • Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. Ecol Evol 30:120–138

    Google Scholar 

  • Strecker J, Jones S, Koopal B, Schmid-Burgk J, Zetsche B, Gao L, Makarova KS, Koonin EV, Zhang F (2019) Engineering of CRISPR-Cas12b for human genome editing. Nat Commun 10(1):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Horticul Res 6:109. https://doi.org/10.1038/s41438-019-0193-8

    Article  CAS  Google Scholar 

  • Subburaj S, Chung SJ, Lee C, Ryu SM, Kim DH, Kim JS, Bae S, Lee GJ (2016) Site-directed mutagenesis in Petunia× hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Kao TH (2018) CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reprod 31:129–143

    Article  PubMed  Google Scholar 

  • Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959

    Article  CAS  PubMed  Google Scholar 

  • Svitashev S, Schwartz C, Lenderts B, Young JK, Mark Cigan A (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7(1):13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda SN, Nakagawa R, Okazaki S, Hirano H, Kobayashi K, Kusakizako T, Nishizawa T, Yamashita K, Nishimasu H, Nureki O (2021) Structure of the miniature type VF CRISPR-Cas effector enzyme. Mol Cell 81(3):558–570

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19(2):190–197

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Oshima Y, Yamamura T, Sugiyama M, Mitsuda N, Ohtsubo N, Ohme-Takagi M, Terakawa T (2013) Multi-petal cyclamen flowers produced by AGAMOUS chimeric repressor expression. Sci Rep 3(1):2641

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3(3):1–5

    Article  Google Scholar 

  • Tasaki K, Yoshida M, Nakajima M, Higuchi A, Watanabe A, Nishihara M (2020) Molecular characterization of an anthocyanin-related glutathione S-transferase gene in japanese gentian with the CRISPR/Cas9 system. BMC Plant Biol 20:1–4

    Article  Google Scholar 

  • Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q, Li W (2018) Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell discov 4(1):63

    Article  PubMed  PubMed Central  Google Scholar 

  • Teng F, Cui T, Gao Q, Guo L, Zhou Q, Li W (2019) Artificial sgRNAs engineered for genome editing with new Cas12b orthologs. Cell Discov 5(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36(9):1262–1280

    Article  CAS  PubMed  Google Scholar 

  • Tong CG, Wu FH, Yuan YH, Chen YR, Lin CS (2020) High-efficiency CRISPR/Cas‐based editing of Phalaenopsis orchid MADS genes. Plant Biotechnol J 18(4):889

    Article  PubMed  Google Scholar 

  • Tsuchida CA, Zhang S, Doost MS, Zhao Y, Wang J, O’Brien E, Fang H, Li CP, Li D, Hai ZY, Chuck J (2022) Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell 82(6):1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Geest G, Bourke PM, Voorrips RE, Marasek-Ciolakowska A, Liao Y, Post A, van Meeteren U, Visser RG, Maliepaard C, Arens P (2017) An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis. Theor Appl Genet 130:2527–2541

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Meeteren U, Aliniaeifard S (2016) Stomata and postharvest physiology. In: Pareek S (eds) Postharvest ripening physiology of crops, 1st ed. CRC Press

  • Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M (2019) Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int J Mol Sci 20(2):402

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada N, Ueta R, Osakabe Y, Osakabe K (2020) Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol 20:1–2

    Article  Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3(10):15

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci Front Plant Sci 7:1333

    PubMed  Google Scholar 

  • Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S (2019) Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnol Adv 37(5):708–729

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Xu Z, Gosavi G, Ren B, Cao Y, Kuang Y, Zhou C, Spetz C, Yan F, Zhou X, Zhou H (2020) Targeted base editing in rice with CRISPR/ScCas9 system. Plant Biotechnol J 18(8):1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Alariqi M, Wang F, Li B, Ding X, Rui H, Li Y, Xu Z, Qin L, Sun L, Li J (2020) The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnol J 18(12):2436–2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Teng Y, Zhang R, Wu Y, Lou L, Zou Y, Li M, Xie ZR, Yan Y (2021) Engineering a PAM-flexible spdcas9 variant as a universal gene repressor. Nat Commun 12(1):6916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Li Y, Wang N, Yu Q, Li Y, Gao J, Zhou X, Ma N (2023) An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). J Integr Plant Biol

  • Wang J, Teng Y, Gong X, Zhang J, Wu Y, Lou L, Li M, Xie ZR, Yan Y (2023) Exploring and engineering PAM-diverse streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metab Eng 75:68–77

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, Ono M (2017) CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7(1):10028

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M (2018) Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Res 27:25–38

    Article  CAS  PubMed  Google Scholar 

  • Weber JJ, Goodwillie C (2013) Variation in floral longevity in the genus Leptosiphon: mating system consequences. Plant Biol 15(1):220–225

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Arazi T, Hod N, Zohar M, Isaacson T, Doron-Faigenboim A, Reznik N, Yedidia I (2020) Transcriptome profiling of Ornithogalum dubium leaves and flowers to identify key carotenoid genes for CRISPR gene editing. Plant J 9(4):540

    Article  Google Scholar 

  • Wheatley MS, Yang Y (2021) Versatile applications of the CRISPR/Cas toolkit in plant pathology and disease management. Phytopathology 111(7):1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Qiao X, Zhao Y, Zhang Z, Gao Y, Shi L, Du H, Wang L, Zhang YJ, Zhang Y, Liu L (2020) Targeted mutagenesis in Arabidopsis thaliana using CRISPR-Cas12b/C2c1. J Integr Plant Biol 62(11):1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Ge X, Yang F, Wang B, Li S, Duan J, Lv X, Cheng C, Song Z, Liu C, Zhao J (2020) High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biol 18(7):e3000747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kang BC, Naing AH, Bae SJ, Kim JS, Kim H, Kim CK (2020) CRISPR/Cas9-mediated editing of 1‐aminocyclopropane‐1‐carboxylate oxidase1 enhances Petunia flower longevity. Plant Biotechnol J 18(1):287–297

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S, Nakamura M, Qi LS (2021) Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol Cell 81(20):4333–4345

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Naing AH, Bunch H, Jeong J, Kim H, Kim CK (2021) Enhancement of the flower longevity of petunia by CRISPR/Cas9-mediated targeted editing of ethylene biosynthesis genes. Postharvest Biol Technol 174:111460

    Article  CAS  Google Scholar 

  • Xue Y, Acar M (2018) Live-cell imaging of chromatin condensation dynamics by CRISPR. iScience 4:216–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi H, Shimizu A, Hase Y, Tanaka A, Shikazono N, Degi K, Morishita T (2010) Effects of ion beam irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed Sci 60(4):398–404

    Article  Google Scholar 

  • Yan WX, Chong S, Zhang H, Makarova KS, Koonin EV, Cheng DR, Scott DA (2018) Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol Cell 70(2):327–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan R, Wang Z, Ren Y, Li H, Liu N, Sun H (2019) Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing Technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. Int J Mol Sci. 20(12):2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Gao P, Rajashankar KR, Patel DJ (2016) PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease. Cell 167(7):1814–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Liu Y, Song L, Jacobs DF, Du X, Ying Y, Shao Q, Wu J (2017) Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. J Plant Growth Regul 36:148–160

    Article  CAS  Google Scholar 

  • Yu J, Tu L, Subburaj S, Bae S, Lee GJ (2021) Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Rep 40:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • Zezulin A, Musunuru K (2018) Turning up the heat with therapeutic epigenome editing. Cell Stem Cell 22(1):10–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Zuo Q, Li D, Zhang W, Wang F, Ji Y, Jin J, Lu Z, Wang M, Zhang C (2017) CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation. PLoS One 12(2):e0172207

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang WL, Zhao YN, Shi ZZ, Cong D, Bai YS (2018) Lutein inhibits cell growth and activates apoptosis via the PI3K/AKT/mTOR signaling pathway in A549 human non-small-cell lung cancer cells. J Environ Pathol Toxicol Oncol 37(4):341–350. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018027418

    Article  PubMed  Google Scholar 

  • Zhang H, Zhang S, Zhang H, Chen X, Liang F, Qin H, Zhang Y, Cong R, Xin H, Zhang Z (2020) Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L). Sci Rep 10(1):16835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang FP, Feng JQ, Huang JL, Huang W, Fu XW, Hu H, Zhang SB (2021) Floral longevity of paphiopedilum and cypripedium is associated with floral morphology. Front Plant Sci 12:637236

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Shen J, Li D, Cheng Y (2021) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11(2):614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang Y, Chai Y (2022a) Optimization of CRISPR/LbCas12a-mediated gene editing in Arabidopsis. PLoS One 17(3):e0265114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Feng X, Liu Y, Zhou F, Zhu P (2022b) A single-base insertion in BoDFR1 results in loss of anthocyanins in green-leaved ornamental kale. Theor Appl Genet 135(6):1855–1865

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yang X, Yang C, Li M, Guo Y (2016) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Sci Rep 6:20315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Zhou F, Liu Z, Feng X, Li Y, Zhu P (2022c) Inactivation of BoORP3a, an oxysterol-binding protein, causes a low wax phenotype in ornamental kale. Hortic Res 9. https://doi.org/10.1093/hr/uhac219

  • Zhao Z, Hou M, Wang Y, Du G (2020) Phenological variation of flower longevity and duration of sex phases in a protandrous alpine plant: potential causes and fitness significance. BMC Plant Biol 20(1):1–0

    Article  CAS  Google Scholar 

  • Zong Y, Liu Y, Xue C, Li B, Li X, Wang Y, Li J, Liu G, Huang X, Cao X, Gao C (2022) An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol 40(9):1394–1402

    Article  CAS  PubMed  Google Scholar 

  • Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364(6437):289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo Z, Babu K, Ganguly C, Zolekar A, Newsom S, Rajan R, Wang YC, Liu J (2022) Rational engineering of CRISPR-Cas9 nuclease to attenuate position-dependent off-target effects. CRISPR J 5(2):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, ICAR-DFR, Pune in facilitating the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Jeevan Kumar.

Ethics declarations

Conflict of interest 

The authors declare that they have no conflict of interest in publishing the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, P.R., Aglawe, S.B., Harish, D. et al. Improvement of floricultural traits in ornamental crops using genome editing tools. J. Plant Biochem. Biotechnol. 32, 773–790 (2023). https://doi.org/10.1007/s13562-023-00851-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-023-00851-3

Keywords

Navigation