Skip to main content
Log in

CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

Function of Petunia PiSSK1.

Abstract

Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2-haplotype and S 3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1–Cullin1–F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S 3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–41

    Google Scholar 

  • Ai Y, Singh A, Coleman CE, Ioerger TR, Kheyr-Pour A, Kao T-h (1990) Self-incompatibility in Petunia inflata: isolation and characterization of cDNAs encoding three S-allele-associated proteins. Sex Plant Reprod 3:130–138

    Article  Google Scholar 

  • Bombarely A, Moser M, Amrad A et al (2016) Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nat Plants 2:16074

    Article  CAS  PubMed  Google Scholar 

  • Broothaerts W, Keulemans J, Van Nerum I (2004) Self-fertile apple resulting from S-RNase gene silencing. Plant Cell Rep 22:497–501

    Article  CAS  PubMed  Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Book  Google Scholar 

  • Dezfulian MH, Soulliere DM, Dhaliwal RK, Sareen M, Crosby WL (2012) The SKP1-Like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development. PLoS ONE 7:e50984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dove KK, Kemp HA, Di KR, Reiter KH, Milburn LJ, Camacho D, Fay DS, Miller DL, Klevit RE (2017) Two functionally distinct E2/E3 pairs coordinate sequential ubiquitination of a common substrate in Caenorhabditis elegans development. Proc Natl Acad Sci USA 114:e6576–e6584. https://doi.org/10.1073/pnas.1705060114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3:e3647

    Article  PubMed  PubMed Central  Google Scholar 

  • Entani T, Kubo K, Isogai S, Fukao Y, Shirakawa M, Isogai A, Takayama S (2014) Ubiquitin-proteasome-mediated degradation of S-RNase in a solanaceous cross-compatibility reaction. Plant J 78:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Gagne JM, Downes BP, Shiu S-HH, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vasquez-Santana S, Kim S, Phillips TE, Cruz-Garvia F, McClure B (2006) Compartmentalization of S-RNase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Kao T-h (2006) Identification and characterization of components of a putative Petunia S-locus F-box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531–2553

  • Huang S, Lee H-S, Karunanandaa B, Kao T-h (1994) Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell 6:1021–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhao L, Yang Q, Xue Y (2006) AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. Plant J 46:780–793

    Article  CAS  PubMed  Google Scholar 

  • Kay R, Chan AMY, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Leebens-Mack J, Ni W, DePamphilis CW, Ma H (2004) Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Mol Biol Evol 21:117–128

    Article  CAS  PubMed  Google Scholar 

  • Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, DePamphilis CW (2007) Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885

    Article  CAS  PubMed  Google Scholar 

  • Kubo KI, Entani T, Takara A, Wang N, Fields AM, Hua Z, Toyoda M, Kawashima SI, Ando T, Isogai A, Kao T-h, Takayama S (2010) Collaborative non-self recognition system in S-RNase-based self-incompatibility. Science 330:796–799

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Tsukahara M, Fujii S, Murase K, Wada Y, Entani T, Iwano M, Takayama S (2016) Cullin1-P is an essential component of non-self recognition system in self-incompatibility in Petunia. Plant Cell Physiol 57:2403–2416

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Ma W, Han B, Liang L, Zhang Y, Hong G, Xue Y (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–41

  • Lee H-S, Huang S, Kao T-h (1994) S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  CAS  PubMed  Google Scholar 

  • Li S, Sun P, Williams JS, Kao T-h (2014) Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. Plant Reprod 27:31–45

    Article  PubMed  Google Scholar 

  • Li S, Williams JS, Sun P, Kao T-h (2016) All 17 types of S-locus F-box proteins of S 2- and S 3-haplotypes of Petunia inflata are assembled into similar SCF complexes with specific function in self-incompatibility. Plant J 87:606–616

    Article  CAS  PubMed  Google Scholar 

  • Li F-C, Wang J, Wu M-M, Fan C-M, Li X, He J-M (2017) Mitogen-activated protein kinase phosphatases affect UV-B-induced stomatal closure via controlling NO in guard cells. Plant Physiol 173:760–770

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D (2004) The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell 16:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luu DT, Qin X, Morse D, Cappadocia M (2000) S-RNase uptake by compatible pollen tubes in gametophytic self-incompatibility. Nature 407:649–651

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Chen L, Zhu Q, Chen Y, Liu YG (2015) Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Mol Plant 8:1285–1287

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Hua Z, Sun P, Kao T-h (2011) The amino terminal F-box domain of Petunia inflata S-locus F-box protein is involved in the S-RNase-based self-incompatibility mechanism. AoB Plants 11:1–14

    Google Scholar 

  • Minamikawa MF, Koyano R, Kikuchi S, Koba T, Sassa H (2014) Identification of SFBB-containing canonical and noncanonical SCF complexes in pollen of apple (Malus x domestica). PLoS ONE 9:e97642

  • Murfett J, Atherton TL, Mou B, Gasser CS, McClure B (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  CAS  PubMed  Google Scholar 

  • Pierce NW, Lee JE, Liu X, Sweredoski MJ, Graham RL, Larimore EA, Rome M, Zheng N, Clurman BE, Hess S, Shan SO, Deshaies RJ (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F-box proteins. Cell 153:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao H, Wang H, Zhao L, Zhou J, Huang J, Zhang Y, Xue Y (2004) The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell 16:582–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34:753–767

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DYR (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233

    Article  CAS  PubMed  Google Scholar 

  • Rost B, Liu J (2003) The predictprotein server. Nucleic Acids Res 31:3300–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K, Kusaba M, Hirano H, Koba T (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman BA, Carrano AC, Jeffrey PD, Bowen Z (2000) Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature 408:381–386

    Article  CAS  PubMed  Google Scholar 

  • Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, Kao T-h (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305

  • Sims TL, Ordanic M (2001) Identification of a S-ribonuclease-binding protein in Petunia hybrida. Plant Mol Biol 47:771–783

    Article  CAS  PubMed  Google Scholar 

  • Sims TL, Robbins TP (2009) Gametophytic self-incompatibility in Petunia. In: Gerats T, Strommer J (eds) Petunia: evolutionary, developmental and physiological genetics, 2nd edn. Springer, New York, pp 85–106

    Chapter  Google Scholar 

  • Sun P, Kao T-h (2013) Self-incompatibility in Petunia inflata: the relationship between a self-incompatibility locus F-box protein and its non-self S-RNases. Plant Cell 25:470–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Kao T-h (2012) Self-incompatibility in Petunia: a self/nonself-recognition mechanism employing S-locus F-box proteins and S-RNase to prevent inbreeding. Wiley Interdiscip Rev Dev Biol 1:267–275

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hughes AL, Tsukamoto T, Ando T, Kao T-h (2001) Evidence that intragenic recombination contributes to allelic diversity of the S-RNase gene at the self-incompatibility (S) locus in Petunia inflata. Plant Physiol 125:1012–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JS, Der JP, DePamphilis CW, Kao T-h (2014) Transcriptome analysis reveals the same 17 S-Locus F-Box genes in two haplotypes of the self-incompatibility locus of Petunia inflata. Plant Cell 26:2873–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JS, Wu L, Li S, Sun P, Kao T-h (2015) Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Front Plant Sci 6:41. https://doi.org/10.3389/fpls.2015.00041

    PubMed  PubMed Central  Google Scholar 

  • Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang D, Xie D (2002) The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Li M, Wu J, Guo H, Li Q, Zhang Y, Chai J, Li T, Xue Y (2013) Identification of a canonical SCFSLFcomplex involved in S-RNase-based self-incompatibility of Pyrus (Rosaceae). Plant Mol Biol 81:245–257

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Meng D, Gu Z, Li W, Wang A, Yang Q, Zhu Y, Li T (2014) A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple. J Exp Bot 65:3121–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang C, Lin Q, Gao F, Ma Y, Zhang M, Lin Y, Ma Q, Hua X (2015) Genome-wide analysis of phylogeny, expression profile and sub-cellular localization of SKP1-like genes in wild tomato. Plant Sci 238:105–114

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Yang M, Solava JJ, Ma H (1999) The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis. Dev Genet 25:209–223

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Ni W, Feng B, Han T, Petrasek MG, Ma H (2003) Members of the Arabidopsis SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. Plant Physiol 133:203–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Huang J, Zhao Z, Li Q, Sims TL, Xue Y (2010) The Skp1-like protein SSK1 is required for cross-pollen compatibility in S-RNase-based self-incompatibility. Plant J 62:52–63

    Article  CAS  PubMed  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC (2002) Structure of the Cul1-Rbx1-Skp1-F-boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yinong Yang and Bastian Minkenberg for providing pGTR plasmid and technical advice on CRISPR/Cas9-mediated genome editing; Ning Zheng for discussion about PiSSK1 sequence features; Shawn Burghard for greenhouse management; Hongli Hao for general laboratory help. This work was supported by Grant IOS-1645557 from the National Science Foundation to Teh-hui Kao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teh-hui Kao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Noni Franklin-Tong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Supplementary material 2 (DOCX 12795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Kao, Th. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata . Plant Reprod 31, 129–143 (2018). https://doi.org/10.1007/s00497-017-0314-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-017-0314-1

Keywords

Navigation