Skip to main content

Advertisement

Log in

Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Najafi et al., The current knowledge concerning solid cancer and therapy. J. Biochem. Mol. Toxicol. 35 e22900 (2021)

  2. K. Mortezaee, Normalization in tumor ecosystem: Opportunities and challenges. Cell Biol. Int. 45(10), 2017–2030 (2021)

  3. K. Mortezaee, Organ tropism in solid tumor metastasis: an updated review. Future Oncol. 17(15), 1943–1961 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. X. Niu et al., Sodium/glucose cotransporter 1-dependent metabolic alterations induce tamoxifen resistance in breast cancer by promoting macrophage M2 polarization. Cell Death Dis. 12(6), 1–15 (2021)

    Article  CAS  Google Scholar 

  5. Y.-K. Huang et al., Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat. Commun. 10(1), 1–15 (2019)

    Article  CAS  Google Scholar 

  6. B. Farhood et al., Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J. Cell. Biochem. 120(1), 71–76 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. H. Xu et al., The IL-33/ST2 axis affects tumor growth by regulating mitophagy in macrophages and reprogramming their polarization. Cancer Biol. Med. 18(1), 172 (2021)

    Article  CAS  Google Scholar 

  8. D. Saha, R.L. Martuza, S.D. Rabkin, Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32(2): 253–267. e5 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Zhang et al., GPR30 knockdown weakens the capacity of CAF in promoting prostate cancer cell invasion via reducing macrophage infiltration and M2 polarization. J. Cell. Biochem. 122 doi: 10.1002/jcb.29938 (2021)

  10. L. Sun et al., Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 39(10), 1361–1374 (2021)

  11. Y. Peng et al., Tumor-associated macrophages as treatment targets in glioma. Brain Sci. Adv. 6(4), 306–323 (2020)

    Article  Google Scholar 

  12. Q. Wen et al., Fusion cytokine IL-2-GMCSF enhances anticancer immune responses through promoting cell–cell interactions. J. Transl. Med. 14(1), 1–13 (2016)

    Article  CAS  Google Scholar 

  13. D. Briukhovetska et al., Interleukins in cancer: from biology to therapy. Nature Rev. Cancer 21(8), 481–499 (2021)

  14. K. Yan et al., Multi-omics analysis identifies FoxO1 as a regulator of macrophage function through metabolic reprogramming. Cell Death Dis. 11(9), 1–14 (2020)

    Article  CAS  Google Scholar 

  15. M. Yang et al., ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis. Cell Death Dis. 6(6), e1780–e1780 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Guilliams, C.L. Scott, Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17(7), 451–460 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. S.A. Dick et al., Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7(67), eabf7777 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. L.V. Ireland, A. Mielgo, Macrophages and fibroblasts, key players in cancer chemoresistance. Front. Cell Dev. Biol. 6, 131 (2018)

    Article  Google Scholar 

  19. M.B. Buechler, W. Fu, S.J. Turley, Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54(5), 903–915 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. M.R. Spalinger et al., Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunol. 15(1), 74–83 (2022)

  21. K. Kubota et al., CD163 + CD204 + tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci. Rep. 7(1), 1755 (2017)

    Article  CAS  Google Scholar 

  22. D.H. Seo et al., Interleukin-33 regulates intestinal inflammation by modulating macrophages in inflammatory bowel disease. Sci. Rep. 7(1), 851 (2017)

    Article  CAS  Google Scholar 

  23. P. Sarode et al., Macrophage and tumor cell cross-talk is fundamental for lung tumor progression: we need to talk. Front. Oncol. 10, 324 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Akimoto et al., Soluble IL-33 receptor sST2 inhibits colorectal cancer malignant growth by modifying the tumour microenvironment. Nat. Commun. 7(1), 1–15 (2016)

    Article  CAS  Google Scholar 

  25. Y. Pan et al., Tumor-associated macrophages in tumor immunity. Front. Immunol. 11, 3151 (2020)

    Article  Google Scholar 

  26. C. Xu et al., Combination therapy with NHS-muIL12 and avelumab (anti-PD-L1) enhances antitumor efficacy in preclinical cancer models. Clin. Cancer Res. 23(19), 5869–5880 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. J. Majidpoor, K. Mortezaee, Steps in metastasis: an updated review. Med. Oncol. 38(1), 1–17 (2021)

    Article  Google Scholar 

  28. A.J. Boutilier, S.F. Elsawa, Macrophage polarization states in the tumor microenvironment. Int. J. Mol. Sci. 22(13), 6995 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.P. Väyrynen et al., The prognostic role of macrophage polarization in the colorectal cancer microenvironment. Cancer Immunol. Res. 9(1), 8–19 (2021)

    Article  PubMed  Google Scholar 

  30. S. Zhu et al., Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J. Cancer 12(1), 54 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. C. Giordano et al., Combining magnetic resonance imaging with systemic monocyte evaluation for the implementation of GBM management. Int. J. Mol. Sci. 22(7), 3797 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M.-J. Lee et al., Results from a biomarker study to accompany a phase II trial of RRx-001 with reintroduced platinum-based chemotherapy in relapsed small cell carcinoma. Expert Opin. Investig. Drugs 30(2), 177–183 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Meng et al., Interaction between pancreatic cancer cells and tumor-associated macrophages promotes the invasion of pancreatic cancer cells and the differentiation and migration of macrophages. IUBMB life 66(12), 835–846 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. T. Yamaguchi et al., Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer 19(4), 1052–1065 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. A. Frafjord et al., Antibody combinations for optimized staining of macrophages in human lung tumours. Scand. J. Immunol. 92(1), e12889 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. M. Zhang et al., A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J. Ovarian Res. 7(1), 1–16 (2014)

    Article  Google Scholar 

  37. K. Mortezaee et al., Melatonin pretreatment enhances the homing of bone marrow-derived mesenchymal stem cells following transplantation in a rat model of liver fibrosis. Iran. Biomed. J. 20(4), 207 (2016)

    PubMed  PubMed Central  Google Scholar 

  38. K. Mortezaee et al., Preconditioning with melatonin improves therapeutic outcomes of bone marrow-derived mesenchymal stem cells in targeting liver fibrosis induced by CCl4. Cell Tissue Res. 369(2), 303–312 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. B. Diskin et al., PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol. 21(4), 442–454 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. K. Mortezaee, Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J. Biochem. Mol. Toxicol. 35(4), e22708 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. K. Mortezaee, Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sc. 277, 119627 (2021)

  42. S. Ostrand-Rosenberg et al. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Sem. Cancer Biol. 22(4), 275–281 (2012)

  43. V.K. Deo, T. Kato, E.Y. Park, Virus-like particles displaying recombinant short-chain fragment region and interleukin 2 for targeting colon cancer tumors and attracting macrophages. J. Pharm. Sci. 105(5), 1614–1622 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. M.E. Raeber et al., Interleukin-2 signals converge in a lymphoid–dendritic cell pathway that promotes anticancer immunity. Sci. Transl. Med. 12, 561 (2020)

  45. C.M. Rollings et al., Interleukin-2 shapes the cytotoxic T cell proteome and immune environment–sensing programs. Sci. Signal. 11, 526 (2018)

  46. X. Tong et al., The mechanism of chemokine receptor 9 internalization triggered by interleukin 2 and interleukin 4. Cell Mol. Immunol. 6(3), 181–189 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. K.V. Bankaitis, B. Fingleton, Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. Clin. Exp. Metastasis 32(8), 847–856 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. X. Song et al., Possible roles of Interleukin-4 and-13 and their receptors in gastric and colon cancer. Int. J. Mol. Sci. 22(2), 727 (2021)

    Article  CAS  PubMed Central  Google Scholar 

  49. C.M. Wunderlich et al., Obesity exacerbates colitis-associated cancer via IL-6-regulated macrophage polarisation and CCL-20/CCR-6-mediated lymphocyte recruitment. Nat. Commun. 9(1), 1–16 (2018)

    Article  CAS  Google Scholar 

  50. H. Xu et al., Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner. BMC Cancer 14(1), 1–13 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. J.K. Singh et al., Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 15(4), 1–9 (2013)

    Article  CAS  Google Scholar 

  52. D.S. Shouval et al., Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40(5), 706–719 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. R.A. Saxton et al., Structure-based decoupling of the pro-and anti-inflammatory functions of interleukin-10. Science 371, 6535 (2021)

  54. C. Gorby et al., Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 13(649), eabc0653 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Mortezaee, M. Najafi, Immune system in cancer radiotherapy: resistance mechanisms and therapy perspectives. Crit. Rev. Oncol./Hematol. 157, 103180 (2020)

  56. S. Mondal et al., IL-12 p40 monomer is different from other IL-12 family members to selectively inhibit IL-12Rβ1 internalization and suppress EAE. Proc. Natl. Acad. Sci. USA 117(35), 21557–21567 (2020)

  57. K.G. Nguyen et al., Localized interleukin-12 for cancer immunotherapy. Front. Immunol. 11, 575597(2020)

  58. Y. Guo, W. Cao, Y. Zhu, Immunoregulatory functions of the IL-12 family of cytokines in antiviral systems. Viruses 11(9), 772 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  59. M.F. Eissmann et al., IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat. Commun. 10(1), 1–16 (2019)

    Article  CAS  Google Scholar 

  60. C. O’donnell et al., An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br. J. Cancer 114(1), 37–43 (2016)

    Article  PubMed  CAS  Google Scholar 

  61. A. Masjedi et al., The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed. Pharmacother. 108, 1415–1424 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. M.J. Waldner, S. Foersch, M.F. Neurath, Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci. 8(9), 1248 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. M. Fang et al., IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res. 77(10), 2735–2745 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. T. Vilsmaier et al., Influence of circulating tumour cells on production of IL-1α, IL-1β and IL-12 in sera of patients with primary diagnosis of breast cancer before treatment. Anticancer Res. 36(10), 5227–5236 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. T. Zhang et al., Oncolytic tanapoxvirus expressing interleukin-2 is capable of inducing the regression of human melanoma tumors in the absence of T cells. Curr. Cancer Drug Targets 18(6), 577–591 (2018)

    Article  CAS  PubMed  Google Scholar 

  66. Z. Sun et al., A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8 + T-cell response and effective tumor control. Nat. Commun. 10(1), 1–12 (2019)

    Article  CAS  Google Scholar 

  67. J.M. Santos et al., Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int. J. Cancer 141(7), 1458–1468 (2017)

    Article  CAS  PubMed  Google Scholar 

  68. A. Ahmed et al., Peripheral blood and tissue assessment highlights differential tumor-circulatory gradients of IL2 and MIF with prognostic significance in resectable pancreatic ductal adenocarcinoma. Oncoimmunology 10(1), 1962135 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  69. J. Majidpoor, K. Mortezaee, Interleukin-2 therapy of cancer-clinical perspectives. Int. Immunopharmacol. 98, 107836 (2021)

    Article  CAS  PubMed  Google Scholar 

  70. G. Trinchieri, Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3(2), 133–146 (2003)

    Article  CAS  PubMed  Google Scholar 

  71. K.C. Hicks et al., Tumour-targeted interleukin-12 and entinostat combination therapy improves cancer survival by reprogramming the tumour immune cell landscape. Nat. Commun. 12(1), 1–18 (2021)

    Article  CAS  Google Scholar 

  72. P.H. Thaker et al., A phase I trial of intraperitoneal GEN-1, an IL-12 plasmid formulated with PEG-PEI-cholesterol lipopolymer, administered with pegylated liposomal doxorubicin in patients with recurrent or persistent epithelial ovarian, fallopian tube or primary peritoneal cancers: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 147(2), 283–290 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. B. Mirlekar, Y. Pylayeva-Gupta, IL-12 Family Cytokines in cancer and immunotherapy. Cancers 13(2), 167 (2021)

    Article  CAS  PubMed Central  Google Scholar 

  74. W. Lasek, R. Zagożdżon, M. Jakobisiak, Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol. Immunother. 63(5), 419–435 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. K. Buscher et al., Natural variation of macrophage activation as disease-relevant phenotype predictive of inflammation and cancer survival. Nat. Commun. 8(1), 1–10 (2017)

    Article  CAS  Google Scholar 

  76. E.A. Chiocca et al., Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Science Transl. Med. 11, 505 (2009)

  77. N. Kirchhammer et al., Successful IL-12 cancer immunotherapy requires NK cell-derived CCL5 for anti-tumor DC-T cell crosstalk. BioRxiv, (2021)

  78. S. Tugues et al., New insights into IL-12-mediated tumor suppression. Cell. Death Diff. 22(2), 237–246 (2015)

    Article  CAS  Google Scholar 

  79. F. Castro et al., Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Y. Che et al., Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol. Immunother. 69(12), 2651–2664 (2020)

    Article  CAS  PubMed  Google Scholar 

  81. A. Ryan et al., Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis. Oncogene 34(12), 1563–1574 (2015)

    Article  CAS  PubMed  Google Scholar 

  82. R. Spolski, W.J. Leonard, Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26, 57–79 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. W.J. Leonard, R. Spolski, Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nat. Rev. Immunol. 5(9), 688–698 (2005)

    Article  CAS  PubMed  Google Scholar 

  84. S. Deng et al., Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3–CD8 + T cells. JCI Insight 5, 7 (2020)

  85. Y. Wang et al., An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front. Immunol. 10, 1691 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. M. Xu et al., Intratumoral delivery of IL-21 overcomes anti-Her2/Neu resistance through shifting tumor-associated macrophages from M2 to M1 phenotype. J. Immunol. 194(10), 4997–5006 (2015)

    Article  CAS  PubMed  Google Scholar 

  87. D. Xue et al., Next-generation cytokines for cancer immunotherapy. Antib. Ther. 4(2), 123–133 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. V. Kannappan et al., Interleukin 21 inhibits cancer-mediated FOXP3 induction in naïve human CD4 T cells. Cancer Immunol. Immunother. 66(5), 637–645 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. D. Hermans et al., Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8 + T cell stemness and antitumor immunity. Proc. Natl. Acad. Sci. USA 117(11), 6047–6055 (2020)

  90. Y. Li et al., Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat. Commun. 12(1), 1–13 (2021)

    CAS  Google Scholar 

  91. K. Brandt et al., Interleukin-21 inhibits dendritic cell activation and maturation. Blood 102(12), 4090–4098 (2003)

    Article  CAS  PubMed  Google Scholar 

  92. S. Shen et al., Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8 + T cell function and anti-tumor immunity. Front. Immunol. 11, 832 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Y. Zhao et al., IL-21 is an accomplice of PD-L1 in the induction of PD-1-dependent Treg generation in head and neck cancer. Front. Oncol. 11, 1601 (2021)

    Google Scholar 

  94. G. Nappo et al., The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis 6(5), e342–e342 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. J. Sheng et al., M2 macrophage-mediated interleukin-4 signalling induces myofibroblast phenotype during the progression of benign prostatic hyperplasia. Cell Death Dis. 9(7), 1–13 (2018)

    Article  CAS  Google Scholar 

  96. S. Parveen et al., IL-4 receptor targeting as an effective immunotherapy against triple-negative breast cancer. BioRxiv, (2020)

  97. V. Piccolo et al., Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk. Nat. Immunol. 18(5), 530–540 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A. Rodriguez-Garcia et al., CAR-T cell-mediated depletion of immunosuppressive tumor-associated macrophages promotes endogenous antitumor immunity and augments adoptive immunotherapy. Nat. Commun. 12(1), 1–17 (2021)

    Article  CAS  Google Scholar 

  99. H.-W. Wang, J.A. Joyce, Alternative activation of tumor-associated macrophages by IL-4: priming for protumoral functions. Cell Cycle 9(24), 4824–4835 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Y. Lin, J. Xu, H. Lan, Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12(1), 1–16 (2019)

    Article  Google Scholar 

  101. N. Xue et al., Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci. Rep. 7(1), 1–11 (2017)

    CAS  Google Scholar 

  102. X. Yan et al., Lewis lung cancer cells promote SIGNR1 (CD209b)-mediated macrophages polarization induced by IL‐4 to facilitate immune evasion. J. Cell. Biochem. 117(5), 1158–1166 (2016)

    Article  CAS  PubMed  Google Scholar 

  103. S. Setrerrahmane, H. Xu, Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol. Cancer 16(1), 1–17 (2017)

    Article  CAS  Google Scholar 

  104. S. Gupta et al., IL-6 augments IL-4-induced polarization of primary human macrophages through synergy of STAT3, STAT6 and BATF transcription factors. Oncoimmunology 7(10), e1494110 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  105. S. Ito et al., IL-4 blockade alters the tumor microenvironment and augments the response to cancer immunotherapy in a mouse model. Cancer Immunol. Immunother. 66(11), 1485–1496 (2017)

    Article  CAS  PubMed  Google Scholar 

  106. G.R. Gunassekaran et al., M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 278, 121137 (2021)

    Article  CAS  PubMed  Google Scholar 

  107. G.R. Gunassekaran et al., Non-genetic engineering of cytotoxic T cells to target IL-4 receptor enhances tumor homing and therapeutic efficacy against melanoma. Biomaterials 159, 161–173 (2018)

    Article  CAS  PubMed  Google Scholar 

  108. E.B. Nejad et al., IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors. J. Immunother. Cancer 9, 4 (2021)

  109. H. Liu, J. Shen, K. Lu, IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem. Biophys. Res. Commun. 486(2), 239–244 (2017)

  110. P. Chomarat et al., IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat. Immunol. 1(6), 510–514 (2000)

    Article  CAS  PubMed  Google Scholar 

  111. N. Higashino et al., Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab. Invest. 99(6), 777–792 (2019)

    Article  CAS  PubMed  Google Scholar 

  112. Q. Wang et al., Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nat. Commun. 9(1), 1–15 (2018)

    CAS  Google Scholar 

  113. D.T. Fisher, M.M. Appenheimer, S.S. Evans, The two faces of IL-6 in the tumor microenvironment. Sem. Immunol. 26(1), 38–47 (2014)

  114. M. Papaspyridonos et al., Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation. Nat. Commun. 6(1), 1–13 (2015)

    Article  CAS  Google Scholar 

  115. F. Yang et al., Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat. Commun. 12(1), 1–15 (2021)

    CAS  Google Scholar 

  116. Y. Wang et al., Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 7(5), 1106–1115 (2014)

    Article  CAS  PubMed  Google Scholar 

  117. X. Ye et al., Oncogenic potential of truncated RXRα during colitis-associated colorectal tumorigenesis by promoting IL-6-STAT3 signaling. Nat. Commun. 10(1), 1–15 (2019)

    Article  CAS  Google Scholar 

  118. C. Raggi et al., Cancer stem cells and tumor-associated macrophages: a roadmap for multitargeting strategies. Oncogene 35(6), 671–682 (2016)

    Article  CAS  PubMed  Google Scholar 

  119. M. Jiang et al., Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol. 8, 1840 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Y.-C. Wang et al., USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nat. Commun. 9(1), 1–18 (2018)

    CAS  Google Scholar 

  121. K. Mortezaee et al., NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol. 12(1), 50–60 (2019)

    Article  CAS  PubMed  Google Scholar 

  122. J. Mauer, J.L. Denson, J.C. Brüning, Versatile functions for IL-6 in metabolism and cancer. Trends Immunol. 36(2), 92–101 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. C. Dominguez et al., Neutralization of IL-8 decreases tumor PMN-MDSCs and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight 2, 21 (2017)

  124. J. Wen et al., IL-8 promotes cell migration through regulating EMT by activating the Wnt/β‐catenin pathway in ovarian cancer. J. Cell. Mol. Med. 24(2), 1588–1598 (2020)

    Article  CAS  PubMed  Google Scholar 

  125. K.C. Yuen et al., High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26(5), 693–698 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. K. Kai et al., Oral squamous cell carcinoma contributes to differentiation of monocyte-derived tumor-associated macrophages via PAI-1 and IL-8 production. Int. J. Mol. Sci. 22(17), 9475 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. S. Thongchot et al., Interleukin–8 released by cancer–associated fibroblasts attenuates the autophagy and promotes the migration of ovarian cancer cells. Int. J. Oncol. 58(5), 1–14 (2021)

    Article  CAS  Google Scholar 

  128. T. Hasan et al., Interleukin-8/CXCR2 signaling regulates therapy-induced plasticity and enhances tumorigenicity in glioblastoma. Cell Death Dis. 10(4), 1–17 (2019)

    Article  CAS  Google Scholar 

  129. T. Zheng et al., IL-8 secreted from M2 macrophages promoted prostate tumorigenesis via STAT3/MALAT1 pathway. Int. J. Mol. Sci. 20(1), 98 (2019)

    Article  CAS  Google Scholar 

  130. G. Nie et al., Tumor-associated macrophages-mediated CXCL8 infiltration enhances breast cancer metastasis: Suppression by Danirixin. Int. Immunopharmacol. 95, 107153 (2021)

    Article  CAS  PubMed  Google Scholar 

  131. M. Huang et al., Macrophage inhibitory cytokine-1 induced by a high‐fat diet promotes prostate cancer progression by stimulating tumor‐promoting cytokine production from tumor stromal cells. Cancer Commun. 41(5), 389–403 (2021)

    Article  Google Scholar 

  132. K. Mortezaee. J. Majidpoor, (Im)maturity in tumor ecosystem. Front. Oncol. 11, 813897 (2022)

  133. M. Sanmamed et al., Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 28(8), 1988–1995 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Z.A. Lopez-Bujanda et al., Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nat. Cancer 2(8), 803–818 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. R.P. Tobin et al., IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients. Front. Oncol. 9, 1223 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  136. M.H. Mannino et al., The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367(2), 103–107 (2015)

    Article  CAS  PubMed  Google Scholar 

  137. Y. Chen, W. Tan, C. Wang, Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial–mesenchymal transition. OncoTargets Therapy 11, 3817 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  138. W.E. Ip et al., Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356(6337), 513–519 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. K.L. Dennis et al., Current status of IL-10 and regulatory T-cells in cancer. Curr. Opin. Oncol. 25(6), 637 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. E.F. Giunta et al., Baseline IFN-γ and IL-10 expression in PBMCs could predict response to PD-1 checkpoint inhibitors in advanced melanoma patients. Sci. Rep. 10(1), 1–11 (2020)

    Article  CAS  Google Scholar 

  141. Y. Zhuang et al., Resistance mechanism of PD-1/PD-L1 blockade in the cancer-immunity cycle. OncoTargets Therapy 13, 83 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. B. Ruffell et al., Macrophage IL-10 blocks CD8 + T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26(5), 623–637 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. J. Qiao et al., Targeting tumors with IL-10 prevents dendritic cell-mediated CD8+ T cell apoptosis. Cancer Cell 35(6): 901–915 (2019)

    Article  CAS  PubMed  Google Scholar 

  144. K. He et al., Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity. Cell Death Dis. 10(3), 1–16 (2019)

    Article  CAS  Google Scholar 

  145. Y.R. Na et al., The early synthesis of p35 and activation of CDK5 in LPS-stimulated macrophages suppresses interleukin-10 production. Sci. Signal. 8(404), ra121–ra121 (2015)

    Article  PubMed  CAS  Google Scholar 

  146. M. Almanan et al., IL-10–producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. Sci. Adv. 6(31), eabb0806 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. A. Suzuki et al., Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 75(1), 79–88 (2015)

    Article  CAS  PubMed  Google Scholar 

  148. M. Xiao et al., SENP3 loss promotes M2 macrophage polarization and breast cancer progression. Mol. Oncol. 16(4), 1026–1044 (2022)

  149. X.-X. Deng et al., Taraxacum mongolicum extract inhibited malignant phenotype of triple-negative breast cancer cells in tumor-associated macrophages microenvironment through suppressing IL-10/STAT3/PD-L1 signaling pathways. J. Ethnopharmacol. 274, 113978 (2021)

    Article  CAS  PubMed  Google Scholar 

  150. E. Conte, Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol. Therap. 11, 108031 (2021)

  151. K. Mortezaee et al., Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol. 14(1), 41–53 (2019)

    Article  CAS  PubMed  Google Scholar 

  152. K. Mortezaee, Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: A review. Cell Biochem. Funct. 36(6), 292–302 (2018)

    Article  CAS  PubMed  Google Scholar 

  153. K. Mortezaee et al., Post-treatment of melatonin with CCl4 better reduces fibrogenic and oxidative changes in liver than melatonin co‐treatment. J. Cell. Biochem. 119(2), 1716–1725 (2018)

    Article  CAS  PubMed  Google Scholar 

  154. G.-Y. Liou et al., The presence of interleukin-13 at pancreatic ADM/PanIN lesions alters macrophage populations and mediates pancreatic tumorigenesis. Cell Rep. 19(7), 1322–1333 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. A.C. Little et al., IL-4/IL-13 stimulated macrophages enhance breast cancer invasion via rho-GTPase regulation of synergistic VEGF/CCL-18 signaling. Front. Oncol. 9, 456 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  156. C.N. Noto et al., IL-13 acts directly on gastric epithelial cells to promote metaplasia development during chronic gastritis. Cell. Mol. Gastroenterol. Hepatol. 13(2), 623–642 (2022)

  157. J.P. Newman et al., Interleukin-13 receptor alpha 2 cooperates with EGFRvIII signaling to promote glioblastoma multiforme. Nat. Commun. 8(1), 1–17 (2017)

    Article  CAS  Google Scholar 

  158. R. Bhardwaj et al., Identification of a novel role of IL-13Rα2 in human Glioblastoma multiforme: Interleukin-13 mediates signal transduction through AP-1 pathway. J. Transl. Med. 16(1), 1–13 (2018)

    Article  CAS  Google Scholar 

  159. M. Akimoto et al., Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer. Cell Death Dis. 7(1), e2057-e2057 (2016)

  160. A. De Boeck et al., Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat. Commun. 11(1), 1–24 (2020)

    Article  Google Scholar 

  161. C. Kudo-Saito et al., IL33 is a key driver of treatment resistance of cancer. Cancer Res. 80(10), 1981–1990 (2020)

    Article  CAS  PubMed  Google Scholar 

  162. W. Wang et al., Exogenous interleukin-33 promotes hepatocellular carcinoma growth by remodelling the tumour microenvironment. J. Transl. Med. 18(1), 1–15 (2020)

    Article  Google Scholar 

  163. A. Hatzioannou et al., An intrinsic role of IL-33 in T reg cell–mediated tumor immunoevasion. Nat. Immunol. 21(1), 75–85 (2020)

    Article  CAS  PubMed  Google Scholar 

  164. S. Taniguchi et al., Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression. Science 369, 6501 (2020)

  165. J.B. Kamphuis et al., Comment on “Tumor-initiating cells establish an IL-33–TGF-β niche signaling loop to promote cancer progression”. Science 372, 6538 (2021)

  166. J. Wu et al., Interleukin-33 is a novel immunosuppressor that protects cancer cells from TIL killing by a macrophage‐mediated shedding mechanism. Adv. Sci. 8(21), 2101029 (2021)

    Article  CAS  Google Scholar 

  167. C. Recio et al., Signal transducer and activator of transcription (STAT)-5: An opportunity for drug development in oncohematology. Oncogene 38(24), 4657–4668 (2019)

    Article  CAS  PubMed  Google Scholar 

  168. Y. Liu et al., IL-2 regulates tumor-reactive CD8 + T cell exhaustion by activating the aryl hydrocarbon receptor. Nat. Immunol. 22(3), 358–369 (2021)

    Article  CAS  PubMed  Google Scholar 

  169. Y. Toyoshima et al., IL6 modulates the immune status of the tumor microenvironment to facilitate metastatic colonization of colorectal cancer cells. Cancer Immunol. Res. 7(12), 1944–1957 (2019)

    Article  CAS  PubMed  Google Scholar 

  170. K. Kashfi, J. Kannikal, N. Nath, Macrophage reprogramming and cancer therapeutics: Role of iNOS-derived NO. Cells 10(11), 3194 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. I.-Y. Kuo et al., Converged Rab37/IL-6 trafficking and STAT3/PD-1 transcription axes elicit an immunosuppressive lung tumor microenvironment. Theranostics 11(14), 7029 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. X. Ju et al., Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp. Cell Res. 396(2), 112315 (2020)

    Article  CAS  PubMed  Google Scholar 

  173. E. Shklovskaya, H. Rizos, spatial and temporal changes in PD-L1 expression in cancer: The role of genetic drivers, tumor microenvironment and resistance to therapy. Int. J. Mol. Sci. 21(19), 7139 (2020)

  174. J. Majidpoor, K. Mortezaee, The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin. Immunol. 226, 108707 (2021)

  175. S. Arora et al., Comprehensive integrative analysis reveals the association of KLF4 with macrophage infiltration and polarization in lung cancer microenvironment. Cells 10(8), 2091 (2021)

  176. C. Fu et al., Activation of the IL-4/STAT6 signaling pathway promotes lung cancer progression by increasing M2 myeloid cells. Front. Immunol. 10, 2638 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. K. Binnemars-Postma et al., Targeting the Stat6 pathway in tumor‐associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. FASEB J. 32(2), 969–978 (2018)

    Article  CAS  PubMed  Google Scholar 

  178. O.M. Rahal et al., Blocking interleukin (IL) 4-and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int. J. Rad. Oncol. Biol. Phys. 100(4), 1034–1043 (2018)

    Article  CAS  Google Scholar 

  179. M. Najafi, K. Mortezaee, J. Majidpoor, Stromal reprogramming: a target for tumor therapy. Life Sci. 239, 117049 (2019)

    Article  CAS  PubMed  Google Scholar 

  180. K. Mortezaee, Hypoxia induces core-to-edge transition of progressive tumoral cells: A critical review on differential yet corroborative roles for HIF-1α and HIF-2α. Life Sci. 242, 117145 (2020)

    Article  CAS  PubMed  Google Scholar 

  181. K. Mortezaee, J. Majidpoor, Key promoters of tumor hallmarks. Int. J. Clin. Oncol. 27(1), 45–58 (2022)

  182. J. Majidpoor, K. Mortezaee, Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell. Oncol. 44(4), 715–737 (2021)

  183. K. Mortezaee, J. Majidpoor, The impact of hypoxia on immune state in cancer. Life Sci. 286, 120057 (2021)

    Article  CAS  PubMed  Google Scholar 

  184. K. Mortezaee et al., Targets for improving tumor response to radiotherapy. Int. Immunopharmacol. 76, 105847 (2019)

    Article  CAS  PubMed  Google Scholar 

  185. M.T. Munir et al., Tumor-associated macrophages as multifaceted regulators of breast tumor growth. Int. J. Mol. Sci. 22(12), 6526 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. W. Jin, Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells 9(1), 217 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  187. R. Vazquez-Lombardi et al., Potent antitumour activity of interleukin-2-Fc fusion proteins requires Fc-mediated depletion of regulatory T-cells. Nat. Commun. 8(1), 1–12 (2017)

    Article  CAS  Google Scholar 

  188. N. Arenas-Ramirez et al., Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8(367), 367ra166–367ra166 (2016)

  189. E.J. Hsu et al., A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12(1), 1–13 (2021)

    Article  CAS  Google Scholar 

  190. M. Sharma et al., Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11(1), 1–11 (2020)

    Article  CAS  Google Scholar 

  191. L.B. Schenkel et al., A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. Cell Chem. Biol. 28(8), 1158–1168 (2021)

  192. G.R. Gunassekaran et al., M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 278, 121137 (2021)

  193. C. Yang et al., CD44 v5 domain inhibition represses the polarization of Th2 cells by interfering with the IL-4/IL‐4R signaling pathway. Immunol. Cell Biol. 100(1), 21–32 (2022)

  194. H. Harb, T.A. Chatila, Mechanisms of dupilumab. Clin. Exp. Allergy 50(1), 5–14 (2020)

    Article  CAS  Google Scholar 

  195. A. Le Floc’h et al., Dual blockade of IL-4 and IL‐13 with dupilumab, an IL‐4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy 75(5), 1188–1204 (2020)

    Article  PubMed  CAS  Google Scholar 

  196. E. Guttman-Yassky et al., Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis: a phase 2b randomized clinical trial. JAMA Dermatology 156(4), 411–420 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  197. M.C. Matsunaga, P.S. Yamauchi, IL-4 and IL-13 inhibition in atopic dermatitis. J. Drugs Dermatol. 15(8), 925–929 (2016)

    CAS  Google Scholar 

  198. C. Hahn et al., Inhibition of the IL-4/IL-13 receptor system prevents allergic sensitization without affecting established allergy in a mouse model for allergic asthma. J. Allergy Clin. Immunol. 111(6), 1361–1369 (2003)

    Article  CAS  PubMed  Google Scholar 

  199. J. Majidpoor, K. Mortezaee, Interleukin-6 in SARS-CoV-2 induced disease: Interactions and therapeutic applications. Biomed. Pharmacother. 145, 112419 (2022)

  200. E. Dijkgraaf et al., A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-α2b in patients with recurrent epithelial ovarian cancer. Ann. Oncol. 26(10), 2141–2149 (2015)

    Article  CAS  PubMed  Google Scholar 

  201. H. Zhong et al., A novel IL6 antibody sensitizes multiple tumor types to chemotherapy including trastuzumab-resistant tumors. Cancer Res. 76(2), 480–490 (2016)

    Article  CAS  PubMed  Google Scholar 

  202. K.A. Finkel et al., IL-6 inhibition with MEDI5117 decreases the fraction of head and neck cancer stem cells and prevents tumor recurrence. Neoplasia 18(5), 273–281 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. M. Bilusic et al., Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7(1), 1–8 (2019)

    Article  Google Scholar 

  204. J.W. Greiner, Y.M. Morillon, J.S. II, NHS-IL12, a Tumor-Targeting Immunocytokine. ImmunoTargets Therapy 10, 155 (2021)

  205. Y. Sun et al., Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater. 128(1), 447–461 (2021)

  206. S.K. Watkins et al., IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J. Immunol. 178(3), 1357–1362 (2007)

    Article  CAS  PubMed  Google Scholar 

  207. T. Satoh et al., Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res. 63(22), 7853–7860 (2003)

    CAS  PubMed  Google Scholar 

  208. N. Qiu et al., Tumor-associated macrophage and tumor‐cell dually transfecting polyplexes for efficient interleukin‐12 cancer gene therapy. Adv. Mater. 33(2), 2006189 (2021)

    Article  CAS  Google Scholar 

  209. K.J. Brempelis et al., Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. J. Immunother. Cancer 8(2), e001356 (2020)

  210. J.A. Thompson et al., Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J. Clin. Oncol. 26(12), 2034–2039 (2008)

    Article  CAS  PubMed  Google Scholar 

  211. S. Bhatia et al., Recombinant interleukin-21 plus sorafenib for metastatic renal cell carcinoma: a phase 1/2 study. J. Immunother. Cancer 2(1), 1–11 (2014)

    Article  CAS  Google Scholar 

  212. S. Wu et al., The half-life-extended IL21 can be combined with multiple checkpoint inhibitors for tumor immunotherapy. Front. Cell Dev. Biol. 9, 779865 (2021)

  213. V. Cervera-Carrascon et al., Adenovirus armed with TNFa and IL2 added to aPD-1 regimen mediates antitumor efficacy in tumors refractory to aPD-1. Front. Immunol. 12, 706517 (2021)

  214. N.H. Goradel et al., Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J. Cell. Physiol. 234(6), 8636–8646 (2019)

    Article  CAS  PubMed  Google Scholar 

  215. W. Liu et al., In Situ therapeutic cancer vaccination with an oncolytic virus expressing Membrane-Tethered IL-2. Mol. Therapy-Oncolytics 17, 350–360 (2020)

    Article  CAS  Google Scholar 

  216. Y.R. Suryawanashi et al., T-independent response mediated by oncolytic tanapoxvirus recombinants expressing interleukin-2 and monocyte chemoattractant protein-1 suppresses human triple negative breast tumors. Med. Oncol. 34(6), 112 (2017)

    Article  PubMed  CAS  Google Scholar 

  217. T. Chen et al., IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer 9(1), e001647 (2021)

  218. Y. Jia et al., Associations of common IL-4 gene polymorphisms with cancer risk: A meta-analysis. Mol. Med. Rep. 16(2), 1927–1945 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. V. Subbiah et al., Cytokines produced by dendritic cells administered intratumorally correlate with clinical outcome in patients with diverse cancers. Clin. Cancer Res. 24(16), 3845–3856 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. A. Naing et al., PEGylated IL-10 (Pegilodecakin) induces systemic immune activation, CD8 + T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell 34(5): 775–791 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. A. Naing et al., Pegilodecakin combined with pembrolizumab or nivolumab for patients with advanced solid tumours (IVY): a multicentre, multicohort, open-label, phase 1b trial. Lancet Oncol. 20(11), 1544–1555 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. C. Stolfi et al., Interleukin-21 in cancer immunotherapy: Friend or foe? Oncoimmunology 1(3), 351–354 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

K.M initiated the conceptualization. J.M and K.M wrote the initial manuscript. Final revisions were made by K.M. Articles were selected by K.M. Both authors approved the final draft.

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Ethical Approval and Consent to participate

This work has received the ethical code IR.MUK.REC.1400.208 from Kurdistan University of Medical Sciences. Consent to participate is not applicable.

Human Ethics and Animal Ethics statements

Not applicable.

Competing interests/Conflicts of interest

The authors declare that they have no conflict of interest.

Availability of supporting data

Data sharing is not applicable to this article, as no datasets were generated or analysed during the current study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, K., Majidpoor, J. Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol. 45, 333–353 (2022). https://doi.org/10.1007/s13402-022-00667-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-022-00667-8

Keywords

Navigation