Skip to main content

Advertisement

Log in

Steps in metastasis: an updated review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Metastasis is the most complex and deadly event. Tumor-stromal interface is a place where invasion of tumor cells in the form of single-cell or collective migration occurs, with the latter being less common but more efficient. Initiation of metastasis relies on the tumor cell cross-talking with stromal cells and taking an epithelial-mesenchymal transition (EMT) in single cells, and a hybrid EMT in collective migratory cells. Stromal cross-talking along with an abnormal leaky vasculature facilitate intravasation of tumor cells, here the cells are called circulating tumor cells (CTCs). Tumor cells isolated from the primary tumor exploit several mechanisms to maintain their survival including rewiring metabolic demands to use sources available within the new environments, avoiding anoikis cell death when cells are detached from extracellular matrix (ECM), adopting flow mechanic by acquiring platelet shielding and immunosuppression by negating the activity of suppressor immune cells, such as natural killer (NK) cells. CTCs will adhere to the interstituim of the secondary organ/s, within which the newly arrived disseminative tumor cells (DTCs) undergo either dormancy or proliferation. Metastatic outgrowth is under the influence of several factors, such as the activity of macrophages, impaired autophagy and secondary site inflammatory events. Metastasis can be targeted by multiple ways, such as repressing the promoters of pre-metastatic niche (PMN) formation, suppressing environmental contributors, such as hypoxia, oxidative and metabolic stressors, and targeting signaling and cell types that take major contribution to the whole process. These strategies can be used in adjuvant with other therapeutics, such as immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Graham TA, Shibata D. Navigating the path to distant metastasis. Nat Genet. 2020;52(7):642–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Aytes A, et al. NSD2 is a conserved driver of metastatic prostate cancer progression. Nat Commun. 2018;9(1):1–14.

    Article  CAS  Google Scholar 

  3. Hu Z, Curtis C. Looking backward in time to define the chronology of metastasis. Nat Commun. 2020;11(1):1–4.

    Article  Google Scholar 

  4. Mortezaee K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: a critical mediator of metastasis. Life Sci. 2020:117534.

  5. Müller A, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50.

    Article  PubMed  Google Scholar 

  6. Ding Y, Du Y. Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. Int J Surg. 2019;

  7. López-Soto A, et al. Control of metastasis by NK cells. Cancer Cell. 2017;32(2):135–54.

    Article  PubMed  Google Scholar 

  8. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Paul CD, Mistriotis P, Konstantopoulos K. Cancer cell motility: lessons from migration in confined spaces. Nat Rev Cancer. 2017;17(2):131.

    Article  PubMed  CAS  Google Scholar 

  10. Kim YH, et al. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017;8:15208.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sennino B, McDonald DM. Controlling escape from angiogenesis inhibitors. Nat Rev Cancer. 2012;12(10):699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Laudato, S., A. Aparicio, and F.G. Giancotti, Clonal evolution and epithelial plasticity in the emergence of AR-independent prostate carcinoma. Trends in cancer, 2019.

  13. Castaño Z, et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol. 2018;20(9):1084–97.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Birkbak NJ, McGranahan N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell. 2020;37(1):8–19.

    Article  PubMed  CAS  Google Scholar 

  15. Lo HC, et al. Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nat Cancer. 2020:1–14.

  16. Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32(3):282–93.

    Article  PubMed  CAS  Google Scholar 

  17. Padmanaban V, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573(7774):439–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fujiyoshi K, et al. Tumour budding, poorly differentiated clusters, and T-cell response in colorectal cancer. EBioMedicine. 2020;57:102860.

    Article  PubMed  PubMed Central  Google Scholar 

  19. VanderVorst K, et al. Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis. Cancer Res. 2019;79(8):1719–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hu X, et al. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat Commun. 2020;11(1):1–15.

    Google Scholar 

  21. Dhamija S, Diederichs S. From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer. 2016;139(2):269–80.

    Article  PubMed  CAS  Google Scholar 

  22. Steinbichler, T.B., et al. The role of exosomes in cancer metastasis. in Seminars in cancer biology. 2017. Elsevier.

  23. Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 2019;239:117049.

    Article  PubMed  CAS  Google Scholar 

  24. Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29(3):212–26.

    Article  PubMed  CAS  Google Scholar 

  25. Derynck, R., S.J. Turley, and R.J. Akhurst, TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol, 2020: p. 1–26.

  26. Tong L, et al. Proteasome-dependent degradation of Smad7 is critical for lung cancer metastasis. Cell Death Differ. 2020;27(6):1795–806.

    Article  PubMed  CAS  Google Scholar 

  27. Fares J, et al. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020;5(1):1–17.

    Google Scholar 

  28. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781.

    Article  PubMed  CAS  Google Scholar 

  29. Najafi M, Mortezaee K, Ahadi R. Cancer stem cell (a) symmetry & plasticity: tumorigenesis and therapy relevance. Life Sci. 2019;

  30. Labernadie A, et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol. 2017;19(3):224–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Glentis A, et al. Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun. 2017;8(1):1–13.

    Article  CAS  Google Scholar 

  32. Anderson RL, et al. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol. 2019;16(3):185–204.

    Article  PubMed  Google Scholar 

  33. Fukumura D, et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15(5):325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jin F, et al. New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res. 2012;10(8):1021–31.

    Article  PubMed  CAS  Google Scholar 

  35. Donato C, et al. Hypoxia triggers the Intravasation of clustered circulating tumor cells. Cell Rep. 2020;32(10):108105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ breast cancer. 2016;2(1):1–12.

    Article  Google Scholar 

  37. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer. Nat Rev Drug Discov. 2018;17(12):887–904.

    Article  PubMed  CAS  Google Scholar 

  38. Kai F, Laklai H, Weaver VM. Force matters: biomechanical regulation of cell invasion and migration in disease. Trends Cell Biol. 2016;26(7):486–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aras S, Zaidi MR. TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer. 2017;117(11):1583–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 2017;45(1):229–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chronopoulos A, et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7(1):1–12.

    Article  Google Scholar 

  43. Zeltz, C., et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. in Seminars in cancer biology. 2020. Elsevier.

  44. Farhood B, Najafi M, Mortezaee K. Cancer-associated fibroblasts: secretions, interactions, and therapy. J Cell Biochem. 2019;120(3):2791–800.

    Article  PubMed  CAS  Google Scholar 

  45. Mollinedo F. Neutrophil degranulation, plasticity, and cancer metastasis. Trends Immunol. 2019;

  46. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115.

    Article  PubMed  CAS  Google Scholar 

  47. Su SC, et al. Cancer metastasis: mechanisms of inhibition by melatonin. J Pineal Res. 2017;62(1):e12370.

    Article  Google Scholar 

  48. García-Jiménez C, Goding CR. Starvation and pseudo-starvation as drivers of cancer metastasis through translation reprogramming. Cell Metab. 2019;29(2):254–67.

    Article  PubMed  Google Scholar 

  49. Tang, Q., et al., Mutant p53 on the Path to Metastasis. Trends in Cancer, 2019.

  50. Kim Y-N, et al. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J cell Biol. 2012;2012

  51. De Bock K, Mazzone M, Carmeliet P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol. 2011;8(7):393.

    Article  PubMed  Google Scholar 

  52. Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells. Oncogenesis. 2016;5(1):e189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Davis RT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22(3):310–20.

    Article  PubMed  CAS  Google Scholar 

  54. Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Takahashi N, et al. Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell. 2018;33(6):985–1003. e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wheeler LJ, et al. Multi-omic approaches identify metabolic and autophagy regulators important in ovarian cancer dissemination. iScience. 2019;19:474–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int. 2019;43(11):1206–22.

    Article  PubMed  CAS  Google Scholar 

  58. Mortezaee K. Human hepatocellular carcinoma: protection by melatonin. J Cell Physiol. 2018;233(10):6486–508.

    Article  PubMed  CAS  Google Scholar 

  59. Ren W, et al. The expression of hypoxia-inducible factor-1α and its clinical significance in lung cancer: a systematic review and meta-analysis. Swiss Med Wkly. 2013;143(3536)

  60. Coronel J, et al. Weekly topotecan as second-or third-line treatment in patients with recurrent or metastatic cervical cancer. Med Oncol. 2009;26(2):210–4.

    Article  PubMed  CAS  Google Scholar 

  61. Wadler S, et al. Topotecan is an active agent in the first-line treatment of metastatic or recurrent endometrial carcinoma: eastern cooperative oncology group study E3E93. J Clin Oncol. 2003;21(11):2110–4.

    Article  PubMed  CAS  Google Scholar 

  62. Wu X, et al. Zinc finger protein 367 promotes metastasis by inhibiting the hippo pathway in breast cancer. Oncogene. 2020;39(12):2568–82.

    Article  PubMed  CAS  Google Scholar 

  63. Tanaka K, et al. Statin suppresses hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett. 2017;385:215–24.

    Article  PubMed  CAS  Google Scholar 

  64. Maille E, et al. MST1/hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS phase 3 trial. Br J Cancer. 2019;120(4):387–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Higashi T, et al. Statin attenuates cell proliferative ability via TAZ (WWTR1) in hepatocellular carcinoma. Med Oncol. 2016;33(11):123.

    Article  PubMed  Google Scholar 

  66. Follain G, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2019:1–18.

  67. Marcolino E, et al. Blood platelets stimulate cancer extravasation through TGFβ-mediated downregulation of PRH/HHEX. Oncogenesis. 2020;9(2):1–12.

    Article  Google Scholar 

  68. Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol. 2019:1–14.

  69. Owen KL, et al. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep. 2020:e50162.

  70. Guan X, et al. The prognostic and therapeutic implications of circulating tumor cell phenotype detection based on epithelial–mesenchymal transition markers in the first-line chemotherapy of HER2-negative metastatic breast cancer. Cancer Commun. 2019;39(1):1–10.

    Article  Google Scholar 

  71. Wang Z-L, et al. Dynamic changes of different phenotypic and genetic circulating tumor cells as a biomarker for evaluating the prognosis of RCC. Cancer Biol Ther. 2019;20(4):505–12.

    Article  PubMed  CAS  Google Scholar 

  72. Cai J, et al. Associations between the cyclooxygenase-2 expression in circulating tumor cells and the clinicopathological features of patients with colorectal cancer. J Cell Biochem. 2019;120(4):4935–41.

    Article  PubMed  CAS  Google Scholar 

  73. Chen EY, et al. A phase II study of celecoxib with irinotecan, 5-fluorouracil, and leucovorin in patients with previously untreated advanced or metastatic colorectal cancer. Am J Clin Oncol. 2018;41(12):1193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell. 2010;18(6):884–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kim J, et al. Role of cancer emboli as a metastatic core on the growth of brain metastasis in patients with non-small cell lung cancer. J Neurointensive Care. 2020;

  76. Silvestre-Roig C, et al. Neutrophil diversity in health and disease. Trends Immunol. 2019;

  77. Biswas SK. Metabolic reprogramming of immune cells in cancer progression. Immunity. 2015;43(3):435–49.

    Article  PubMed  CAS  Google Scholar 

  78. Montagner M, et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nat Cell Biol. 2020:1–8.

  79. Roberts S, Agrawal N. Temporal analysis of CTC-endothelium interactions during early metastasis. in 2015 41st Annual Northeast Biomedical Engineering Conference (NEBEC). 2015. IEEE.

  80. Bersini S, et al. A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells. Oncotarget. 2018;9(90):36110.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li J, King MR. Adhesion receptors as therapeutic targets for circulating tumor cells. Front Oncol. 2012;2:79.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Barbazán J, et al. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits. Cancer Res. 2017;77(13):3431–41.

    Article  PubMed  Google Scholar 

  83. Osmani N, et al. Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest. Cell Rep. 2019;28(10):2491–500. e5

    Article  PubMed  CAS  Google Scholar 

  84. Osmani N, et al, Intravascular arrest of circulating tumor cells is a two-step process exploiting their adhesion repertoire. Available at SSRN 3272239, 2018.

  85. Hynes W, et al. Examining metastatic behavior within 3D bioprinted vasculature for the validation of a 3D computational flow model. Sci Adv. 2020;6(35):eabb3308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gkretsi V, Stylianopoulos T. Cell adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol. 2018;8:145.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Leong HS, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014;8(5):1558–70.

    Article  PubMed  CAS  Google Scholar 

  88. Williams KC, et al. Invadopodia are chemosensing protrusions that guide cancer cell extravasation to promote brain tropism in metastasis. Oncogene. 2019;38(19):3598–615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yoneyama MS, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93(4):157–69.

    Article  Google Scholar 

  90. Diepenbruck M, Christofori G. Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol. 2016;43:7–13.

    Article  PubMed  CAS  Google Scholar 

  91. Achrol AS, et al. Brain metastases. Nat Rev Dis Primers. 2019;5(1):1–26.

    Article  Google Scholar 

  92. Guereño M, et al. Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. Eur J Cell Biol. 2020;99(6):151096.

    Article  PubMed  Google Scholar 

  93. Gau DM, et al. Abstract LB-043: MRTF| Profilin is an important signaling axis for metastatic outgrowth of triple negative breast cancer cells. 2019, AACR.

  94. Flynn ALB, et al. Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nat Commun. 2019;10(1):1–15.

    Google Scholar 

  95. Rodrigues G, et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol. 2019;21(11):1403–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Ma R-Y, et al. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J Exp Med. 2020;217(11)

  97. Farhood B, et al. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem. 2019;120(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  98. Mortezaee K. Immune escape: a critical hallmark in solid tumors. Life Sci. 2020:118110.

  99. Nywening TM, et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-Centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016;17(5):651–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Gomez-Roca C, et al. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 2019;30(8):1381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marsh T, et al. Autophagic degradation of NBR1 restricts metastatic outgrowth during mammary tumor progression. Dev Cell. 2020;52(5):591–604. e6

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  102. Malhotra J, et al. Phase Ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treat Res Commun. 2019;21:100158.

    Article  PubMed  Google Scholar 

  103. Karasic TB, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5(7):993–8.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mortezaee K, et al. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr Mol Pharmacol. 2019;12(1):50–60.

    Article  PubMed  CAS  Google Scholar 

  105. Nandi P, et al. PGE2 promotes breast cancer-associated lymphangiogenesis by activation of EP4 receptor on lymphatic endothelial cells. BMC Cancer. 2017;17(1):1–17.

    Article  Google Scholar 

  106. Du C, et al. Tumour-derived exosomal miR-3473b promotes lung tumour cell intrapulmonary colonization by activating the nuclear factor-κB of local fibroblasts. J Cell Mol Med. 2020;

  107. Najafi M, et al. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol. 2020;146(1):19–31.

    Article  PubMed  Google Scholar 

  108. Mortezaee K, et al. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol. 2019;234(10):17187–204.

    Article  PubMed  CAS  Google Scholar 

  109. Mortezaee K. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and liver fibrosis: a review. Cell Biochem Funct. 2018;36(6):292–302.

    Article  PubMed  CAS  Google Scholar 

  110. Zhang L, et al. Blocking immunosuppressive neutrophils deters pY696-EZH2–driven brain metastases. Sci Transl Med. 2020;12(545)

  111. Yang L, et al. Induction of DNMT3B by PGE2 and IL6 at distant metastatic sites promotes epigenetic modification and breast cancer colonization. Cancer Res. 2020;

  112. Pein M, et al. CXCR3-expressing metastasis-initiating cells induce and exploit a fibroblast niche in the lungs to fuel metastatic colonization. bioRxiv, 2019: p. 546952.

  113. Miarka L, et al. The hepatic microenvironment and TRAIL-R2 impact outgrowth of liver metastases in pancreatic Cancer after surgical resection. Cancers. 2019;11(6):745.

    Article  PubMed Central  CAS  Google Scholar 

  114. Tang X, et al. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8(1):1–14.

    Article  Google Scholar 

  115. Su W, et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36(2):139–55. e10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. He B, et al. Remodeling of metastatic vasculature reduces lung colonization and sensitizes overt metastases to immunotherapy. Cell Rep. 2020;30(3):714–24. e5

    Article  PubMed  CAS  Google Scholar 

  117. Kuo C-L, et al. Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 2020;474:138–50.

    Article  PubMed  CAS  Google Scholar 

  118. Mortezaee K. Hypoxia induces core-to-edge transition of progressive tumoral cells: a critical review on differential yet corroborative roles for HIF-1α and HIF-2α. Life Sci. 2020;242:117145.

    Article  PubMed  Google Scholar 

  119. Mortezaee K, et al. Redox interactions and genotoxicity of metal-based nanoparticles: a comprehensive review. Chem Biol Interact. 2019:108814.

  120. Najafi M, et al. Adjuvant chemotherapy with melatonin for targeting human cancers: a review. J Cell Physiol. 2019;234(3):2356–72.

    Article  PubMed  CAS  Google Scholar 

  121. Farhood B, et al. Melatonin as an adjuvant in radiotherapy for radioprotection and radiosensitization. Clin Transl Oncol. 2019;21(3):268–79.

    Article  PubMed  CAS  Google Scholar 

  122. Mortezaee K, et al. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: an updated review. Life Sci. 2019;

  123. Mortezaee K, et al. Boosting immune system against cancer by melatonin: a mechanistic viewpoint. Life Sci. 2019:116960.

  124. Mortezaee K, et al. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr Cancer Drug Targets. 2019;

  125. Mortezaee K, et al. Metformin as a radiation modifier; implications to normal tissue protection and tumor sensitization. Curr Clin Pharmacol. 2019;14(1):41–53.

    Article  PubMed  CAS  Google Scholar 

  126. Farhood B, et al. Curcumin as an anti-inflammatory agent: implications to radiotherapy and chemotherapy. J Cell Physiol. 2019;234(5):5728–40.

    Article  PubMed  CAS  Google Scholar 

  127. Ji Q, et al. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun. 2020;11(1):1–18.

    Article  Google Scholar 

  128. Lin B, et al. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene. 2020:1–17.

  129. Bajaj R, et al. IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene. 2020:1–16.

  130. Ko C-J, et al. Inhibition of TMPRSS2 by HAI-2 reduces prostate cancer cell invasion and metastasis. Oncogene. 2020:1–14.

  131. Zheng Y, et al. Insulin-like growth factor 1-induced enolase 2 deacetylation by HDAC3 promotes metastasis of pancreatic cancer. Signal Transduct Target Ther. 2020;5(1):1–14.

    Google Scholar 

  132. Zhang Z, et al. CDK4/6 inhibition blocks cancer metastasis through a USP51-ZEB1-dependent deubiquitination mechanism. Signal Transduct Target Ther. 2020;5(1):1–13.

    Google Scholar 

  133. Wu X, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3(1):1–16.

    Article  Google Scholar 

  134. Zhou Z, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62–73.

    Article  PubMed  CAS  Google Scholar 

  135. Sun Z, et al. Tenascin-C increases lung metastasis by impacting blood vessel invasions. Matrix Biol. 2019;83:26–47.

    Article  PubMed  CAS  Google Scholar 

  136. Seachrist DD, et al. The transcriptional repressor BCL11A promotes breast cancer metastasis. J Biol Chem. 2020;295(33):11707–19.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Liu S, et al. Deubiquitinase activity profiling identifies UCHL1 as a candidate oncoprotein that promotes TGFβ-induced breast cancer metastasis. Clin Cancer Res. 2020;26(6):1460–73.

    Article  PubMed  CAS  Google Scholar 

  138. Sjöberg E, et al. A novel ACKR2-dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer. Clin Cancer Res. 2019;25(12):3702–17.

    Article  PubMed  Google Scholar 

  139. Zhang J, et al. The natural compound neobractatin inhibits tumor metastasis by upregulating the RNA-binding-protein MBNL2. Cell Death Dis. 2019;10(8):1–13.

    Article  Google Scholar 

  140. Hendrikx S, et al. Endothelial calcineurin signaling restrains metastatic outgrowth by regulating Bmp2. Cell Rep. 2019;26(5):1227–41. e6

    Article  PubMed  CAS  Google Scholar 

  141. Howe EN, et al. Rab11b-mediated integrin recycling promotes brain metastatic adaptation and outgrowth. Nat Commun. 2020;11(1):1–15.

    Article  Google Scholar 

  142. Sinha S, et al. Abstract A50: IMPACT inhibits metastatic outgrowth in pancreatic cancer by restraining GCN1-ATF4 signaling. 2019, AACR.

  143. Hoj JP, Mayro B, Pendergast AM. A TAZ-AXL-ABL2 feed-forward signaling axis promotes lung adenocarcinoma brain metastasis. Cell Rep. 2019;29(11):3421–34. e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Urosevic J, et al. ERK1/2 signaling induces upregulation of ANGPT2 and CXCR4 to mediate liver metastasis in colon cancer. Cancer Res. 2020;

  145. Tulotta C, et al. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin Cancer Res. 2019;25(9):2769–82.

    Article  PubMed  CAS  Google Scholar 

  146. Yamaguchi N, et al. PCK1 and DHODH drive colorectal cancer liver metastatic colonization and nucleotide biosynthesis under hypoxia. bioRxiv, 2019: p. 833186.

  147. McKernan CM, Pendergast AM. Abstract P3–03-04: Role of ABL kinase signaling in metastatic breast cancer colonization of the brain. 2020, AACR.

  148. Li L, et al. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene. 2019;38(35):6241–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Polireddy K, et al. High dose parenteral ascorbate inhibited pancreatic cancer growth and metastasis: mechanisms and a phase I/IIa study. Sci Rep. 2017;7(1):1–15.

    Article  CAS  Google Scholar 

  150. Rodón J, et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Investig New Drugs. 2015;33(2):357–70.

    Article  Google Scholar 

  151. Kashiwagi S, et al. Mesenchymal–epithelial transition and tumor vascular remodeling in eribulin chemotherapy for breast cancer. Anticancer Res. 2018;38(1):401–10.

    PubMed  CAS  Google Scholar 

  152. Li W, et al. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial–mesenchymal transition inhibition. Int J Nanomedicine. 2017;12:3509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sorensen AG, et al. Increased survival of glioblastoma patients who respond to antiangiogenic therapy with elevated blood perfusion. Cancer Res. 2012;72(2):402–7.

    Article  PubMed  CAS  Google Scholar 

  154. Thomas RP, et al. Macrophage exclusion after radiation therapy (MERT): a first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma. Clin Cancer Res. 2019;25(23):6948–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Shah MA, et al. Andecaliximab/GS-5745 alone and combined with mFOLFOX6 in advanced gastric and gastroesophageal junction adenocarcinoma: results from a phase I study. Clin Cancer Res. 2018;24(16):3829–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Giannelli G, et al. Biomarkers and overall survival in patients with advanced hepatocellular carcinoma treated with TGF-βRI inhibitor galunisertib. PLoS One. 2020;15(3):e0222259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kelley R, et al. A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin Transl Gastroenterol. 2019;10(7)

  158. Melisi D, et al. TGFβ receptor inhibitor galunisertib is linked to inflammation-and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother Pharmacol. 2019;83(5):975–91.

    Article  PubMed  CAS  Google Scholar 

  159. Sullivan RJ, et al. First-in-class ERK1/2 inhibitor ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase I dose-escalation and expansion study. Cancer Discov. 2018;8(2):184–95.

    Article  PubMed  CAS  Google Scholar 

  160. Sun Y, et al. Phase I dose-escalation study of chiauranib, a novel angiogenic, mitotic, and chronic inflammation inhibitor, in patients with advanced solid tumors. J Hematol Oncol. 2019;12(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The authors of the paper have no potential conflict to interests, and authors have read and approve the final version.

Ethical approval

The paper received the ethical code: IR.MUK.REC.1399.106.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidpoor, J., Mortezaee, K. Steps in metastasis: an updated review. Med Oncol 38, 3 (2021). https://doi.org/10.1007/s12032-020-01447-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01447-w

Keywords

Navigation