Skip to main content

Advertisement

Log in

Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cervical cancer is the most common malignant tumor of the genital tract in females worldwide. Persistent human papillomavirus (HPV) infection is closely associated with the occurrence of cervical cancer. No licensed therapeutic HPV vaccines for cervical cancer are currently available. In our previous study, we demonstrated that the vaccine containing the HPV16 E7 43-77 peptide and the adjuvant unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide elicited significant prophylactic and therapeutic effects on cervical cancer. In the current study, we comprehensively evaluated the effect of the vaccine on systemic immune responses and the tumor microenvironment (TME) in a mouse model of cervical cancer. The results showed that the administration of the vaccine induced a significant increase in splenic IFN-γ-producing CD4 and CD8 T cells as well as tumor infiltrating CD4 and CD8 T cells. Moreover, marked decreases in splenic MDSCs and Tregs as well as intratumoral MDSCs, Tregs and type 2-polarized tumor-associated macrophages were observed in the vaccine group. The profile of cytokines, chemokines and matrix metalloproteinases (MMPs) in the TME revealed significantly increased expression of IL-2, IL-12, TNF-α, IFN-γ, CCL-20, CXCL-9, CXCL-10 and CXCL-14 and decreased expression of IL-6, IL-10, TGF-β, CCL-2, CCL-3, CCL-5, CXCL-8, MMP-2, MMP-9 and VEGF in the vaccine group. The expression of the cell proliferation indicator Ki67, apoptosis regulatory protein p53 and angiogenesis marker CD31 was significantly decreased in the vaccine group. In conclusion, the vaccine reversed tolerogenic systemic and local TME immunosuppression and induced robust antitumor immune responses, which resulted in the inhibition of established implanted tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CCL:

CC-chemokine ligand

CXCL:

CXC-chemokine ligand

CTLs:

Cytotoxic T lymphocytes

CpG ODN:

Unmethylated cytosine-phosphate-guanosine oligodeoxynucleotide

DCs:

Dendritic cells

H&E:

Hematoxylin and eosin

HPV:

Human papillomavirus

M1-TAMs:

Type 1-polarized tumor-associated macrophages

M2-TAMs:

Type 2-polarized tumor-associated macrophages

MMPs:

Matrix metalloproteinases

MDSCs:

Myeloid-derived suppressor cells

MVD:

Microvessel density

M-MDSC:

Monocytic MDSC

NK:

Natural killer

PMN-MDSC:

Polymorphonuclear MDSC

qRT-PCR:

Quantitative real-time reverse transcription polymerase chain reaction

Tregs:

Regulatory T cells

TME:

Tumor microenvironment

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  CAS  PubMed  Google Scholar 

  2. Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16(1):1–17. https://doi.org/10.1128/cmr.16.1.1-17.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Castellsague X (2008) Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110(3 Suppl 2):S4–7. https://doi.org/10.1016/j.ygyno.2008.07.045

    Article  PubMed  Google Scholar 

  4. Kim HJ, Kim HJ (2017) Current status and future prospects for human papillomavirus vaccines. Arch Pharmacal Res 40(9):1050–1063. https://doi.org/10.1007/s12272-017-0952-8

    Article  CAS  Google Scholar 

  5. Wigle J, Coast E, Watson-Jones D (2013) Human papillomavirus (HPV) vaccine implementation in low and middle-income countries (LMICs): health system experiences and prospects. Vaccine 31(37):3811–3817. https://doi.org/10.1016/j.vaccine.2013.06.016

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL, Hoppe-Seyler F (2018) The HPV E6/E7 oncogenes: key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol 26(2):158–168. https://doi.org/10.1016/j.tim.2017.07.007

    Article  PubMed  CAS  Google Scholar 

  7. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, van der Burg SH, Melief CJ (2008) Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14(1):169–177. https://doi.org/10.1158/1078-0432.CCR-07-1881

    Article  PubMed  CAS  Google Scholar 

  8. van Poelgeest MI, Welters MJ, van Esch EM, Stynenbosch LF, Kerpershoek G, van van Persijn van Meerten EL, van den Hende M, Lowik MJ, Berends-van der Meer DM, Fathers LM, Valentijn AR, Oostendorp J, Fleuren GJ, Melief CJ, Kenter GG, van der Burg SH (2013) HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med 11:88. https://doi.org/10.1186/1479-5876-11-88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, van der Burg SH, Melief CJ (2009) Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. New Engl J Med 361(19):1838–1847. https://doi.org/10.1056/NEJMoa0810097

    Article  PubMed  CAS  Google Scholar 

  10. Yang Y, Che Y, Zhao Y, Wang X (2019) Prevention and treatment of cervical cancer by a single administration of human papillomavirus peptide vaccine with CpG oligodeoxynucleotides as an adjuvant in vivo. Int Immunopharmacol 69:279–288. https://doi.org/10.1016/j.intimp.2019.01.024

    Article  PubMed  CAS  Google Scholar 

  11. Nagarsheth N, Wicha MS, Zou W (2017) Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 17(9):559–572. https://doi.org/10.1038/nri.2017.49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. van der Burg SH, Ressing ME, Kwappenberg KM, de Jong A, Straathof K, de Jong J, Geluk A, van Meijgaarden KE, Franken KL, Ottenhoff TH, Fleuren GJ, Kenter G, Melief CJ, Offringa R (2001) Natural T-helper immunity against human papillomavirus type 16 (HPV16) E7-derived peptide epitopes in patients with HPV16-positive cervical lesions: identification of 3 human leukocyte antigen class II-restricted epitopes. Int J Cancer 91(5):612–618. https://doi.org/10.1002/1097-0215(200002)9999:9999%3c:aid-ijc1119%3e3.0.co;2-c

    Article  PubMed  Google Scholar 

  13. Dosset M, Godet Y, Vauchy C, Beziaud L, Lone YC, Sedlik C, Liard C, Levionnois E, Clerc B, Sandoval F, Daguindau E, Wain-Hobson S, Tartour E, Langlade-Demoyen P, Borg C, Adotevi O (2012) Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res 18(22):6284–6295. https://doi.org/10.1158/1078-0432.CCR-12-0896

    Article  PubMed  CAS  Google Scholar 

  14. Kalathil SG, Thanavala Y (2016) High immunosuppressive burden in cancer patients: a major hurdle for cancer immunotherapy. CII 65(7):813–819. https://doi.org/10.1007/s00262-016-1810-0

    Article  PubMed  CAS  Google Scholar 

  15. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. https://doi.org/10.1038/nri2506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Investig 125(9):3356–3364. https://doi.org/10.1172/JCI80005

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar V, Patel S, Tcyganov E, Gabrilovich DI (2016) The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 37(3):208–220. https://doi.org/10.1016/j.it.2016.01.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA, Pollard JW (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475(7355):222–225. https://doi.org/10.1038/nature10138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Arina A, Schreiber K, Binder DC, Karrison TG, Liu RB, Schreiber H (2014) Adoptively transferred immune T cells eradicate established tumors despite cancer-induced immune suppression. J Immunol 192(3):1286–1293. https://doi.org/10.4049/jimmunol.1202498

    Article  PubMed  CAS  Google Scholar 

  20. Arina A, Bronte V (2015) Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr Opin Immunol 33:120–125. https://doi.org/10.1016/j.coi.2015.02.006

    Article  PubMed  CAS  Google Scholar 

  21. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570. https://doi.org/10.1126/science.1203486

    Article  PubMed  CAS  Google Scholar 

  22. Liang Y, Lu B, Zhao P, Lu W (2019) Increased circulating GrMyeloid-derived suppressor cells correlated with tumor burden and survival in locally advanced cervical cancer patient. J Cancer 10(6):1341–1348. https://doi.org/10.7150/jca.29647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787. https://doi.org/10.1016/j.cell.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  24. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380. https://doi.org/10.1200/JCO.2006.05.9584

    Article  PubMed  Google Scholar 

  25. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A (2003) CD4 + CD25 + regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98(5):1089–1099. https://doi.org/10.1002/cncr.11618

    Article  PubMed  Google Scholar 

  26. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949. https://doi.org/10.1038/nm1093

    Article  CAS  PubMed  Google Scholar 

  27. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102(51):18538–18543. https://doi.org/10.1073/pnas.0509182102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Wu MY, Kuo TY, Ho HN (2011) Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. Journal of the Formosan Medical Association = Taiwan yi zhi 110 (9):580-586. https://doi.org/10.1016/j.jfma.2011.07.005

  29. Nishikawa H (2014) [Regulatory T cells in cancer immunotherapy]. [Rinsho ketsueki] The Japanese journal of clinical hematology 55 (10):2183-2189

  30. Elkord E, Alcantar-Orozco EM, Dovedi SJ, Tran DQ, Hawkins RE, Gilham DE (2010) T regulatory cells in cancer: recent advances and therapeutic potential. Exp Opin Biol Ther 10(11):1573–1586. https://doi.org/10.1517/14712598.2010.529126

    Article  CAS  Google Scholar 

  31. Schmidt A, Oberle N, Krammer PH (2012) Molecular mechanisms of treg-mediated T cell suppression. Front Immunol 3:51. https://doi.org/10.3389/fimmu.2012.00051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sawa-Wejksza K, Kandefer-Szerszen M (2018) Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Exp 66(2):97–111. https://doi.org/10.1007/s00005-017-0480-8

    Article  CAS  Google Scholar 

  33. van Dalen FJ, van Stevendaal M, Fennemann FL, Verdoes M, Ilina O (2018) Molecular repolarisation of tumour-associated macrophages. Molecules 24 (1). https://doi.org/10.3390/molecules24010009

  34. Hanprasertpong J, Tungsinmunkong K, Chichareon S, Wootipoom V, Geater A, Buhachat R, Boonyapipat S (2010) Correlation of p53 and Ki-67 (MIB-1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas. J Obstetr Gynaecol Res 36(3):572–580. https://doi.org/10.1111/j.1447-0756.2010.01227.x

    Article  CAS  Google Scholar 

  35. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. New Engl J Med 347(20):1593–1603. https://doi.org/10.1056/NEJMra021902

    Article  PubMed  CAS  Google Scholar 

  36. Yang C, Zhang J, Ding M, Xu K, Li L, Mao L, Zheng J (2018) Ki67 targeted strategies for cancer therapy. Clin Transl Oncol 20(5):570–575. https://doi.org/10.1007/s12094-017-1774-3

    Article  PubMed  CAS  Google Scholar 

  37. Li LT, Jiang G, Chen Q, Zheng JN (2015) Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep 11(3):1566–1572. https://doi.org/10.3892/mmr.2014.2914

    Article  PubMed  CAS  Google Scholar 

  38. Garzetti GG, Ciavattini A, Lucarini G, Goteri G, de Nictolis M, Muzzioli M, Fabris N, Romanini C, Biagini G (1995) MIB 1 immunostaining in stage I squamous cervical carcinoma: relationship with natural killer cell activity. Gynecol Oncol 58(1):28–33. https://doi.org/10.1006/gyno.1995.1179

    Article  PubMed  CAS  Google Scholar 

  39. Ho DM, Hsu CY, Chiang H (2000) MIB-1 labeling index as a prognostic indicator for survival in patients with FIGO stage IB squamous cell carcinoma of the cervix. Gynecol Oncol 76(1):97–102. https://doi.org/10.1006/gyno.1999.5663

    Article  PubMed  CAS  Google Scholar 

  40. Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53. https://doi.org/10.1126/science.1905840

    Article  PubMed  CAS  Google Scholar 

  41. Levine AJ, Momand J, Finlay CA (1991) The p53 tumour suppressor gene. Nature 351(6326):453–456. https://doi.org/10.1038/351453a0

    Article  PubMed  CAS  Google Scholar 

  42. Munger K, Scheffner M, Huibregtse JM, Howley PM (1992) Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 12:197–217

    PubMed  CAS  Google Scholar 

  43. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC (2013) Human papillomavirus and cervical cancer. Lancet 382(9895):889–899. https://doi.org/10.1016/S0140-6736(13)60022-7

    Article  PubMed  Google Scholar 

  44. Avall-Lundqvist EH, Silfversward C, Aspenblad U, Nilsson BR, Auer GU (1997) The impact of tumour angiogenesis, p53 overexpression and proliferative activity (MIB-1) on survival in squamous cervical carcinoma. Eur J Cancer 33(11):1799–1804. https://doi.org/10.1016/s0959-8049(97)00161-5

    Article  PubMed  CAS  Google Scholar 

  45. Huang LW, Chou YY, Chao SL, Chen TJ, Lee TT (2001) p53 and p21 expression in precancerous lesions and carcinomas of the uterine cervix: overexpression of p53 predicts poor disease outcome. Gynecol Oncol 83(2):348–354. https://doi.org/10.1006/gyno.2001.6397

    Article  PubMed  CAS  Google Scholar 

  46. Shiohara S, Shiozawa T, Miyamoto T, Feng YZ, Kashima H, Kurai M, Suzuki A, Konishi I (2005) Expression of cyclins, p53, and Ki-67 in cervical squamous cell carcinomas: overexpression of cyclin A is a poor prognostic factor in stage Ib and II disease. Virchows Archiv 446(6):626–633. https://doi.org/10.1007/s00428-005-1252-0

    Article  PubMed  CAS  Google Scholar 

  47. Dellas A, Moch H, Schultheiss E, Feichter G, Almendral AC, Gudat F, Torhorst J (1997) Angiogenesis in cervical neoplasia: microvessel quantitation in precancerous lesions and invasive carcinomas with clinicopathological correlations. Gynecol Oncol 67(1):27–33. https://doi.org/10.1006/gyno.1997.4835

    Article  PubMed  CAS  Google Scholar 

  48. Tomao F, Papa A, Rossi L, Zaccarelli E, Caruso D, Zoratto F, Panici PB, Tomao S (2014) Angiogenesis and antiangiogenic agents in cervical cancer. Oncotargets Ther 7

  49. Rahma OE, Hodi FS (2019) The Intersection between tumor angiogenesis and immune suppression. Clin Cancer Res 25(18):5449–5457. https://doi.org/10.1158/1078-0432.CCR-18-1543

    Article  PubMed  CAS  Google Scholar 

  50. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111(1):219–228. https://doi.org/10.1182/blood-2007-04-086835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. https://doi.org/10.1016/j.ccr.2004.08.031

    Article  PubMed  CAS  Google Scholar 

  52. Rivera LB, Bergers G (2015) Intertwined regulation of angiogenesis and immunity by myeloid cells. Trends Immunol 36(4):240–249. https://doi.org/10.1016/j.it.2015.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pahler JC, Tazzyman S, Erez N, Chen YY, Murdoch C, Nozawa H, Lewis CE, Hanahan D (2008) Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia 10(4):329–340. https://doi.org/10.1593/neo.07871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81472439), and the Natural Science Foundation of Liaoning Province (No. 20180550760).

Author information

Authors and Affiliations

Authors

Contributions

XW, YC and YY designed the experiments; YC, YY, JS and YA carried out experiments; YC analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Xuelian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the Institutional Animal Care and Use Committee of the China Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Effect of the vaccine on systemic immune responses. The vaccine increased the percentage of a,b IFN-γ-producing CD4 and c,d IFN-γ-producing CD8 T cells; and decreased the percentage of e,f MDSCs and g,h Tregs in the spleen. Representative scatter plots from one mouse (out of three mice) showing a IFN-γ-producing CD4 T cells, c IFN-γ-producing CD8 T cells, e MDSCs and g Tregs. Flow cytometry data showing splenic IFN-γ-producing CD4 and CD8 T cells, MDSCs and Tregs is represented as a bar graph expressed as b %CD4+IFN-γ+ cells, d %CD8+IFN-γ+ cells, f %CD11b+Gr-1+ cells and h %CD4+Foxp3+ cells. The data are depicted as the mean±SD (n=3). The significance of the data was evaluated by one-way ANOVA followed by Tukey’s multiple comparison test (*p<0.05, **p<0.01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Y., Yang, Y., Suo, J. et al. Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunol Immunother 69, 2651–2664 (2020). https://doi.org/10.1007/s00262-020-02651-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02651-3

Keywords

Navigation