Skip to main content
Log in

Fluorescent Lateral Flow Assay with Carbon Nanodot Conjugates for Carcinoembryonic Antigen

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A lateral flow assay (LFA) sensor on a half-strip platform labeled with blue carbon nanodot-polystyrene (PS-CND) nanoconjugates was developed for the detection of carcinoembryonic antigen (CEA) levels in buffer and serum solutions from healthy and cancer patients. CNDs, biocompatible nanoparticles containing amino groups synthesized by hydrothermal synthesis, were conjugated to spherical polystyrene (PS) beads with an average diameter of 60 nm, followed by the attachment of a detection probe, anti-CEA (M0911042), using a heterobifunctional cross-linker. PS beads were used as a template in CND conjugates to provide uniform size and shape of fluorescent labels without losing CND fluorescence intensity after the antibody conjugation step and to improve fluorescence stability. Upon the interaction of CEA from samples with the anti-CEA (M0911042) probe-modified PS-CND, which was further adsorbed onto a test line composed of the capture anti-CEA (M0911041) physisorbed onto a nitrocellulose membrane, the fluorescent signals on the test line increased as a function of the CEA concentrations under irradiation with a portable 365 nm ultraviolet lamp. A linear concentration range of 0.04–70 nM in buffer was observed, with a limit of detection of 0.3 nM. The applicability of the developed LFA half-strip sensor for disease diagnosis was demonstrated by identifying fluorescent levels on the test line due to the presence of CEA in serum samples from cancer patients. Importantly, signals from healthy human serum solutions because of lower CEA concentrations beyond the sensor detection capability were clearly distinguished from the patient ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ren, H.H., Jang, C.H.: A simple liquid crystal-based aptasensor using a hairpin-shaped aptamer for the bare-eye detection of carcinoembryonic antigen. Biochip J. 13, 352–361 (2019)

    Article  CAS  Google Scholar 

  2. Hammarstrom, S.: The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Arya, S.K., Bhansali, S.: Lung cancer and its early detection using biomarker-based biosensors. Chem. Rev. 111, 6783–6809 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Yang, G.J., et al.: Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(III) complex for triple-negative breast cancer therapy. Angew. Chem. Int. Ed. Engl. 57, 13091–13095 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, S., Mohan, A., Guleria, R.: Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers 11, 385–405 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Eom, G., et al.: Ultrasensitive detection of ovarian cancer biomarker using Au nanoplate SERS immunoassay. Biochip J. 15, 348–355 (2021)

    Article  CAS  Google Scholar 

  7. Liu, L.J., et al.: Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(III) metal-based compound. Chem. Sci. 8, 4756–4763 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rusling, J.F., Kumar, C.V., Gutkind, J.S., Patel, V.: Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst 135, 2496–2511 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, G., et al.: Recent advances in biosensor for detection of lung cancer biomarkers. Biosens. Bioelectron. 141, 111416 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Gao, N.L., Chang, J.G., Zhu, Z.M., You, H.: Multistory stairs-based, fast and point-of-care testing for disease biomarker using one-step capillary microfluidic fluoroimmunoassay chip via continuous on-chip labelling. Biochip J. 15, 268–275 (2021)

    Article  CAS  Google Scholar 

  11. Park, M.: Orientation control of the molecular recognition layer for improved sensitivity: a review. Biochip J. 13, 82–94 (2019)

    Article  CAS  Google Scholar 

  12. Jiang, N., et al.: Lateral and vertical flow assays for point-of-care diagnostics. Adv. Healthc. Mater. 8, e1900244 (2019)

    Article  PubMed  Google Scholar 

  13. Kim, S.K., Sung, H., Hwang, S.H., Kim, M.N.: A new quantum dot-based lateral flow immunoassay for the rapid detection of influenza viruses. Biochip J. 16, 1–8 (2022)

    Article  CAS  Google Scholar 

  14. Bahadır, E.B., Sezgintürk, M.K.: Lateral flow assays: Principles, designs and labels. TRAC-Trend. Anal. Chem. 82, 286–306 (2016)

    Article  Google Scholar 

  15. Parolo, C., et al.: Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat. Protoc. 15, 3788–3816 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen, V.T., Song, S., Park, S., Joo, C.: Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 152, 112015 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Mahmoudi, T., de la Guardia, M., Baradaran, B.: Lateral flow assays towards point-of-care cancer detection: a review of current progress and future trends. TRAC-Trend. Anal. Chem. 125, 115842 (2020)

    Article  CAS  Google Scholar 

  18. Demchenko, A.P.: Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc. 8, 022001 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Valizadeh, A., et al.: Quantum dots: synthesis, bioapplications, and toxicity. Nanosc. Res. Lett. 7, 480 (2012)

    Article  Google Scholar 

  20. Hardman, R.: A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172 (2006)

    Article  PubMed  Google Scholar 

  21. Li, H., Kang, Z., Liu, Y., Lee, S.-T.: Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22, 24230–24253 (2012)

    Article  CAS  Google Scholar 

  22. Zhu, S., et al.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. Engl. 52, 3953–3957 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Park, Y., Yoo, J., Lim, B., Kwon, W., Rhee, S.W.: Improving the functionality of carbon nanodots: doping and surface functionalization. J. Mater. Chem. A 4, 11582–11603 (2016)

    Article  CAS  Google Scholar 

  24. Hsu, P.-C., Chang, H.-T.: Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups. Chem. Commun. 48, 3984–3986 (2012)

    Article  CAS  Google Scholar 

  25. Vedamalai, M., et al.: Carbon nanodots prepared from o-phenylenediamine for sensing of Cu2+ ions in cells. Nanoscale 6, 13119–13125 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. Hu, Q., Gong, X.J., Liu, L.Z., Choi, M.M.F.: Characterization and analytical separation of fluorescent carbon nanodots. J. Nanomater. 12, 1–23 (2017)

    Google Scholar 

  27. Jin, K., et al.: Facile access to solid-state carbon dots with high luminescence efficiency and excellent formability via cellulose derivative coatings. ACS Sustain. Chem. Eng. 8, 5937–5945 (2020)

    Article  CAS  Google Scholar 

  28. Li, M., Chen, T., Gooding, J.J., Liu, J.: Review of carbon and graphene quantum dots for sensing. ACS Sens. 4, 1732–1748 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. Shi, B.B., et al.: Ultra-robust, highly proton-conductive polymer carbon dot membranes through bioinspired complexation. J. Mater. Chem. A 10, 16995–17000 (2022)

    Article  CAS  Google Scholar 

  30. Supianto, M., et al.: Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1. Microchim. Acta 188, 386 (2021)

    Article  CAS  Google Scholar 

  31. Goh, E., Lee, H.J.: Biofunctionalized carbon nanodot-polystyrene bead conjugates for bioanalysis applications. Bull. Korean Chem. Soc. 41, 776–777 (2020)

    Article  CAS  Google Scholar 

  32. Lee, H. N. et al. A lateral flow assay for nucleic acid detection based on rolling circle amplification using capture ligand-modified oligonucleotides. Biochip J. 16, 441–450 (2022)

  33. Jeon, J., et al.: Improvement of reproducibility and thermal stability of surface-enhanced Raman scattering-based lateral flow assay strips using silica-encapsulated gold nanoparticles. Sens. Actuators B Chem. 321, 128521 (2020)

  34. Loynachan, C.N., et al.: Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano 12, 279–288 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. Li, T., Zhou, C., Jiang, M.: UV absorption-spectra of polystyrene. Polym. Bull. 25, 211–216 (1991)

    Article  CAS  Google Scholar 

  36. Zhang, Q., Wang, R., Feng, B., Zhong, X., Ostrikov, K.K.: Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 12, 6856 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gole, A., Vyas, S., Phadtare, S., Lachke, A., Sastry, M.: Studies on the formation of bioconjugates of Endoglucanase with colloidal gold. Colloids Surf. B 25, 129–138 (2002)

    Article  CAS  Google Scholar 

  38. Wang, J., et al.: Ratiometric fluorescent lateral flow immunoassay for point-of-care testing of acute myocardial infarction. Angew. Chem. Int. Ed. Engl. 60, 13042–13049 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. Li, H., Han, D., Hegener, M.A., Pauletti, G.M., Steckl, A.J.: Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices. Biomicrofluidics 11, 024116 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kainz, D.M., et al.: Eliminating viscosity bias in lateral flow tests. Microsyst. Nanoeng. 7, 72 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galush, W.J., Le, L.N., Moore, J.M.: Viscosity behavior of high-concentration protein mixtures. J. Pharm. Sci. 101, 1012–1020 (2012)

    Article  CAS  PubMed  Google Scholar 

  42. Christopoulou, N.M., Kalogianni, D.P., Christopoulos, T.K.: Macromolecular crowding agents enhance the sensitivity of lateral flow immunoassays. Biosens. Bioelectron. 218, 114737 (2022)

    Article  CAS  PubMed  Google Scholar 

  43. Rivas, G., Minton, A.P.: Macromolecular crowding in vitro, in vivo, and in between. Trends Biochem. Sci. 41, 970–981 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, S.-F., et al.: Sensitivity enhancement of lateral flow assay by embedding cotton threads in paper. Cellulose 26, 8087–8099 (2019)

    Article  CAS  Google Scholar 

  45. Liu, C., et al.: Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 83, 6778–6784 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. He, X., et al.: Sensitivity enhancement of nucleic acid lateral flow assays through a physical-chemical coupling method: dissoluble saline barriers. ACS Sens. 4, 1691–1700 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. Kaur, M., Eltzov, E.: Optimizing effective parameters to enhance the sensitivity of vertical flow assay for detection of Escherichia coli. Biosensors 12, 63 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park, S.B., Shin, J.H.: Pressed lateral flow assay strips for flow delay-induced signal enhancement in lateral flow assay strips. Biochip J. 16, 480–489 (2022)

  49. Grunnet, M., Sorensen, J.B.: Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 76, 138–143 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. Hine, K.R., Dykes, P.W.: Serum CEA testing in the post-operative surveillance of colorectal carcinoma. Br. J. Cancer 49, 689–693 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Icard, P., et al.: Preoperative carcinoembryonic antigen level as a prognostic indicator in resected primary lung-cancer. Ann. Thorac. Surg. 58, 811–814 (1994)

    Article  CAS  PubMed  Google Scholar 

  52. de Puig, H., Bosch, I., Carre-Camps, M., Hamad-Schifferli, K.: Effect of the protein corona on antibody-antigen binding in nanoparticle sandwich immunoassays. Bioconjug. Chem. 28, 230–238 (2017)

    Article  PubMed  Google Scholar 

  53. Huhn, D., et al.: Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge. ACS Nano 7, 3253–3263 (2013)

    Article  PubMed  Google Scholar 

  54. Rocker, C., Potzl, M., Zhang, F., Parak, W.J., Nienhaus, G.U.: A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009)

    Article  PubMed  Google Scholar 

  55. Ritz, S., et al.: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromol 16, 1311–1321 (2015)

    Article  CAS  Google Scholar 

  56. Mathios, D., et al.: Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 12, 5060 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (Ministry of Science and ICT, MSIT) (grant numbers NRF-2020R1A4A1018393) and Kick the hurdle internal research fund (KTHD-R-001). All biospecimens and data used in this study were provided by the Biobank of Korea-Kyungpook National University Hospital (KNUH), a member of the Korea Biobank Network. All materials derived from the National Biobank of Korea-KNUH were obtained (with informed consent) under Institutional Review Board (IRB)-approved protocols.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Hee Jang or Hye Jin Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3290 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J.M., Supianto, M., Kim, T.Y. et al. Fluorescent Lateral Flow Assay with Carbon Nanodot Conjugates for Carcinoembryonic Antigen. BioChip J 17, 93–103 (2023). https://doi.org/10.1007/s13206-022-00093-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00093-w

Keywords

Navigation