Skip to main content
Log in

Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: a Review

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Biosensors have been used in various fields of biological analysis, such as for quantification of analytes and the study of molecule-molecule interactions. Orientation control of the molecular recognition layer is one of the easiest and most effective ways to improve the sensitivity of biosensors. In this review, the orientation control of molecular recognition molecules, such as antibodies, aptamers, and enzymes, is discussed. The review compares the improvement in the sensitivity and binding activity of biosensors achieved through orientation control with that achieved through random orientation. Immobilization methods of antibodies for orientation control are first discussed, with a focus on immobilization of the fragment crystallizable region of antibodies, which is the most studied technique. Covalent and non-covalent immobilization strategies are also discussed, and their effect on the sensitivity of biosensors is summarized. Lastly, the orientation control of other molecular recognition molecules (aptamers and enzymes) was discussed and the applications of molecular recognition molecules as biosensors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Table 1

Similar content being viewed by others

References

  1. Turner, A., Karube, I. & Wilson, G.S. Biosensors: Fundamentals and Applications (Oxford University Press) (1987).

    Google Scholar 

  2. Hock, B., Seifert, M. & Kramer, K. Engineering receptors and antibodies for biosensors. Biosens. Bioelectron. 17(3), 239–249 (2002).

    CAS  PubMed  Google Scholar 

  3. Chung, J., Kim, S., Bernhardt, R. & Pyun, J. Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens. Actuators, B 111, 416–422 (2005).

    Google Scholar 

  4. Tothill, I.E. Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol. 20, 55–62 (2009).

    CAS  PubMed  Google Scholar 

  5. Malmqvist, M. & Karlsson, R. Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins. Curr. Opin. Chem. Biol. 1, 378–383 (1997).

    CAS  PubMed  Google Scholar 

  6. Harms, H., Wells, M.C. & van der Meer, J.R. Wholecell living biosensors—are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273–280 (2006).

    CAS  Google Scholar 

  7. Turner, A.P. Biosensors—sense and sensitivity. Science 290, 1315–1317 (2000).

    CAS  PubMed  Google Scholar 

  8. Vo-Dinh, T. & Cullum, B. Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J. Anal. Chem. 366(6–7), 540–551 (2000).

    CAS  PubMed  Google Scholar 

  9. Conroy, P.J., Hearty, S., Leonard, P. & O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 20, 10–26 (2009).

    CAS  PubMed  Google Scholar 

  10. Fan, X. et al. Sensitive optical biosensors for unlabeled targets: a Review. Anal. Chim. Acta 620, 8–26 (2008).

    CAS  PubMed  Google Scholar 

  11. Graham, D., Ferreira, H., Freitas, P. & Cabral, J. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors. Biosens. Bioelectron. 18, 483–488 (2003).

    CAS  PubMed  Google Scholar 

  12. Iqbal, S.S. et al. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 15, 549–578 (2000).

    CAS  PubMed  Google Scholar 

  13. Carrascosa, L.G., Moreno, M., Álvarez, M. & Lechuga, L.M. Nanomechanical biosensors: a new sensing tool. TrAC, Trends Anal. Chem. 25, 196–206 (2006).

    CAS  Google Scholar 

  14. Liu, Y. & Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a Review. Microchimica Acta 183, 1–19 (2016).

    CAS  Google Scholar 

  15. Balamurugan, S., Obubuafo, A., Soper, S.A. & Spivak, D.A. Surface immobilization methods for aptamer diagnostic applications. Anal. Bioanal. Chem. 390, 1009–1021 (2008).

    CAS  PubMed  Google Scholar 

  16. Potyrailo, R.A., Conrad, R.C., Ellington, A.D. & Hieftje, G.M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70, 3419–3425 (1998).

    CAS  PubMed  Google Scholar 

  17. Kleinjung, F. et al. High-affinity RNA as a recognition element in a biosensor. Anal. Chem. 70, 328–331 (1998).

    CAS  Google Scholar 

  18. Rusmini, F., Zhong, Z. & Feijen, J. Protein immobilization strategies for protein biochips. Biomacromolecules 8, 1775–1789 (2007).

    CAS  PubMed  Google Scholar 

  19. Engvall, E. & Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8, 871–874 (1971).

    CAS  PubMed  Google Scholar 

  20. Park, M., Pyun, J.C. & Jose, J. Orientation and density control of proteins on solid matters by outer membrane coating: Analytical and diagnostic applications. J. Pharm. Biomed. Anal. 147, 174–184 (2018).

    CAS  PubMed  Google Scholar 

  21. Iliuk, A.B., Hu, L. & Tao, W.A. Aptamer in bioanalytical applications. Anal. Chem. 83, 4440–4452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Trilling, A.K., Beekwilder, J. & Zuilhof, H. Antibody orientation on biosensor surfaces: a minireview. Analyst 138, 1619–1627 (2013).

    CAS  PubMed  Google Scholar 

  23. Le Brun, A.P., Holt, S.A., Shah, D.S., Majkrzak, C.F. & Lakey, J.H. The structural orientation of antibody layers bound to engineered biosensor surfaces. Biomaterials 32, 3303–3311 (2011).

    CAS  PubMed  Google Scholar 

  24. Hage, D.S. Immunoassays. Anal. Chem. 71, 294–304 (1999).

    Google Scholar 

  25. Jose, J., Park, M. & Pyun, J.-C. E. coli outer membrane with autodisplayed Z-domain as a molecular recognition layer of SPR biosensor. Biosens. Bioelectron. 25, 1225–1228 (2010).

    CAS  Google Scholar 

  26. Cho, I.-H. et al. Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Anal. Biochem. 365, 14–23 (2007).

    CAS  PubMed  Google Scholar 

  27. Vareiro, M.M. et al. Surface plasmon fluorescence measurements of human chorionic gonadotrophin: role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 77, 2426–2431 (2005).

    CAS  PubMed  Google Scholar 

  28. Peluso, P. et al. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312, 113–124 (2003).

    CAS  PubMed  Google Scholar 

  29. Jung, Y., Jeong, J.Y. & Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 133, 697–701 (2008).

    CAS  PubMed  Google Scholar 

  30. Karyakin, A.A., Presnova, G.V., Rubtsova, M.Y. & Egorov, A.M. Oriented immobilization of antibodies onto the gold surfaces via their native thiol groups. Anal. Chem. 72, 3805–3811 (2000).

    CAS  PubMed  Google Scholar 

  31. Wang, W., Singh, S., Zeng, D.L., King, K. & Nema, S. Antibody structure, instability, and formulation. J. Pharm. Sci. 96, 1–26 (2007).

    CAS  PubMed  Google Scholar 

  32. Raju, T.S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008).

    CAS  PubMed  Google Scholar 

  33. Liu, H. & May, K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs, (Taylor & Francis). 17–23 (2012).

    Google Scholar 

  34. Wypych, J. et al. Human IgG2 antibodies display disulfide-mediated structural isoforms. J. Biol. Chem. 283, 16194–16205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobata, A. The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim. Biophys. Acta-Gen. Subj. 1780, 472–478 (2008).

    CAS  Google Scholar 

  36. Hoffman, W.L. & O'Shannessy, D.J. Site-specific immobilization of antibodies by their oligosaccharide moieties to new hydrazide derivatized solid supports. J. Immunol. Methods 112, 113–120 (1988).

    CAS  PubMed  Google Scholar 

  37. Weiping, Q. et al. Orientation of antibodies on a 3-aminopropyltriethoxylsilane-modified silicon wafer surface. J. Inclusion Phenom.Macrocyclic Chem. 35, 419–429 (1999).

    Google Scholar 

  38. Chen, M.L. et al. Fabrication of an oriented Fcfused lectin microarray through boronate formation. Angew. Chem. Int. Ed. 47, 8627–8630 (2008).

    CAS  Google Scholar 

  39. Baniukevic, J. et al. Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 43, 281–288 (2013).

    CAS  PubMed  Google Scholar 

  40. Ståhl, S. & Nygren, P. The use of gene fusions to protein A and protein G in immunology and biotechnology. Pathol. Biol. (Paris) 45, 66–76 (1997).

    Google Scholar 

  41. Björk, I., Petersson, B.Å. & Sjöquist, J. Some physicochemical properties of protein A from Staphylococcus aureus. Eur. J. Biochem. 29, 579–584 (1972).

    PubMed  Google Scholar 

  42. Lindmark, R., Thorén-Tolling, K. & Sjöquist, J. Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J. Immunol. Methods 62, 1–13 (1983).

    CAS  PubMed  Google Scholar 

  43. Jendeberg, L. et al. The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35, 22–31 (1996).

    CAS  PubMed  Google Scholar 

  44. Deisenhofer, J., Jones, T.A., Huber, R., Sjödahl, J. & Sjöquist, J. Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus. Hoppe-Seylers Z. Physiol. Chem. 359, 975–986 (1978).

    CAS  Google Scholar 

  45. Füglistaller, P. Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein A affinity chromatography matrices. J. Immunol. Methods 124, 171–177 (1989).

    PubMed  Google Scholar 

  46. Anderson, G.P., Jacoby, M.A., Ligler, F.S. & King, K.D. Effectiveness of protein A for antibody immobilization for a fiber optic biosensor. Biosens. Bioelectron. 12, 329–336 (1997).

    CAS  PubMed  Google Scholar 

  47. Babacan, S., Pivarnik, P., Letcher, S. & Rand, A. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens. Bioelectron. 15, 615–621 (2000).

    CAS  PubMed  Google Scholar 

  48. Schmid, A.H., Stanca, S., Thakur, M., Thampi, K.R. & Suri, C.R. Site-directed antibody immobilization on gold substrate for surface plasmon resonance sensors. Sens. Actuators, B 113, 297–303 (2006).

    Google Scholar 

  49. Zhou, J. et al. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A—Au nanoparticle modified gold electrode. Sens. Actuators, B 197, 220–227 (2014).

    CAS  Google Scholar 

  50. Chung, J.W., Park, J.M., Bernhardt, R. & Pyun, J.C. Immunosensor with a controlled orientation of antibodies by using NeutrAvidin–protein A complex at immunoaffinity layer. J. Biotechnol. 126, 325–333 (2006).

    CAS  PubMed  Google Scholar 

  51. Shen, G., Cai, C., Wang, K. & Lu, J. Improvement of antibody immobilization using hyperbranched polymer and protein A. Anal. Biochem. 409, 22–27 (2011).

    CAS  PubMed  Google Scholar 

  52. Qi, C. et al. Detection of avian influenza virus subtype H5 using a biosensor based on imaging ellipsometry. Biosens. Bioelectron. 25, 1530–1534 (2010).

    CAS  PubMed  Google Scholar 

  53. Kanno, S., Yanagida, Y., Haruyama, T., Kobatake, E. & Aizawa, M. Assembling of engineered IgGbinding protein on gold surface for highly oriented antibody immobilization. J. Biotechnol. 76, 207–214 (2000).

    CAS  PubMed  Google Scholar 

  54. Tajima, N., Takai, M. & Ishihara, K. Significance of antibody orientation unraveled: well-oriented antibodies recorded high binding affinity. Anal. Chem. 83, 1969–1976 (2011).

    CAS  PubMed  Google Scholar 

  55. Moks, T. et al. Staphylococcal protein A consists of five IgG-binding domains. Eur. J. Biochem. 156, 637–643 (1986).

    CAS  PubMed  Google Scholar 

  56. Jansson, B., Uhlén, M. & Nygren, P.-Å. All individual domains of staphylococcal protein A show Fab binding. FEMS Immunol. Med. Microbiol. 20, 69–78 (1998).

    CAS  PubMed  Google Scholar 

  57. Björk, I., Petersson, B.Å. & Sjöquist, J. Some physicochemical properties of protein A from Staphylococcus aureus. FEBS J. 29(3), 579–584 (1972).

    Google Scholar 

  58. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9-and 2.8-. ANG. resolution. Biochemistry 20, 2361–2370 (1981).

    CAS  Google Scholar 

  59. Nilsson, B. et al. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng., Des. Sel. 1, 107–113 (1987).

    CAS  Google Scholar 

  60. Braisted, A.C. & Wells, J.A. Minimizing a binding domain from protein A. Proc. Natl. Acad. Sci. U.S.A. 93, 5688–5692 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Iijima, M. et al. Nanocapsules incorporating IgG Fcbinding domain derived from Staphylococcus aureus protein A for displaying IgGs on immunosensor chips. Biomaterials 32, 1455–1464 (2011).

    CAS  PubMed  Google Scholar 

  62. Jose, J. et al. Escherichia coli with autodisplayed Zdomain of protein A for signal amplification of SPR biosensor. Biosens. Bioelectron. 24, 1324–1329 (2009).

    CAS  PubMed  Google Scholar 

  63. Jose, J., Maas, R.M. & Teese, M.G. Autodisplay of enzymes—molecular basis and perspectives. J. Biotechnol. 161, 92–103 (2012).

    CAS  PubMed  Google Scholar 

  64. Jose, J. & Meyer, T.F. The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol. Mol. Biol. Rev. 71, 600–619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jose, J. Autodisplay: efficient bacterial surface display of recombinant proteins. Appl. Microbiol. Biotechnol. 69, 607–614 (2006).

    CAS  PubMed  Google Scholar 

  66. Maurer, J., Jose, J. & Meyer, T.F. Autodisplay: onecomponent system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. J. Bacteriol. 179, 794–804 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, M. et al. Isolation and characterization of the outer membrane of Escherichia coli with autodisplayed Zdomains. Biochim. Biophys. Acta, Biomembr. 1848, 842–847 (2015).

    CAS  Google Scholar 

  68. Jose, J., Park, M. & Pyun, J.C. Highly sensitive immunoassay based on E. coli with autodisplayed Z-domain. Anal. Chim. Acta 667, 113–118 (2010).

    CAS  PubMed  Google Scholar 

  69. Pyun, J.C., Jose, J. & Park, M. Development of a washfree immunoassay using Escherichia coli cells with autodisplayed Z-domains. Analyst 142, 1720–1728 (2017).

    CAS  PubMed  Google Scholar 

  70. Park, M. et al. Flow cytometric immunoassay using E. coli with autodisplayed Z-domains. Enzyme Microb. Technol. 53, 181–188 (2013).

    CAS  PubMed  Google Scholar 

  71. Park, M., Jose, J. & Pyun, J.C. SPR biosensor by using E. coli outer membrane layer with autodisplayed Z-domains. Sens. Actuators, B 154, 82–88 (2011).

    CAS  Google Scholar 

  72. Park, M., Jose, J. & Pyun, J.C. Hypersensitive immunoassay by using Escherichia coli outer membrane with autodisplayed Z-domains. Enzyme Microb. Technol. 46, 309–314 (2010).

    CAS  Google Scholar 

  73. Björck, L. & Kronvall, G. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J. Immunol. 133, 969–974 (1984).

    PubMed  Google Scholar 

  74. Langone, J.J. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32, 157–252 (1982).

    CAS  PubMed  Google Scholar 

  75. Akerström, B., Brodin, T., Reis, K. & Björck, L. Protein G: a powerful tool for binding and detection of monoclonal and polyclonal antibodies. J. Immunol. 135, 2589–2592 (1985).

    PubMed  Google Scholar 

  76. Yoo, R.-J. & Choi, S.-J. Identification of a peptide ligand for antibody immobilization on biosensor surfaces. BioChip J. 10, 88–94 (2016).

    CAS  Google Scholar 

  77. Ha, T.H. et al. Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface. Anal. Chem. 79, 546–556 (2007).

    CAS  PubMed  Google Scholar 

  78. Elshafey, R., Tavares, A.C., Siaj, M. & Zourob, M. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens. Bioelectron. 50, 143–149 (2013).

    CAS  PubMed  Google Scholar 

  79. Conzuelo, F. et al. Integrated disposable electrochemical immunosensors for the simultaneous determination of sulfonamide and tetracycline antibiotics residues in milk. Biosens. Bioelectron. 50, 100–105 (2013).

    CAS  PubMed  Google Scholar 

  80. Eliasson, M. et al. Chimeric IgG-binding receptors engineered from staphylococcal protein A and streptococcal protein G. J. Biol. Chem. 263, 4323–4327 (1988).

    CAS  PubMed  Google Scholar 

  81. Salehi, M. et al. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody–protein A/G–gold nanocluster conjugates. Nanoscale 6, 2361–2367 (2014).

    CAS  PubMed  Google Scholar 

  82. Bhatta, D. et al. Optical microchip array biosensor for multiplexed detection of bio-hazardous agents. Biosens. Bioelectron. 30, 78–86 (2011).

    CAS  PubMed  Google Scholar 

  83. Lee, Y., Jeong, J., Lee, G., Moon, J.H. & Lee, M.K. Covalent and oriented surface immobilization of antibody using photoactivatable antibody Fc-binding protein expressed in Escherichia coli. Anal. Chem. 88, 9503–9509 (2016).

    CAS  PubMed  Google Scholar 

  84. Mallikaratchy, P. Evolution of complex target SELEX to identify aptamers against mammalian cell-surface antigens. Molecules 22, 215 (2017).

    PubMed Central  Google Scholar 

  85. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS  PubMed  Google Scholar 

  86. Mastronardi, E., Foster, A., Zhang, X. & DeRosa, M. Smart materials based on DNA aptamers: Taking aptasensing to the next level. Sensors 14, 3156–3171 (2014).

    PubMed  Google Scholar 

  87. Klussman, S. The Aptamer Handbook. (Wiley-VCH, Weinheim) (2006).

    Google Scholar 

  88. Bunka, D.H. & Stockley, P.G. Aptamers come of age–at last. Nat. Rev. Microbiol. 4, 588 (2006).

    CAS  PubMed  Google Scholar 

  89. Song, S., Wang, L., Li, J., Fan, C. & Zhao, J. Aptamerbased biosensors. TrAC, Trends Anal. Chem. 27, 108–117 (2008).

    CAS  Google Scholar 

  90. Boozer, C., Chen, S. & Jiang, S. Controlling DNA orientation on mixed ssDNA/OEG SAMs. Langmuir 22, 4694–4698 (2006).

    CAS  PubMed  Google Scholar 

  91. Zhang, X. & Yadavalli, V.K. Surface immobilization of DNA aptamers for biosensing and protein interaction analysis. Biosens. Bioelectron. 26, 3142–3147 (2011).

    CAS  PubMed  Google Scholar 

  92. Yan, F., Wang, F. & Chen, Z. Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sens. Actuators B 160, 1380–1385 (2011).

    CAS  Google Scholar 

  93. Dong, Z.-M. & Zhao, G.-C. A theophylline quartz crystal microbalance biosensor based on recognition of RNA aptamer and amplification of signal. Analyst 138, 2456–2462 (2013).

    CAS  PubMed  Google Scholar 

  94. Zhu, H., Suter, J.D., White, I.M. & Fan, X. Aptamer based microsphere biosensor for thrombin detection. Sensors 6, 785–795 (2006).

    CAS  Google Scholar 

  95. Urmann, K., Walter, J.-G., Scheper, T. & Segal, E. Labelfree optical biosensors based on aptamer-functionalized porous silicon scaffolds. Anal. Chem. 87, 1999–2006 (2015).

    CAS  PubMed  Google Scholar 

  96. Shimada, J., Maruyama, T., Kitaoka, M., Kamiya, N. & Goto, M. Microplate assay for aptamer-based thrombin detection using a DNA–enzyme conjugate based on histidine-tag chemistry. Anal. Biochem. 421, 541–546 (2012).

    CAS  PubMed  Google Scholar 

  97. Minunni, M., Tombelli, S., Gullotto, A., Luzi, E. & Mascini, M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens. Bioelectron. 20, 1149–1156 (2004).

    CAS  PubMed  Google Scholar 

  98. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    CAS  PubMed  Google Scholar 

  99. Choi, M.M. Progress in enzyme-based biosensors using optical transducers. Microchim. Acta 148(3–4), 107–132 (2004).

    CAS  Google Scholar 

  100. Hernandez, K. & Fernandez-Lafuente, R. Control of protein immobilization: coupling immobilization and sitedirected mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb. Technol. 48, 107–122 (2011).

    CAS  PubMed  Google Scholar 

  101. Lim, G., Hwang, H.J. & Kim, J.H. Protected immobilization of Taq DNA polymerase by active site masking on self-assembled monolayers of ?-functionalized thiols. Anal. Biochem. 419, 205–210 (2011).

    CAS  PubMed  Google Scholar 

  102. Tschiggerl, H. et al. Exploitation of the S-layer selfassembly system for site directed immobilization of enzymes demonstrated for an extremophilic laminarinase from Pyrococcus furiosus. J. Biotechnol. 133, 403–411 (2008).

    CAS  PubMed  Google Scholar 

  103. Zhen, G. et al. Immobilization of the enzyme ß-lactamase on biotin-derivatized poly (L-lysine)-g-poly (ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. Langmuir 20, 10464–10473 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Hallym University Research Fund, 2018 (HRF-20181 2-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Park.

Conflict of Interests

Conflict of Interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M. Orientation Control of the Molecular Recognition Layer for Improved Sensitivity: a Review. BioChip J 13, 82–94 (2019). https://doi.org/10.1007/s13206-019-3103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-019-3103-0

Keywords

Navigation