Skip to main content

Advertisement

Log in

Understanding immune checkpoints and PD-1/PD-L1-mediated immune resistance towards tumour immunotherapy

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Immunotherapy has emerged as a transformative approach in the treatment of various cancers, offering new hope for patients previously faced with limited treatment options. A cornerstone of cancer immunotherapy lies in targeting immune checkpoints, particularly the programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway. Immune checkpoints serve as crucial regulators of the immune response, preventing excessive immune activity and maintaining self-tolerance. PD-1, expressed on the surface of T cells, and its ligand PD-L1, expressed on various cell types, including cancer cells and immune cells, play a central role in this regulatory process. Although the success rate associated with these immunotherapies is very promising, most patients still show intrinsic or acquired resistance. Since the mechanisms related to PD-1/PD-L1 resistance are not well understood, an in-depth analysis is necessary to improve the success rate of anti-PD-1/PD-L1 therapy. Hence, here we provide an overview of PD-1, its ligand PD-L1, and the resistance mechanism towards PD-1/PD-L1. Furthermore, we have discussed the plausible solution to increase efficacy and clinical response. For the following research, joint endeavours of clinicians and basic scientists are essential to address the limitation of resistance towards immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguiar PN Jr, Santoro IL, Tadokoro H, de Lima LG, Filardi BA, Oliveira P, Mountzios G, De Mello RA (2016) The role of PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: a network meta-analysis. Immunotherapy 8(4):479–488. https://doi.org/10.2217/imt-2015-0002

    Article  CAS  PubMed  Google Scholar 

  • Ahn E, Youngblood B, Lee J, Lee J, Sarkar S, Ahmed R (2016) Demethylation of the PD-1 promoter is imprinted during the effector phase of CD8 T cell exhaustion. J Virol 90(19):8934–8946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 12(1):1–13

    Article  CAS  Google Scholar 

  • Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, Iyer AK (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, Zhang T, Adleff V, Phallen J, Wali N (2017) Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer dynamics of neoantigen landscape during immunotherapy. Cancer Discov 7(3):264–276

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC (2014) Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res 2(5):393–398

    Article  CAS  PubMed  Google Scholar 

  • Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V (2017) IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Investig 127(8):2930–2940

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbee MS, Ogunniyi A, Horvat TZ, Dang T-O (2015) Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother 49(8):907–937

    Article  CAS  PubMed  Google Scholar 

  • Bardhan K, Anagnostou T, Boussiotis VA (2016) The PD1: PD-L1/2 pathway from discovery to clinical implementation. Front Immunol 7:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, Cucolo L, Lee DS, Pauken KE, Huang AC (2016) Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167(6):1540-1554.e1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berraondo P, Ochoa MC, Olivera I, Melero I (2019) Immune desertic landscapes in hepatocellular carcinoma shaped by β-catenin activation. Cancer Discov 9(8):1003–1005

    Article  CAS  PubMed  Google Scholar 

  • Blackburn SD, Shin H, Freeman GJ, Wherry EJ (2008) Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc Natl Acad Sci 105(39):15016–15021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum J, Wearsch P (2013) Cresswell P. Pathways of antigen processing. Annu Rev Immunol 31(443–73):18

    Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  • Carlino MS, Menzies AM, Atkinson V, Cebon JS, Jameson MB, Fitzharris BM, Long GV (2020) Long-term follow-up of standard-dose pembrolizumab plus reduced-dose ipilimumab in patients with advanced melanoma: KEYNOTE-029 part 1B abstract. Clin Cancer Res 26(19):5086–5091. https://doi.org/10.1158/1078-0432.CCR-20-0177

    Article  CAS  PubMed  Google Scholar 

  • Castellanos JR, Purvis IJ, Labak CM, Guda MR, Tsung AJ, Velpula KK, Asuthkar S (2017) B7–H3 role in the immune landscape of cancer. Am J Clin Exp Immunol 6(4):66

    PubMed  PubMed Central  Google Scholar 

  • Cha, JH, Chan, LC, Li, CW, Hsu, JL, Hung, MC (2019) Mechanisms controlling PD-L1 expression in cancer. Mol Cell 76(3):359–370. https://doi.org/10.1016/j.molcel.2019.09.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M (2017) Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol 28(6):1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Chauvin J-M, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, T-hT C, Maurer M, Korman AJ (2015) TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J Clin Investig 125(5):2046–2058

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L, Han, X (2015) Anti–PD-1/PD-L1 therapy of human cancer: past present and future. J Clin Invest 125(9):3384–3391. https://doi.org/10.1172/JCI80011

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen DS, Irving BA, Hodi FS (2012) Molecular pathways: next-generation immunotherapy—inhibiting programmed death-ligand 1 and programmed death-1next-generation immunotherapy: PD-L1/PD-1 inhibition. Clin Cancer Res 18(24):6580–6587

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Jiang C, Jin L, Zhang X (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27(3):409–416

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Veverka V, Radhakrishnan A, Waters LC, Muskett FW, Morgan SH, Huo J, Yu C, Evans EJ, Leslie AJ (2013) Structure and interactions of the human programmed cell death 1 receptor. J Biol Chem 288(17):11771–11785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couzin-Frankel J (2013) Cancer immunotherapy. Am Assoc Adv Sci. https://doi.org/10.1126/science.342.6165.143

    Article  Google Scholar 

  • Curnock AP, Bossi G, Kumaran J, Bawden LJ, Figueiredo R, Tawar R, Wiseman K, Henderson E, Hoong SJ, Gonzalez V (2021) Cell-targeted PD-1 agonists that mimic PD-L1 are potent T cell inhibitors. JCI insight 6 (20)

  • Darnell JE Jr, Kerr LM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, Tsai K, Nosrati A, Nardo L, Alvarado MD (2016) Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma. J Clin Investig 126(9):3447–3452

    Article  PubMed  PubMed Central  Google Scholar 

  • Daza-Cajigal V, Albuquerque AS, Pearson J, Hinley J, Mason AS, Stahlschmidt J, Thrasher AJ, Mishra V, Southgate J, Burns SO (2019) Loss of Janus associated kinase 1 alters urothelial cell function and facilitates the development of bladder cancer. Front Immunol 10:2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhatchinamoorthy K, Colbert JD, Rock KL (2021) Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 12:636568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Zhu G, Tamada K, Chen L (1999) B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5(12):1365–1369

    Article  CAS  PubMed  Google Scholar 

  • Drake CG, Lipson EJ, Brahmer JR (2014) Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol 11(1):24–37

    Article  CAS  PubMed  Google Scholar 

  • Fares CM, Van Allen EM, Drake CG, Allison JP, Hu-Lieskovan S (2019) Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients? Am Soc Clin Oncol Educ Book 39:147–164

    Article  PubMed  Google Scholar 

  • Fish EN, Platanias LC (2014) Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomesIFN signaling in malignant cells. Mol Cancer Res 12(12):1691–1703. https://doi.org/10.1158/1541-7786.MCR-14-0450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster MD, Devlin M-J (2018) Immune checkpoint inhibition in head and neck cancer. Front Oncol 8:310

    Article  PubMed  PubMed Central  Google Scholar 

  • Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236(1):219–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friese C, Harbst K, Borch TH, Westergaard MCW, Pedersen M, Kverneland A, Jönsson G, Donia M, Svane IM, Met Ö (2020) CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Sci Rep 10(1):3914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE (2016) Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167(2):397-404.e399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Diaz A, Shin D, Moreno B, Saco J, Escuin-Ordinas H, Rodriguez G, Zaretsky J, Sun L, Hugo W (2017) Wang X (2017) Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 19(6):1189–1201 (External Resources Crossref (DOI))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA (2017) Impaired HLA Class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancerantigen-processing defects and resistance to PD-1 blockade. Cancer Discov 7(12):1420–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibney GT, Weiner LM, Atkins MB (2016) Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol 17(12):e542–e551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetze TO, Mueller DW, Rafiyan M-R, Kiselicki D, Eickhoff R, Jaeger E, Al-Batran S-E (2020) Open-label phase I study evaluating feasibility and safety of subcutaneous IMP321 (LAG-3Ig fusion protein eftilagimod alpha) combined with avelumab in advanced stage solid tumor entities: results from stratum D of the INSIGHT platform trial. J Clin Oncol 38(15):3099–3099. https://doi.org/10.1200/JCO.2020.38.15_suppl.3099

    Article  Google Scholar 

  • Grasso CS, Tsoi J, Onyshchenko M, Abril-Rodriguez G, Ross-Macdonald P, Wind-Rotolo M, Champhekar A, Medina E, Torrejon DY, Shin DS (2020) Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell 38(4):500-515.e503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber W-J (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515(7528):577–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillerey C, Harjunpää H, Carrié N, Kassem S, Teo T, Miles K, Krumeich S, Weulersse M, Cuisinier M, Stannard K (2018) TIGIT immune checkpoint blockade restores CD8+ T-cell immunity against multiple myeloma. Blood J Am Soc Hematol 132(16):1689–1694

    CAS  Google Scholar 

  • Hamid O, Robert C, Daud A, Hodi FS, Hwu W-J, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS (2013) Safety and tumor responses with lambrolizumab (anti–PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hargadon KM (2017) Strategies to improve the efficacy of dendritic cell-based immunotherapy for melanoma. Front Immunol 8:1594

    Article  PubMed  PubMed Central  Google Scholar 

  • Harjunpää H, Guillerey C (2020) TIGIT as an emerging immune checkpoint. Clin Exp Immunol 200(2):108–119

    Article  PubMed  Google Scholar 

  • Hazarika M, Chuk MK, Theoret MR, Mushti S, He K, Weis SL, Putman AH, Helms WS, Cao X, Li H (2017) US FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumabnivolumab for advanced melanoma. Clin Cancer Res 23(14):3484–3488

    Article  CAS  PubMed  Google Scholar 

  • He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5(1):1–9

    Google Scholar 

  • Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545(7652):60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165(1):35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain P, Jain C, Velcheti V (2018) Role of immune-checkpoint inhibitors in lung cancer. Ther Adv Respir Dis 12:1753465817750075

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X (2019) Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 18(1):1–17

    Article  CAS  Google Scholar 

  • Kansy BA, Concha-Benavente F, Srivastava RM, Jie H-B, Shayan G, Lei Y, Moskovitz J, Moy J, Li J, Brandau S (2017) PD-1 status in CD8+ T cells associates with survival and anti-PD-1 therapeutic outcomes in head and neck cancer prognostic and predictive impact of PD-1high T cells. Cancer Res 77(22):6353–6364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, Palmer DC, Antony PA, Hwang ST, Rosenberg SA (2005) Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci 102(27):9571–9576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kluger HM, Tawbi HA, Ascierto ML, Bowden M, Callahan MK, Cha E, Chen HX, Drake CG, Feltquate DM, Ferris RL (2020) Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC immunotherapy resistance taskforce. J Immunother Cancer 8(1)

  • Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters MJ, van der Burg S, Kapiteijn E, Michielin O (2014) Anti–CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 6(254):254ra128-254ra128

    Article  PubMed  Google Scholar 

  • Labani-Motlagh A, Ashja-Mahdavi M, Loskog A (2020) The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol 11:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledford H (2011) Melanoma drug wins US approval. Nature 471(7340):561

    Article  CAS  PubMed  Google Scholar 

  • Le Mercier I, Lines JL, Noelle RJ (2015) Beyond CTLA-4 and PD-1 the generation Z of negative checkpoint regulators. Front Immunol. https://doi.org/10.3389/fimmu.2015.00418

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zheng C, Han J, Zhu J, Liu S, Jin T (2021) PD-1/PD-L1 axis as a potential therapeutic target for multiple sclerosis: AT cell perspective. Front Cell Neurosci 15:716747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B (2021) Molecular mechanisms of chemo-and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2(3):315–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF (2019) WNT/β-catenin pathway activation correlates with immune exclusion across human cancerswnt/β-catenin–associated immune exclusion across cancers. Clin Cancer Res 25(10):3074–3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magiera-Mularz K, Kocik J, Musielak B, Plewka J, Sala D, Machula M, Grudnik P, Hajduk M, Czepiel M, Siedlar M (2021) Human and mouse PD-L1: similar molecular structure, but different druggability profiles. Iscience 24 (1)

  • Mahoney KM, Atkins MB (2014) Prognostic and predictive markers for the new immunotherapies. Oncology (williston Park) 28:39–48

    PubMed  Google Scholar 

  • Mahoney KM, Rennert PD, Freeman GJ (2015) Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discovery 14(8):561–584

    Article  CAS  PubMed  Google Scholar 

  • Marinelli O, Annibali D, Aguzzi C, Tuyaerts S, Amant F, Morelli MB, Santoni G, Amantini C, Maggi F, Nabissi M (2019) The controversial role of PD-1 and its ligands in gynecological malignancies. Front Oncol. https://doi.org/10.3389/fonc.2019.01073

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y (2018) Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 11(1):1–20

    Article  Google Scholar 

  • Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Investig 125(9):3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motz GT, Santoro SP, Wang L-P, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F, Coukos G (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20(6):607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munn DH, Bronte V (2016) Immune suppressive mechanisms in the tumor microenvironment. Curr Opin Immunol 39:1–6

    Article  CAS  PubMed  Google Scholar 

  • Munn DH, Mellor AL (2013) Indoleamine 2, 3 dioxygenase and metabolic control of immune responses. Trends Immunol 34(3):137–143

    Article  CAS  PubMed  Google Scholar 

  • Nan Y, Wu C, Zhang Y-J (2017) Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism. Front Immunol 8:1758

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngiow SF, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, Smyth MJ (2015) A threshold level of intratumor CD8+ T-cell PD1 expression dictates therapeutic response to anti-PD1T-cell PD1 levels set a threshold for response. Cancer Res 75(18):3800–3811

    Article  CAS  PubMed  Google Scholar 

  • Nowicki TS, Hu-Lieskovan S, Ribas A (2018) Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer Journal (sudbury, Mass) 24(1):47

    Article  CAS  PubMed  Google Scholar 

  • Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X (2015) Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 21(1):24–33

    Article  CAS  PubMed  Google Scholar 

  • Papa A, Pandolfi PP (2019) The PTEN–PI3K axis in cancer. Biomolecules 9(4):153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll D (2015) Cancer and the immune system: basic concepts and targets for intervention. Semin Oncol 42(4):523–538. https://doi.org/10.1053/j.seminoncol.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak R, Pharaon RR, Mohanty A, Villaflor VM, Salgia R, Massarelli E (2020) Acquired resistance to PD-1/PD-L1 blockade in lung cancer: mechanisms and patterns of failure. Cancers (basel) 12(12):3851

    Article  CAS  PubMed  Google Scholar 

  • Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354(6316):1160–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy the role of PTEN loss in immune resistance. Cancer Discov 6(2):202–216

    Article  CAS  PubMed  Google Scholar 

  • Persad A, Venkateswaran G, Hao L, Garcia ME, Yoon J, Sidhu J, Persad S (2016) Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A. Genes Cancer 7(11–12):368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, Scott AC, Viale A, Lauer P, Merghoub T (2017) Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545(7655):452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips EA, Techova AS, Mor A, Kong X (2018) Structural, functional, and evolutionary differences between PD-L1 and PD-L2. Am Assoc Immnol

  • Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 44(6):1255–1269

    Article  CAS  PubMed  Google Scholar 

  • Platanias LC (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

    Article  CAS  PubMed  Google Scholar 

  • Platten M, Wick W, Van den Eynde BJ (2012) Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion tryptophan catabolism in cancer. Cancer Res 72(21):5435–5440

    Article  CAS  PubMed  Google Scholar 

  • Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (2014) Indoleamine 2, 3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother 63(7):721–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin S, Xu L, Yi M, Yu S, Wu K, Luo S (2019) Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 18:1–14

    Article  CAS  Google Scholar 

  • Restifo NP, Smyth MJ, Snyder A (2016) Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16(2):121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribas A (2015) Adaptive immune resistance: how cancer protects from immune attack adaptive immune resistance. Cancer Discov 5(9):915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2017) The concept of immune surveillance against tumors: the first theories. Oncotarget 8(4):7175

    Article  PubMed  Google Scholar 

  • Rodon Ahnert J, Gruber JJ, Telli ML, Mita MM, Mita AC, Kim JW, Boyd-Kirkup JD (2023) A phase 1 first-in-human clinical trial of HMBD-002, an IgG4 monoclonal antibody targeting VISTA, in advanced solid tumors

  • Rosenberg JE, Hoffman-Censits J, Powles T, Van Der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. The Lancet 387(10031):1909–1920

    Article  CAS  Google Scholar 

  • Routy B, Le Chatelier E, Derosa L, Duong CP, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP (2018) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  • Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DA (2019) Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. In: Seminars in immunology. Elsevier, Amsterdam, p 101305

  • Sade-Feldman M, Kanterman J, Klieger Y, Ish-Shalom E, Olga M, Saragovi A, Shtainberg H, Lotem M, Baniyash M (2016) Clinical significance of circulating CD33+ CD11b+ HLA-DR− myeloid cells in patients with stage IV melanoma treated with ipilimumabthe significance of MDSCs in ipilimumab-treated patients with melanoma. Clin Cancer Res 22(23):5661–5672

    Article  CAS  PubMed  Google Scholar 

  • Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane J-P, Bjorgaard SL, Hammond MR, Vitzthum H, Blackmon SM (2017) Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun 8(1):1–11

    Article  CAS  Google Scholar 

  • Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, Cheong HC, Yong YK, Larsson M, Shankar EM (2018) T-cell exhaustion in chronic infections: reversing the state of exhaustion and reinvigorating optimal protective immune responses. Front Immunol 9:2569

    Article  PubMed  PubMed Central  Google Scholar 

  • Seliger B (2019) Basis of PD1/PD-L1 therapies. J Clin Med 8(12):2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison JP (2015a) The future of immune checkpoint therapy. Science 348(6230):56–61

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Allison JP (2015b) Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161(2):205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Li K, Ni Y, Liang X, Zhao X (2021) Myeloid-derived suppressor cells: implications in the resistance of malignant tumors to T cell-based immunotherapy. Front Cell Dev Biol 9:707198

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, Grasso CS, Hugo W, Sandoval S, Torrejon DY (2017) Primary resistance to PD-1 blockade mediated by JAK1/2 mutationsprimary resistance to PD-1 blockade. Cancer Discov 7(2):188–201

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T (1994) Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 23(3):704–706

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics. CA Cancer J Clin 67(3):177–193

    Article  PubMed  Google Scholar 

  • Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  PubMed  Google Scholar 

  • Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci 106(42):17858–17863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Fourcade J, Pagliano O, Chauvin J-M, Sander C, Kirkwood JM, Zarour HM (2015) IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells targeting IL10 and PD-1 in melanoma. Cancer Res 75(8):1635–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swoboda A, Nanda R (2018) Immune checkpoint blockade for breast cancer. Optim Breast Cancer Manag. https://doi.org/10.1007/978-3-319-70197-4_10

    Article  Google Scholar 

  • Taube JM, Klein, A, Brahmer, JR, Xu, H, Pan, X, Kim, JH, Topalian, SL (2014) Association of PD-1 PD-1 ligands and other features of the tumor immune microenvironment with response to Anti–PD-1 therapy abstract. Clin Cancer Res 20(19):5064–5074. https://doi.org/10.1158/1078-0432.CCR-13-3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachsmuth LP, Salama AK, Kang Y, Hsu D, Balko JM (2020) A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti–PD-1 immunotherapy. J Clin Investig 130(5):2570–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thommen D, Schreiner J, Muller P, Herzig P, Roller A, Belousov A, Umana P, Pisa P, Klein C, Bacac M. (2015) Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res  3:1344–1355. https://doi.org/10.1158/2326-6066.CIR-15-0097. ([Abstract][CrossRef][GoogleScholar])

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Wang X, Zhang S (2023) CTLA-4 and its inhibitors in esophageal cancer: efficacy of therapy and potential mechanisms of adverse events. Am J Cancer Res 13(7):3140.

    PubMed  PubMed Central  Google Scholar 

  • Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz H-J (2018) CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation–a target for novel cancer therapy. Cancer Treat Rev 63:40–47

    Article  CAS  PubMed  Google Scholar 

  • Tolcher AW, Alley EW, Chichili G, Baughman JE, Moore PA, Bonvini E, Vasselli JR, Wigginton JM, Powderly JD (2016) Phase 1 first-in-human open label dose escalation ctudy of MGD009 a humanized B7-H3 x CD3 dual-affinity re-targeting (DART) protein in patients with B7-H3-expressing neoplasms or B7-H3 expressing tumor vasculature. J Clin Oncol. 10.1200/JCO.2016.34.15_suppl.TPS3105

    Article  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB (2012) Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo JA, Sweis RF, Bao R, Luke JJ (2018) T cell–inflamed versus non-T cell–inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res 6(9):990–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Elsas MJ, van Hall T, van der Burg SH (2020) Future challenges in cancer resistance to immunotherapy. Cancers (basel) 12(4):935

    Article  PubMed  Google Scholar 

  • Voron T, Colussi O, Marcheteau E, Pernot S, Nizard M, Pointet A-L, Latreche S, Bergaya S, Benhamouda N, Tanchot C (2015) VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 212(2):139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Wu X (2017) Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol 46:210–219

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, Kroeger J, Richards A, McCormick L, Moberg V (2016) Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res 4(4):345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211(5):943–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375(9):819–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Tao T, Yang L, Qin Q, Wang Y, Liu H, Song R, Yang X, Wang Q, Gu S (2019) Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer. Cancer Lett 453:107–121

    Article  PubMed  Google Scholar 

  • Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8(6):467–477

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, writing original draft, review, and editing: SS, NS, and MB; data curation and original draft preparation: SS; writing and editing support: KDSS; supervision, formal analysis, and validation: SK.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Research involving human participants and/or animals

This review article does not contain any studies involving human participants and/or animals performed by any of the authors.

Informed consent

Not applicable.

Financial or non-financial interests

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, N., Baranwal, M. et al. Understanding immune checkpoints and PD-1/PD-L1-mediated immune resistance towards tumour immunotherapy. 3 Biotech 13, 411 (2023). https://doi.org/10.1007/s13205-023-03826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-023-03826-2

Keywords

Navigation