Skip to main content

Advertisement

Log in

A Bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In soils, phosphorus (P) is present in relatively large amounts, but for plants and microorganisms, P remains complexed under unavailable forms. To access the unavailable forms of P, plants interact with soil microorganisms such as arbuscular mycorrhizal fungi (AMF) and phosphate degrading bacteria (PDB) that can act synergically to improve plant P nutrition. In practice, we aim to stimulate microorganism properties for phosphate degradation and transport to the plant in agricultural soils.

Firstly, 17 bacterial isolates were characterized for their ability to degrade insoluble P complexes and plant growth promoting rhizobacteria (PGPR) traits such as the production of auxins and the formation of biofilms via the production of extracellular polymeric substances. Secondly, two Bacillaceae isolates were selected regarding their compatibility in co-culture and ability to promote PGPR traits. In the greenhouse and in pots containing an agricultural soil, tubers of Solanum tuberosum cv. Jazzy were inoculated with each individual isolate, and both isolates. We showed that bacterial inoculation positively impacted plant P nutrition, growth, and yield as well as indigenous arbuscular mycorrhizal rate. Our results suggest that the bacterial consortium synergically interacts with indigenous AMF community to improve plant P nutrition and yield, without changing associated microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abarenkov K, Zirk A, Piirmann T et al (2021) UNITE QIIME release for Fungi 2. Version 10.05. 2021. UNITE Community 7:1264763

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82:313–319

    Article  CAS  Google Scholar 

  • Ali AM, Awad MY, Hegab SA et al (2021) Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. J Plant Nutr 44:411–420

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Sánchez E, Etchevers J, Ortiz J et al (1999) Biomass production and phosphorus accumulation of potato as affected by phosphorus nutrition. J Plant Nutr 22:205–217

    Article  Google Scholar 

  • Ambreen S, Yasmin A, Aziz S (2020) Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon 6:e04221

    Article  PubMed  Google Scholar 

  • Antunes PM, Schneider K, Hillis D, Klironomos JN (2007) Can the arbuscular mycorrhizal fungus Glomus intraradices actively mobilize P from rock phosphates? Pedobiologia 51:281–286

    Article  CAS  Google Scholar 

  • Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT (2021) Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19:600–614

    Article  CAS  PubMed  Google Scholar 

  • AZ Elhakim S, El-Mesirry S, Yousry DM M (2016) Impact of potassium fertilization rates and Bacillus circulans on the growth, yield and color of processed potato (Solanum tuberosum L.) tubers chips. Alexandria Sci Exch J 37:594–605

    Article  Google Scholar 

  • Bach E, Rangel CP, Ribeiro IDA, Passaglia LMP (2022) Pangenome analyses of Bacillus pumilus, Bacillus safensis, and Priestia megaterium exploring the plant-associated features of bacilli strains isolated from canola.Molecular Genetics and Genomics1–17

  • Barea J-M, Richardson AE (2015) Phosphate mobilisation by Soil Microorganisms. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Cham, pp 225–234

    Chapter  Google Scholar 

  • Berendsen RL, Vismans G, Yu K et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    Article  PubMed  PubMed Central  Google Scholar 

  • Beule L, Karlovsky P (2020) Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ 8:e9593. https://doi.org/10.7717/peerj.9593

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia SK, Bhatia RK, Choi Y-K et al (2018) Biotechnological potential of microbial consortia and future perspectives. Crit Rev Biotechnol 38:1209–1229

    Article  CAS  PubMed  Google Scholar 

  • Biedendieck R, Knuuti T, Moore SJ, Jahn D (2021) The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 105:5719–5737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blin K, Shaw S, Kloosterman AM et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigido C, Van Tuinen D, Brito I et al (2017) Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium. Soil Biol Biochem 112:237–247

    Article  CAS  Google Scholar 

  • Buchholz F, Antonielli L, Kostić T, et al (2019) The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS One 14:e0223691

  • Bulgarelli D, Rott M, Schlaeppi K, et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, et al (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell host & microbe 17:392–403

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesaro P, van Tuinen D, Copetta A, et al (2008) Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Applied and Environmental Microbiology 74:5776–5783

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Liu S (2019) Identification and characterization of the phosphate-solubilizing bacterium Pantoeasp. S32 in reclamation soil in Shanxi, China. Front Microbiol 10:2171. https://doi.org/10.3389/fmicb.2019.02171

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Rekha P, Arun A et al (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • de Nies L, Lopes S, Busi SB et al (2021) PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome 9:1–14

    Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Drain A, Bonneau L, Recorbet G et al (2019) Characterization of arbuscular mycorrhizal communities in roots of vineyard plants. Methods in Rhizosphere Biology Research. Springer, pp 27–34

  • Diagne N, Ngom M, Djighaly PI, et al (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12:370

    Article  CAS  Google Scholar 

  • Ekin Z, Oguz F, Erman M, Oeguen E (2009) The effect of Bacillus sp. OSU-142 inoculation at various levels of nitrogen fertilization on growth, tuber distribution and yield of potato (Solanum tuberosum L.).African Journal of Biotechnology8

  • Edwards J, Johnson C, Santos-Medellín C, et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences 112:E911–E920

  • Escudié F, Auer L, Bernard M et al (2018) FROGS: find, rapidly, OTUs with galaxy solution. Bioinformatics 34:1287–1294

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Tansley review no. 76 helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

  • Gianinazzi S, Gollotte A, Binet M-N et al (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Gingichashvili S, Duanis-Assaf D, Shemesh M et al (2017) Bacillus subtilis Biofilm Development – a computerized study of morphology and kinetics. Front Microbiol 8:2072. https://doi.org/10.3389/fmicb.2017.02072

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots.New phytologist489–500

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117. https://doi.org/10.1139/m95-015

    Article  CAS  Google Scholar 

  • Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Singh UB, Sahu PK et al (2022) Linking Soil Microbial Diversity to Modern Agriculture Practices: a review. IJERPH 19:3141. https://doi.org/10.3390/ijerph19053141

    Article  PubMed  PubMed Central  Google Scholar 

  • Hacquard S, Garrido-Oter R, González A, et al (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell host & microbe 17:603–616

  • Hennion N, Durand M, Vriet C et al (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant 165:44–57

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

  • Hinsinger P, Betencourt E, Bernard L et al (2011) P for two, sharing a scarce resource: Soil Phosphorus Acquisition in the Rhizosphere of Intercropped Species. Plant Physiol 156:1078–1086. https://doi.org/10.1104/pp.111.175331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hjelmsø MH, Hansen LH, Bælum J et al (2014) High-resolution melt analysis for rapid comparison of bacterial community compositions. Appl Environ Microbiol 80:3568–3575

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulett FM, Bookstein C, Jensen K (1990) Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J Bacteriol 172:735–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inceoğlu Ö, Falcão Salles J, van Elsas JD (2012) Soil and cultivar type shape the bacterial community in the potato rhizosphere. Microbial ecology 63:460–470

    Article  CAS  PubMed  Google Scholar 

  • Jenkins P, Mahmood S (2003) Dry matter production and partitioning in potato plants subjected to combined deficiencies of nitrogen, phosphorus and potassium. Ann Appl Biol 143:215–229

    Article  Google Scholar 

  • Jiang F, Zhang L, Zhou J et al (2021) Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol 230:304–315. https://doi.org/10.1111/nph.17081

    Article  CAS  PubMed  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Jung H-K, Kim J-R, Woo S-M, Kim S-D (2006) An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Microbiol Biotechnol Lett 34:94–100

    CAS  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khedher SB, Kilani-Feki O, Dammak M et al (2015) Efficacy of Bacillus subtilis V26 as a biological control agent against Rhizoctonia solani on potato. CR Biol 338:784–792

    Article  Google Scholar 

  • Khedher SB, Mejdoub-Trabelsi B, Tounsi S (2021) Biological potential of Bacillus subtilis V26 for the control of Fusarium wilt and tuber dry rot on potato caused by Fusarium species and the promotion of plant growth. Biol Control 152:104444

    Article  Google Scholar 

  • Kikuchi Y, Hijikata N, Yokoyama K et al (2014) Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol 204:638–649. https://doi.org/10.1111/nph.12937

    Article  CAS  PubMed  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Kluyver T, Ragan-Kelley B, Pérez F et al (2016) Jupyter Notebooks-a publishing format for reproducible computational workflows

  • Koch M, Naumann M, Pawelzik E et al (2020) The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Res 63:97–119

    Article  Google Scholar 

  • Kumar S, Stecher G, Li M et al (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E et al (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: un nuevo método filogenético para comparar comunidades microbianas. Appl Reinar Microbiol 71:8228–8235

    Article  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyngwi NA, Joshi S (2014) Economically important Bacillus and related genera: a mini review. Biology of useful plants and microbes 3:33–43

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Institute of Plant Nutrition University of Hohenheim: Germany

  • Mehnert M, Retamal-Morales G, Schwabe R et al (2017) Revisiting the chrome azurol S assay for various metal ions. Solid state Phenomena. Trans Tech Publ, pp 509–512

  • Meyer JR, Linderman R (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Article  Google Scholar 

  • Miotto-Vilanova L, Jacquard C, Courteaux B et al (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK et al (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal biology and biotechnology 6:1–10

    Article  Google Scholar 

  • Oburger E, Jones DL, Wenzel WW (2011) Phosphorus saturation and pH differentially regulate the efficiency of organic acid anion-mediated P solubilization mechanisms in soil. Plant Soil 341:363–382. https://doi.org/10.1007/s11104-010-0650-5

    Article  CAS  Google Scholar 

  • Offre P, Pivato B, Siblot S et al (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  CAS  PubMed  Google Scholar 

  • Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55:892–895

    Article  CAS  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Overmann J, Scholz AH (2017) Microbiological research under the Nagoya Protocol: facts and fiction. Trends Microbiol 25:85–88

    Article  CAS  PubMed  Google Scholar 

  • Pandey P, Bisht S, Sood A et al (2012) consortium of plant-growth-promoting bacteria: future perspective in agriculture.Bacteria in agrobiology: plant probiotics185–200

  • Pathak D, Lone R, Nazim N et al (2022) Plant growth promoting rhizobacterial diversity in potato grown soil in the Gwalior region of India. Biotechnol Rep 33:e00713

    Article  CAS  Google Scholar 

  • Pérez-García A, Romero D, De Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22:187–193

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br mycological Soc 55:158–IN18

    Article  Google Scholar 

  • Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends in genetics (Regular ed) 11:217–218

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P et al (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren D, Madsen JS, de la Cruz-Perera CI et al (2014) High-throughput screening of Multispecies Biofilm formation and quantitative PCR-Based Assessment of Individual Species Proportions, useful for exploring interspecific bacterial interactions. Microb Ecol 68:146–154. https://doi.org/10.1007/s00248-013-0315-z

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. Organic phosphorus in the environment. Cabi Publishing Wallingford UK, pp 165–184

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mah e F (2016) VSEARCH:A versatile open source tool for metagenomics

  • Rosen CJ, Bierman PM (2008) Potato yield and tuber set as affected by phosphorus fertilization. Am J Potato Res 85:110–120

    Article  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2013) Microbial siderophores: a mini review. J Basic Microbiol 53:303–317

    Article  PubMed  Google Scholar 

  • Sangwan S, Prasanna R (2022) Mycorrhizae helper Bacteria: unlocking their potential as Bioenhancers of Plant–Arbuscular Mycorrhizal Fungal Associations. Microb Ecol 84:1–10. https://doi.org/10.1007/s00248-021-01831-7

    Article  PubMed  Google Scholar 

  • Santoyo G, Orozco-Mosqueda M, del Govindappa C M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872

    Article  Google Scholar 

  • Santoyo G, Urtis-Flores CA, Loeza-Lara PD et al (2021) Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology 10:475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savary R, Masclaux FG, Wyss T, et al (2018) A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J 12:17–30. https://doi.org/10.1038/ismej.2017.153

    Article  PubMed  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnug E, Haneklaus SH (2016) The enigma of fertilizer phosphorus utilization. Phosphorus in agriculture: 100% zero. Springer, pp 7–26

  • Schwachtje J, Karojet S, Thormählen I et al (2011) A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS ONE 6:e29382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk V, Riegg J, Lacroix M et al (2020) Enteropathogenic potential of Bacillus thuringiensis isolates from soil, animals, food and biopesticides. Foods 9:1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Shank EA, Klepac-Ceraj V, Collado-Torres L et al (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proceedings of the National Academy of Sciences 108:E1236–E1243

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2:1–14

    Article  Google Scholar 

  • Shemesh M, Chai Y (2013) A combination of glycerol and Manganese promotes Biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J Bacteriol 195:2747–2754. https://doi.org/10.1128/JB.00028-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Yuan L, Zhang J et al (2011) Focus issue on phosphorus plant physiology: Phosphorus dynamics: from soil to plant. Plant Physiol 156:997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam Boston

    Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic Press

  • Stevenson FJ (1985) Cycles of soils. Carbon, nitrogen phosphorus. sulfur, micronutrients

    Google Scholar 

  • Su Y, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Fact 19:1–12

    Article  Google Scholar 

  • Tahir M, Ahmad I, Shahid M et al (2019) Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf 178:33–42

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, &Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30: 2725-2729

  • Thomas S, Mathew L, Rishad K (2018) Isolation and molecular identification of phosphate solubilizing bacteria, Bacillus licheniformis UBPSB-07 capable of enhancing seed germination in Vigna radiata L. Phytomorphology 68:13–18

  • Tisserant E, Kohler A, Dozolme-Seddas P et al (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769. https://doi.org/10.1111/j.1469-8137.2011.03948.x

    Article  CAS  PubMed  Google Scholar 

  • Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863

  • Toro M, Azcon R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ((sup32) P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

  • Turner B, Papházy M, Haygarth P, McKelvie I (2002) Inositol phosphates in the environment. Philos T Roy Soc B 357:449–469

    Article  CAS  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: the challenge of Translational Research. Front Plant Sci 9:1407. https://doi.org/10.3389/fpls.2018.01407

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallenet D, Engelen S, Mornico D, et al (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database 2009

  • van Tuinen D, Jacquot E, Zhao B et al (1998) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

  • Vassilev N, Vassileva M, Lopez A et al (2015) Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99:4983–4996. https://doi.org/10.1007/s00253-015-6656-4

    Article  CAS  PubMed  Google Scholar 

  • Vaulot D, Geisen S, Mahé F, Bass D (2022) pr2-primers: an 18S rRNA primer database for protists. Mol Ecol Resour 22:168–179

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Gu Y, Friman V-P et al (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5:eaaw0759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173: 697-703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijesinha-Bettoni R, Mouillé B (2019) The contribution of potatoes to global food security, nutrition and healthy diets. Am J Potato Res 96:139–149

    Article  Google Scholar 

  • Wipf D, Krajinski F, Tuinen D et al (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142. https://doi.org/10.1111/nph.15775

    Article  CAS  PubMed  Google Scholar 

  • Yu S-M, Lo S-F, Ho T-HD (2015) Source–sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20:844–857

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Feng G, Declerck S (2018) Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J 12:2339–2351. https://doi.org/10.1038/s41396-018-0171-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xu M, Liu Y et al (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by the CIFRE program (CIFRE industrial research agreements n°2019/0129) between Premier Tech Producteurs et Consommateurs, France and the General Direction for Higher Education of the Ministry for Education and Research of France. The help of Célien Durney, Louise Védrenne, Valérie Monfort-Pimet, Noureddine El-Mjiyad, Felix LaRoche-Johnston, Chantal Brosseau, and Geneviève Lachance in performing the experiments was greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

R.B., A.S performed the experiments. R.B., C.L., M.T., P-E.C., D.W. conceived and designed the experiments. R.B., J.L., C.L., M.T., P-E.C., D.W. wrote and revised the paper.

Corresponding author

Correspondence to Pierre-Emmanuel Courty.

Ethics declarations

Conflict of interest

The authors declare the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussageon, R., Sportes, A., Lemaitre, JP. et al. A Bacillaceae consortium positively impacts arbuscular mycorrhizal fungus colonisation, plant phosphate nutrition, and tuber yield in Solanum tuberosum cv. Jazzy. Symbiosis 89, 235–250 (2023). https://doi.org/10.1007/s13199-023-00904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00904-0

Keywords

Navigation