Skip to main content

Advertisement

Log in

High-Throughput Screening of Multispecies Biofilm Formation and Quantitative PCR-Based Assessment of Individual Species Proportions, Useful for Exploring Interspecific Bacterial Interactions

  • Methods
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Multispecies biofilms are predominant in almost all natural environments, where myriads of resident microorganisms interact with each other in both synergistic and antagonistic manners. The interspecies interactions among different bacteria are, despite the ubiquity of these communities, still poorly understood. Here, we report a rapid, reproducible and sensitive approach for quantitative screening of biofilm formation by bacteria when cultivated as mono- and multispecies biofilms, based on the Nunc-TSP lid system and crystal violet staining. The relative proportion of the individual species in a four-species biofilm was assessed using quantitative PCR based on SYBR Green I fluorescence with specific primers. The results indicated strong synergistic interactions in a four-species biofilm model community with a more than 3-fold increase in biofilm formation and demonstrated the strong dominance of two strains, Xanthomonas retroflexus and Paenibacillus amylolyticus. The developed approach can be used as a standard procedure for evaluating interspecies interactions in defined microbial communities. This will be of significant value in the quantitative study of the microbial composition of multispecies biofilms both in natural environments and infectious diseases to increase our understanding of the mechanisms that underlie cooperation, competition and fitness of individual species in mixed-species biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annual Reviews in Microbiology 49(1):711–745

    Article  CAS  Google Scholar 

  2. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108

    Article  CAS  PubMed  Google Scholar 

  3. Burmølle M, Kjøller A, Sørensen SJ (2012) An invisible workforce: biofilms in the soil. In: Lear G, Lewis G (eds) Microbial biofilms: current research and applications. Caister Academic press, Norfolk, UK

    Google Scholar 

  4. Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microb 72(6):3916–3923

    Article  Google Scholar 

  5. Pathak AK, Sharma S, Shrivastva P (2012) Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate. Journal of Applied Oral Science 20(1):70–75

    Article  CAS  PubMed  Google Scholar 

  6. Wen ZT, Yates D, Ahn SJ, Burne RA (2010) Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC microbiology 10(1):111

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schwering M, Song J, Louie M, Turner RJ, Ceri H (2013) Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling (ahead-of-print):1-12

  8. Yoshida S, Ogawa N, Fujii T, Tsushima S (2009) Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. J Appl Microbiol 106(3):790–800

    Article  CAS  PubMed  Google Scholar 

  9. Tolker-Nielsen T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S (2000) Development and dynamics of pseudomonas sp. Biofilms. J Bacteriol 182(22):6482–6489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Evans RP, Nelson CL, Bowen WR, Kleve MG, Hickmon SG (1998) Visualization of bacterial glycocalyx with a scanning electron microscope. Clin Orthop Relat Res 347:243

    PubMed  Google Scholar 

  11. Morck D, Raybould T, Acres S, Babiuk L, Nelligan J, Costerton J (1987) Electron microscopic description of glycocalyx and fimbriae on the surface of Pasteurella haemolytica-A1. Can J Vet Res 51(1):83

    PubMed Central  CAS  PubMed  Google Scholar 

  12. O'Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28(3):449–461

    Article  PubMed  Google Scholar 

  13. de la Cruz-Perera CI, Ren D, Blanchet M, Dendooven L, Marsch R, Sørensen SJ, Burmølle M (2013) The ability of soil bacteria to receive the conjugative IncP1 plasmid, pKJK10, is different in a mixed community compared to single strains. FEMS Microbiol Lett 338(1):95–100

    Article  PubMed  Google Scholar 

  14. Ceri H, Olson M, Stremick C, Read R, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Harrison JJ, Stremick CA, Turner RJ, Allan ND, Olson ME, Ceri H (2010) Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nature protocols 5(7):1236–1254

    Article  CAS  PubMed  Google Scholar 

  16. Shin SH, Kim S, Kim JY, Song HY, Cho SJ, Lee K-I, Lim HK, Park N-J, Hwang IT, Yang K-S (2012) Genome sequence of Paenibacillus terrae HPL-003, a xylanase-producing bacterium isolated from soil found in forest residue. J Bacteriol 194(5):1266–1266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lira F, Hernández A, Belda E, Sánchez MB, Moya A, Silva FJ, Martínez JL (2012) Whole-genome sequence of Stenotrophomonas maltophilia D457, a clinical isolate and a model strain. J Bacteriol 194(13):3563–3564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. da Silva AR, Ferro JA, Reinach F, Farah C, Furlan L, Quaggio R, Monteiro-Vitorello C, Van Sluys M, Almeida N, Alves L (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417(6887):459–463

    Article  PubMed  Google Scholar 

  19. Morohoshi T, Wang W-Z, Someya N, Ikeda T (2011) Genome sequence of Microbacterium testaceum StLB037, an N-acylhomoserine lactone-degrading bacterium isolated from potato leaves. J Bacteriol 193(8):2072–2073

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G, Hellwig E, Arweiler NB (2007) The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56(5):681–687

    Article  CAS  PubMed  Google Scholar 

  21. Dige I, Nilsson H, Kilian M, Nyvad B (2007) In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115(6):459–467

    Article  PubMed  Google Scholar 

  22. Thurnheer T, Gmür R, Guggenheim B (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Meth 56(1):37–47

    Article  CAS  Google Scholar 

  23. Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33(1):206–224

    Article  CAS  PubMed  Google Scholar 

  24. Bechet M, Blondeau R (2003) Factors associated with the adherence and biofilm formation by Aeromonas caviae on glass surfaces. J Appl Microbiol 94(6):1072–1078

    Article  CAS  PubMed  Google Scholar 

  25. Dag I, Kiraz N, Yasemin O (2010) Evaluation of different detection methods of biofilm formation in clinical Candida isolates. Afr J Microbiol Res 4(24):2763–2768

    Google Scholar 

  26. Nett JE, Cain MT, Crawford K, Andes DR (2011) Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. J Clin Microbiol 49(4):1426–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zara S, Gross MK, Zara G, Budroni M, Bakalinsky AT (2010) Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae. Appl Environ Microb 76(12):4089–4091

    Article  CAS  Google Scholar 

  28. Gupta S, Kaur S, Sehgal S, Sharma A, Chhuneja P, Bains NS (2010) Genotypic variation for cellular thermotolerance in Aegilops tauschii Coss., the D genome progenitor of wheat. Euphytica 175(3):373–381

    Article  Google Scholar 

  29. Savaroglu F, Filik I, Oztopcu V, Kabadere S, Ilhan S, Uyar R (2011) Determination of antimicrobial and antiproliferative activities of the aquatic moss Fontinalis antipyretica Hedw. Turk J Biol 35:361–369

    Google Scholar 

  30. Pitts B, Hamilton MA, Zelver N, Stewart PS (2003) A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Meth 54(2):269–276

    Article  CAS  Google Scholar 

  31. Moreno-Paz M, Gómez MJ, Arcas A, Parro V (2010) Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community. BMC genomics 11(1):404

    Article  PubMed Central  PubMed  Google Scholar 

  32. Resch A, Leicht S, Saric M, Pásztor L, Jakob A, Götz F, Nordheim A (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6(6):1867–1877

    Article  CAS  PubMed  Google Scholar 

  33. Kirakodu S, Govindaswami M, Novak M, Ebersole J, Novak K (2008) Optimizing qPCR for the quantification of periodontal pathogens in a complex plaque biofilm. The open dentistry journal 2:49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Beumer A, King D, Donohue M, Mistry J, Covert T, Pfaller S (2010) Detection of Mycobacterium avium subsp. paratuberculosis in drinking water and biofilms by quantitative PCR. Appl Environ Microb 76(21):7367–7370

    Article  CAS  Google Scholar 

  35. Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, Rumbaugh KP (2011) An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PloS one 6(11):e27317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Suzuki N, Nakano Y, Yoshida A, Yamashita Y, Kiyoura Y (2004) Real-time TaqMan PCR for quantifying oral bacteria during biofilm formation. J Clin Microbiol 42(8):3827–3830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tsushima I, Kindaichi T, Okabe S (2007) Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR. Water Res 41(4):785–794

    Article  CAS  PubMed  Google Scholar 

  38. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(1):257–266

    Article  CAS  PubMed  Google Scholar 

  39. Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microb 65(10):4506–4512

    CAS  Google Scholar 

  40. Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(12):7220–7228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Price R, Viscount H, Stanley M, Leung KP (2007) Targeted profiling of oral bacteria in human saliva and in vitro biofilms with quantitative real-time PCR. Biofouling 23(3):203–213

    Article  CAS  PubMed  Google Scholar 

  42. Ren Z, Steinberg L, Regan J (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58(3):617

    Article  CAS  PubMed  Google Scholar 

  43. Maeda H, Fujimoto C, Haruki Y, Maeda T, Kokeguchi S, Petelin M, Arai H, Tanimoto I, Nishimura F, Takashiba S (2006) Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. FEMS Immunology & Medical Microbiology 39(1):81–86

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding to Mette Burmølle by The Danish Council for Independent Research, Technology and Production, ref no: 09-090701, to Søren Sørensen by The Danish Council for Independent Research, Natural Sciences and the Danish Innovation Consortium, SiB, ref no: 11804520 to Jonas Stenløkke Madsen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Burmølle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Standard curves used to measure the copy numbers of 16S rRNA genes of strains 2: Stenotrophomonas rhizophila, 3: Xanthomonas retroflexus, 5: Microbacterium oxydans, and 7: Paenibacillus amylolyticus in multispecies biofilm. See text for further details and discussion of RSq and efficiencies (Eff). (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, D., Madsen, J.S., de la Cruz-Perera, C.I. et al. High-Throughput Screening of Multispecies Biofilm Formation and Quantitative PCR-Based Assessment of Individual Species Proportions, Useful for Exploring Interspecific Bacterial Interactions. Microb Ecol 68, 146–154 (2014). https://doi.org/10.1007/s00248-013-0315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0315-z

Keywords

Navigation