Skip to main content

Advertisement

Log in

Potato Yield and Tuber Set as Affected by Phosphorus Fertilization

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

A 3 year field study on a loamy sand soil with medium to high soil test phosphorus (P) concentrations (25 to 33 mg kg−1 Bray P1) was conducted to evaluate the effect of P fertilizer rate, source, and timing, and starter nitrogen (N) rate on potato (Solanum tuberosum L. cv. Russet Burbank) yield, tuber size, tuber set, petiole P concentration, and P uptake and distribution within the plant. Nine fertilizer treatments compared banded P rates of 0, 37, 42, and 74 kg P ha−1, the P sources monoammonium phosphate (MAP) and diammonium phosphate (DAP), P banded at planting vs. split applications at planting and emergence, and starter N rates of 38 and 66 kg N ha−1. Phosphorus fertilizer application increased total tuber yield and yield of undersized tubers (tubers less than 85 g), but decreased the proportion of large-sized tubers (greater than 285 g). Due to the increases in small, unmarketable tubers, P fertilizer application did not have a significant effect on marketable tuber yield (tubers greater than 85 g). The total number of tubers per plant and the number of undersized tubers were also higher, and the number of large tubers was lower, when P was applied compared with the zero P control. Both the number and yield of undersized tubers increased as P application rate increased. Petiole P concentrations were generally consistent with the rate of P applied, but they varied by year in magnitude and their pattern through the season. Petiole P was positively correlated with the number of tubers per plant, but only correlated for 1 year with differences in total yield. Phosphorus application increased total P uptake due primarily to an increase in tuber P concentration. Increases in total uptake and tuber P increased as P application rate increased, but differences in uptake were small relative to the amounts of P applied. Phosphorus source and timing and starter N rate did not consistently affect tuber yield, number, or size, petiole or tuber P concentration, and P uptake. The results of this study indicate that P nutrition can play an important role in regulating tuber set.

Resumen

Un estudio de campo en suelo arcillo-arenoso, con concentraciones mediana a alta de fósforo (P) (25 a 33 mg kg−1 Bray P1) se realizó durante tres años para evaluar el efecto de dosis de fertilizante, fuentes de P, control del tiempo y dosis inicial de nitrógeno (N) con papa (Solanum tuberosun L. cv. Russet Burbank) sobre el rendimiento, tamaño del tubérculo, número de tubérculos por planta, concentración de P en el pecíolo y absorción de P y su distribución dentro de la planta. Nueve tratamientos con fertilizantes compararon el P aplicado en bandas a las dosis de 0, 37, 42 y 74 kg P ha−1, las fuentes de fosfato mono amónico (MAP) y fosfato di amónico (DAP), el P aplicado a la siembra con aplicaciones divididas a la siembra y a la emergencia y dosis de inicio de N de 38 y 66 kg N ha−1. La aplicación de fertilizante con fósforo aumentó el rendimiento total de tubérculos y de tubérculos pequeños (menos de 85 g), pero disminuyó la proporción de tubérculos más grandes (mayores de 285 g). Debido al incremento de tubérculos de menos tamaño no comerciables, la aplicación de fertilizante con P no tuvo efecto significativo en el rendimiento de tubérculos comerciales (tubérculos con más de 85 g). El número total de tubérculos por planta y el número de tubérculos pequeños fue también alto y el número de tubérculos grandes fue menor cuando se aplicó P comparado con ninguna aplicación de P al testigo. Tanto el número como el rendimiento de tubérculos pequeños se incrementó a medida que se incrementó la dosis de P. Las concentraciones de P del pecíolo fueron generalmente consistentes con la cantidad de P aplicado pero variaron en magnitud durante el año y su patrón a través de la estación. El P del pecíolo fue positivamente correlacionado con el número de tubérculos por planta, pero solo se correlacionó por un año con diferencias en rendimiento total. La aplicación de P incremento su total absorción, debido principalmente a un incremento en la concentración de P en el tubérculo. El aumento en la absorción total y P del tubérculo se incrementó a medida que la dosis de la aplicación se incrementó, pero las diferencias en absorción fueron pequeñas con relación a cantidad aplicada de P. La fuente de P y el momento de aplicación y la cantidad de N inicial no afectaron consistentemente el rendimiento de tubérculos, número o tamaño, la concentración de P en el peciolo o en el tubérculo y la absorción de P. Los resultados de este estudio indican que el P puede jugar un rol importante en la regulación del número de tubérculos por planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Egel, D., F. Lamb, R. Foster, E. Maynard, R. Weinzierl, M. Babadoost, H. Taber, B. Hutchison, and L.W. Jett. 2001. Midwest vegetable production guide for commercial growers. Purdue University Cooperative Extension Service. Publication ID-56.

  • Freeman, K.L., P.R. Franz, and R.W. de Jong. 1998. Effect of phosphorus on the yield, quality, and petiolar phosphorus concentrations of potatoes (cvv. Russet Burbank and Kennebec) grown in the krasnozem and duplex soils of Victoria. Australian Journal of Experimental Agriculture 38: 83–93.

    Article  Google Scholar 

  • Jackson S.D. 1999 Multiple signaling pathways control tuber induction in potato. Plant Physiology 119: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, P.D., and H. Ali. 1999. Growth of potato cultivars in response to application of phosphate fertiliser. Annals of Applied Biology 135: 431–438.

    Article  Google Scholar 

  • Jenkins, P.D., and H. Ali. 2000. Phosphate supply and progeny tuber numbers in potato crops. Annals of Applied Biology 136: 41–46.

    Article  Google Scholar 

  • Kellock, T. 1995. Potatoes: factors affecting dry matter. Agriculture notes. AG0323. Victoria, Australia: State of Victoria, Department of Primary Industries.

    Google Scholar 

  • Knowles, N.R., and L.O. Knowles. 2006. Manipulating stem number, tuber set, and yield relationships for northern- and southern-grown potato seed lots. Crop Science 46: 284–296.

    Article  Google Scholar 

  • Maier, N.A., M.J. McLaughlin, M. Heap, M. Butt, and M.K. Smart. 2002a. Effect of current-season application of calcitic lime and phosphorus fertilization on soil pH, potato growth, yield, dry matter content, and cadmium concentration. Communications in Soil Science and Plant Analysis 33: 2145–2165.

    Article  CAS  Google Scholar 

  • Maier, N.A., M.J. McLaughlin, M. Heap, M. Butt, and M.K. Smart. 2002b. Effect of current-season application of calcitic lime and phosphorus fertilization on potato tuber phosphorus concentration and leaf chemical composition. Communications in Soil Science and Plant Analysis 33: 2167–2188.

    Article  CAS  Google Scholar 

  • Munter, R.C., T.L. Halverson, and R.D. Anderson. 1984. Quality assurance for plant tissue analysis by ICP-AES. Communications in Soil Science and Plant Analysis 15: 1285–1322.

    Article  CAS  Google Scholar 

  • Moody, P.W., D.G. Edwards, and L.C. Bell. 1995. Effect of banded fertilizers on soil solution composition and short-term root growth. II. Mono- and di-ammonium phosphates. Australian Journal of Soil Research 33: 689–707.

    Article  CAS  Google Scholar 

  • Ozgen, S., and J.P. Palta. 2005. Supplemental calcium application influences potato tuber number and size. HortScience 40: 102–105.

    CAS  Google Scholar 

  • Rosen, C.J., and P.M. Bierman. 2008. Best management practices for nitrogen use: irrigated potatoes. University of Minnesota Extension Service. Publication 0841.

  • Rosen, C.J., and R. Eliason. 2005 (revised). Nutrient management for commercial fruit and vegetable crops in Minnesota. University of Minnesota Extension Service. Publication BU-05886.

  • Sanderson, J.B., J.A. MacLeod, B. Douglas, R. Coffin, and T. Bruulsema. 2003. Phosphorus research on potato in PEI. Acta Hort 619: 409–417.

    Google Scholar 

  • Steel, R.G.D., and J.H. Torrie. 1980. Principles and procedures of statistics, a biometrical approach. 2nd ed. New York: McGraw Hill.

    Google Scholar 

  • Tisdale, S.L., and W.L. Nelson. 1975. Soil fertility and fertilizers. 3rd ed. NY: Macmillan, pp. 196–208.

    Google Scholar 

  • Westermann, D.T., and G.E. Kleinkopf. 1985. Phosphorus relationships in potato plants. Agronomy Journal 77: 490–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Rosen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, C.J., Bierman, P.M. Potato Yield and Tuber Set as Affected by Phosphorus Fertilization. Am. J. Pot Res 85, 110–120 (2008). https://doi.org/10.1007/s12230-008-9001-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-008-9001-y

Keywords

Navigation