Skip to main content

Advertisement

Log in

Unexploited potential of some biotechnological techniques for biofertilizer production and formulation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The massive application of chemical fertilizers to support crop production has resulted in soil, water, and air pollution at a global scale. In the same time, this situation escalated consumers’ concerns regarding quality and safety of food production which, due to increase of fertilizer prices, have provoked corresponding price increase of food products. It is widely accepted that the only solution is to boost exploitation of plant-beneficial microorganisms which in conditions of undisturbed soils play a key role in increasing the availability of minerals that otherwise are inaccessible to plants. This review paper is focused on the employment of microbial inoculants and their production and formulation. Special attention is given to biotechniques that are not fully exploited as tools for biofertilizer manufacturing such as microbial co-cultivation and co-immobilization. Another emerging area includes biotechnological production and combined usage of microorganisms/active natural compounds (biostimulants) such as plant extracts and exudates, compost extracts, and products like strigolactones, which improve not only plant growth and development but also plant-microbial interactions. The most important potential and novel strategies in this field are presented as well as the tendencies that will be developed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abad LV, Kudo H, Saiki S, Nagasawa N, Tamada M, Katsumura Y (2009) Radiation degradation studies of carrageenans. Carbohydr Polym 78:100–106

    CAS  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    CAS  PubMed  Google Scholar 

  • Aftab T, Khan MMA, Idrees M, Naeem M, Hashmi N, Varshney L (2011) Enhancing the growth, photosynthetic capacity and artemisinin content in Artemisia annua L. by irradiated sodium alginate. Radiat Phys Chem 80:833–836

    CAS  Google Scholar 

  • Akiyama H, Endo T, Nakakita R, Murata K, Yonemoto Y, Okayama K (1992) Effect of depolymerized alginates on the growth of bifidobacteria. Biosci Biotechnol Biochem 56:355–356

    CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Alagawadi AR, Gaur AC (1988) Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil 105:241–246

    Google Scholar 

  • Albersheim P, McNeil M, Labavitch JM (1977) The wall of growing cells. In: Pilet PE (ed) Plant growth regulation. Sprineger Verlag, Berlin, pp 1–12

    Google Scholar 

  • Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ariyo BT, Bucke C, Keshavarz T (1997) Alginate oligosaccharides as enhancers of penicillin production in cultures of Penicillium chrysogenum. Biotechnol Bioeng 53:17–20

    CAS  PubMed  Google Scholar 

  • Ariyo BT, Bucke C, Keshavarz T (1998) Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors. FEMS Microbiol Lett 166:165–170

    CAS  PubMed  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287:51–58

    CAS  Google Scholar 

  • Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372

    CAS  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. In: Haryana N, Punj S (eds) Abiotic stress: new research. Nova Science Publishers Inc, Hauppauge, pp 1–57

    Google Scholar 

  • Bashan Y, de-Bashan L E, Prabhu SR, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender J-L (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    CAS  PubMed  Google Scholar 

  • Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    PubMed Central  PubMed  Google Scholar 

  • Bethlenfalway GJ, Brown MS, Stafford AE (1985) Glycine-Glomus-Rhizobium symbiosis. Plant Physiol 79:1054–1058

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371

    CAS  PubMed  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617–631

    Google Scholar 

  • Brenner K, Arnold FH (2011) Self-organization, structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS ONE 6:e16791

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    CAS  Google Scholar 

  • Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Proc Biochem 4:2–7

    Google Scholar 

  • Capalbo DMF, Morales IO (1997) Use of agro-industrial residues for bioinsecticidal endotoxin production by Bacillus thuringiensis var. israelensis or kurstaki in solid state fermentation. In: Roussos S, Lonsane BK, Viniegra-Gonzalez RM (eds) Advances in Solid State Fermentation. Montpellier, Springer Netherlands, pp 473–480

  • Cariello ME, Castañeda L, Riobo I, Gonzalez J (2007) Inoculante de microorganismos endógenos para acelerar el proceso compostaje de residuos sólidos urbanos. J Soil Sci Plant Nutr 7:26–37

    Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of witchweed (Striga lutea lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    CAS  PubMed  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22:149–154

    Google Scholar 

  • Darvill AG, Albersheim P, McNeil M, Lau JM, York WS, Stevenson TT, Thomas J, Doares S, Gollin DJ, Chelf P, Davis K (1985) Structure and function of plant cell wall polysaccharides. J Cell Sci Suppl 2:203–217

    CAS  PubMed  Google Scholar 

  • De Jaeger N, Declerck S, De la Providencia IE (2010) Mycoparasitism of arbuscular mycorrhizal fungi: a pathway for the entry of saprotrophic fungi into roots. FEMS Microbiol Ecol 73:312–322

    PubMed  Google Scholar 

  • De Jaeger N, de la Providencia IE, Rouhier H, Declerck S (2011) Co-entrapment of Trichoderma harzianum and Glomus sp. within alginate beads: impact on the arbuscular mycorrhizal fungi life cycle. J Appl Microbiol 111:125–135

    PubMed  Google Scholar 

  • De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N (2013) Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ Microbiol. doi:10.1111/462-2920.12343

    PubMed  Google Scholar 

  • De Salamone IEG, Di Salvo LP, Ortega JSE, Sorte PMFB, Urquiaga S, Teixeira KRS (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in different parts of the plants. Plant Soil 336:351–362

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C, Guillemette T (1996) Entrapment of in vitro produced spores of Glomus versiforme in alginate beads: in vitro and in vivo inoculum potentials. J Biotechnol 48:51–57

    CAS  Google Scholar 

  • Dommergues YR, Diem HG, Divies C (1979) Polyacrylamide-entrapped Rhizobium as an inoculant for legumes. Appl Environ Microbiol 37:779–781

  • Downey J, van Kessel C (1990) Dual inoculation of Pisum sativum with Rhizobium leguminosarum and Penicillium bilaji. Biol Fertil Soils 10:194–196

    Google Scholar 

  • Dwivedi P, Vivekanand V, Pareek N, Sharma A, Singh RP (2011) Co-cultivation of mutant Penicillium oxalicum SAU E-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnol 28:616–626

    CAS  Google Scholar 

  • Eisenhauer N (2012) Aboveground–belowground interactions as a source of complementarity effects in biodiversity experiments. Plant Soil 351:1–22

    CAS  Google Scholar 

  • EU Commission (2012) Report from the commission to the European Parliament, the Council, the European economic and social committee and the committee of the regions. The implementation of the soil thematic strategy and ongoing activities. COM 46 final, p. 15

  • EU Regulation N. 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers. Official Journal of the European Union L 304, 1–194

  • Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzym Microb Technol 36:849–854

    CAS  Google Scholar 

  • Faessel L, Gomy C, Nassr N, Tostivint C, Hipper C, Dechanteloup A (2014) Produits de stimulation en agriculture visant a ameliorer les fonctionnalites biologiques des sols et des plantes. BIO & RITTMO. 156 pp. http://agriculture.gouv.fr/IMG/pdf/Rapport_final_ETUDE_Produits_de_stimulation_en_agriculture_2014_cle8632c3.pdf Accessed 01 April 2015

  • Faye A, Dalpé Y, Ndung'u-Magiroi K, Jefwa J, Ndoye ID, Lesueur D (2013) Evaluation of commercial arbuscular mycorrhizal inoculants on maize in Kenya. Can J Plant Sci 93:1201–1208

    Google Scholar 

  • Feldmann F, Hommes M (2013) Endophytes for plant protection: the registration process at a glance. In: Schneider C, Leifert C, Feldmann F (eds) Endophytes for plant protection: the state of the art. Deutsche Phytomedizinische Gesellshaft, Baunschweig, pp 214–222

    Google Scholar 

  • Fernendez-Larrea Vega O (1999) A review of Bacillus thuringiensis (Bt) production and use in Cuba. Biocontrol News Inform 20:47N–48N

    Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different microorganisms. New Phytol 141:525–533

    Google Scholar 

  • Finley R (2004) Mycorrhizal fungi and their multifunctional roles. Mycologist 18:91–96

    Google Scholar 

  • Fornara DA, Tilman D (2009) Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90:408–418

    CAS  PubMed  Google Scholar 

  • Fracchia S, Mujica MT, Garcia-Romera I, Garcia-Garrido JM, Martin J, Ocampo JA, Godeas A (1998) Interactions between Glomus mosseae and arbuscular mycorrhizal sporocarp-associated saprophytic fungi. Plant Soil 200:131–137

    CAS  Google Scholar 

  • Fracchia S, Sampedro I, Scervino JM, Garcia-Romera I, Ocampo JA, Godeas A (2004) Influence of saprobe fungi and their exudates on arbuscular mycorrhizal symbioses. Symbiosis 36:162–182

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    CAS  Google Scholar 

  • Gemell LG, Hartley EJ, Herridge DF (2005) Point-of-sale evaluation of preinoculated and custom-inoculated pasture legume seed. Anim Prod Sci 45:161–169

    Google Scholar 

  • Gera C, Srivastava S (2006) Quorum-sensing: the phenomenon of microbial communication. Curr Sci 90:566–677

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    CAS  PubMed  Google Scholar 

  • Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1434

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gupte A, Madamwar D (1997) Solid state fermentation of ligno-cellulosic wastes for cellulase and beta-glucosidase production by co-culturing of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Progress 13:166–169

    CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    CAS  Google Scholar 

  • Hashmia N, Khana MMA, Moinuddina, Idreesa M, Khana ZH, Ali A, Varshney L (2012) Depolymerized carrageenan ameliorates growth, physiological attributes, essential oil yield and active constituents of Foeniculum vulgare Mill. Carbohydr Polym 90:407–412

    Google Scholar 

  • Hawkins HJ, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    CAS  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    CAS  PubMed  Google Scholar 

  • Hickert LR, Cruz MM, Dillon AJP, Fontana RC, Rosa CA, Záchia Ayub MA (2014) Fermentation kinetics of acid–enzymatic soybean hull hydrolysate in immobilized-cell bioreactors of Saccharomyces cerevisiae, Candida shehatae, Spathaspora arborariae, and their co-cultivations. Biochem Eng J 88:61–67

    CAS  Google Scholar 

  • Hien NQ, Nagasawa N, Tham LX, Yoshii F, Dang HV, Mitomo H (2000) Growth promotion of plants with depolymerised alginates by irradiation. Radiat Phys Chem 59:97–101

    CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holker U, Lenz J (2005) Solid-state fermentation—are there any biotechnological advantages. Curr Opinion Microbiol 8:301–306

    Google Scholar 

  • Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    PubMed  Google Scholar 

  • Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:1–13

    Google Scholar 

  • Hu HL, van den Brink J, Gruben BS, Wösten HAB, Gu J-D, de Vries RP (2011) Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int Biodeterior Biodegrad 65:248–252

    CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    CAS  PubMed  Google Scholar 

  • John M, Rohrig H, Schmidt J, Walden R, Schell J (1997) Cell signalling by oligosaccharides. Trends Plant Sci 3:111–115

    Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159

    CAS  Google Scholar 

  • Keen NT (1975) Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens? Science 187:74–75

    CAS  PubMed  Google Scholar 

  • Keen NT (1992) The molecular biology of disease resistance. Plant Mol Biol 19:109–122

    CAS  PubMed  Google Scholar 

  • Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci U S A 105:18188–18193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kitcha S, Cheirsilp B (2014) Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol 173:522–534

    CAS  PubMed  Google Scholar 

  • Kolasa M, Kiær Ahring B, Lübeck PS, Lübeck M (2014) Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour Technol 169:143–148

    CAS  PubMed  Google Scholar 

  • Kpomblekou AK, Tabatabai MA (1994) Effect of organic acids on release of phosphorus from phosphate rocks. Soil Sci 158:442–453

    Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:3–8

    Google Scholar 

  • Kucey RMN (1987) Increased phosphorus uptake by wheat and field beans inoculated with a phosphorus-solubilizing Penicillium bilaji strain and with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 53:2699–2703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kume T, Nagasawa N, Yoshii F (2002) Utilization of carbohydrates by radiation processing. Radiat Phys Chem 63:625–627

    CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production. Chem Eng J 191:263–268

    CAS  Google Scholar 

  • Larsen J, Olsson PA, Jakobsen I (1998) The use of fatty acid signatures to study mycelial interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the saprotrophic fungus Fusarium culmorum in root-free soil. Mycol Res 102:1491–1496

    CAS  Google Scholar 

  • Lee WS, Chen C, Chang CH, Yang SS (2012) Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae. Renew Energy 39:216–222

    CAS  Google Scholar 

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    CAS  PubMed  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, Briat J-F (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant Soil 321:513–535

    CAS  Google Scholar 

  • Lisette J, Xavier C, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fertil Soils 37:261–267

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Application of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    CAS  PubMed  Google Scholar 

  • Lupwayi NZ, Olsen PE, Sande ES, Keyser HH, Collins MM, Singleton PW, Rice WA (2000) Inoculant quality and its evaluation. Field Crops Res 65:259–270

    Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    CAS  PubMed  Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilizers. Appl Microbiol Biotechnol 98:6599–6607

    PubMed Central  PubMed  Google Scholar 

  • Malusà E, Sas-Paszt L, Zurawicz E, Popinska W (2007) The effect of a mycorrhiza-bacteria substrate and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. Int J Fruit Sci 6:25–41

    Google Scholar 

  • Malusá E, Sas-Paszt L, Trzcinski P, Górska A (2012a) Influences of different organic fertilizers and amendments on nematode trophic groups and soil microbial communities during strawberry growth. Acta Hortic (ISHS) 933:253–260

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012b) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J. doi:10.1100/2012/491206

    Google Scholar 

  • Manefield M, Turner SL (2002) Quorum sensing in context: out of molecular biology and into microbial ecology. Microbiology 148:3762–3764

    CAS  PubMed  Google Scholar 

  • Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140

    CAS  PubMed  Google Scholar 

  • Marmann A, Aly AH, Lin WH, Wang BG, Proksch P (2014) Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    PubMed Central  PubMed  Google Scholar 

  • Martin G, Guggiari M, Bravo D, Zopfi J, Cailleau G, Aragno M, Job D, Verrecchia E, Junier P (2012) Fungi, bacteria and soil pH: the oxalate–carbonate pathway as a model for metabolic interaction. Environ Microbiol 14:2960–2970

    CAS  PubMed  Google Scholar 

  • Martinez A, Obertello M, Pardo A, Ocampo JA, Godeas A (2004) Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 14:79–84

    PubMed  Google Scholar 

  • McAllister CB, Garcıa-Romera I, Godeas A, Ocampo JA (1994a) Interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae: effects on plant growth, arbuscular mycorrhizas and the saprophyte inoculants. Soil Biol Biochem 26:1363–1367

    Google Scholar 

  • McAllister CB, Garcia-Romera I, Godeas A, Ocampo JA (1994b) In vitro interactions between Trichoderma koningii, Fusarium solani and Glomus mosseae. Soil Biol Biochem 26:1369–1374

    Google Scholar 

  • Medina A, Vassilev N, Alguacil M, Roldan A, Azcon R (2004) Increased plant growth, nutrient uptake and soil enzymatic activities in a decertified Mediterranean soil amended with treated residues and inoculated with native AM fungi and plant-growth-promoting yeast. Soil Sci 169:260–270

    CAS  Google Scholar 

  • Medina A, Jakobsen I, Vassilev N, Azcón R, Larsen J (2007) Fermentation of sugar beet waste by Aspergillus niger facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi. Soil Biol Biochem 39:485–492

    CAS  Google Scholar 

  • Mercier L, Lafitte C, Borderies G, Briand X, Esquerré-Tugayé MT, Fournier J (2001) The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol 149:43–51

    CAS  Google Scholar 

  • Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225

    CAS  PubMed  Google Scholar 

  • Morales IO, Capalbo DMF, Arruda ROM, Bianchi VL, Ascher KRS (1998) Bacillus thuringiensis development from 1971 to 1996: cases of a research group in Brazil. Isr J Entomol 32:45–48

    Google Scholar 

  • Morris ON, Knagaratnam P, Converse V (1996) Suitability of 30 agricultural products and by-products as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133). J Invertebr Pathol 70:113–120

    Google Scholar 

  • Mulder CPH, Jumpponen A, Högberg P, Huss-Danell K (2002) How plant diversity and legumes affect nitrogen dynamics in experimental grassland communities. Oecologia 133:412–421

    Google Scholar 

  • Muñoz G, Agosin E, Cotoras M, San Martin R, Volpe D (1995) Comparison of aerial and submerged spore properties of Trichoderma harzianum. FEMS Microbiol Lett 125:63–69

    Google Scholar 

  • Naeem M, Idrees M, Aftab T, Khan MMA, Varshney L (2012) Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr Res 87:1211–1218

    CAS  Google Scholar 

  • Naiman AD, Latronico DA, de Salamone IEG (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: impact on the production and culturable rhizosphere microflora. Eur J Soil Biol 45:44–51

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Google Scholar 

  • Nwokoro O, Uju Dibua ME (2014) Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis. Arch Ind Hyg Toxicol 65:113–119

    CAS  Google Scholar 

  • Ola AR, Thomy D, Lai D, Brötz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099

    CAS  PubMed  Google Scholar 

  • Olivian C, Alabouvette C, Steinberg C (2004) Production of a mixed inoculum of Fusarium oxisporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Sci Tech 14:227–238

    Google Scholar 

  • Olsen PE, Rice WA, Collins MM (1994) Biological contaminants in North American legume inoculants. Soil Biol Biochem 27:699–701

    Google Scholar 

  • Olsen PE, Rice WA, Bordeleau LM, Demidoff AH, Collins MM (1996) Levels and identities of non-rhizobial microorganisms found in commercial legume inoculant made with non-sterile peat carrier. Can J Microbiol 42:72–75

    CAS  PubMed  Google Scholar 

  • Osorio NW, Habte M (2001) Synergistic influence of an arbuscular mycorrhizal fungus and a P solubilizing fungus on growth and P uptake of Leucaena leucocephala in an oxisol. Arid Land Res Manag 15:263–274

    CAS  Google Scholar 

  • Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54

    Google Scholar 

  • Palacios OA, Bashan Y, de-Bashan LE (2014) Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biol Fertil Soils 50:415–432

    CAS  Google Scholar 

  • Pandey A (2003) Solid state fermentation. Biochem Eng J 13:81–84

    CAS  Google Scholar 

  • Pant D, Adholeya A (2010) Development of a novel fungal consortium for the treatment of molasses distillery wastewater. Environmentalist 30:178–182

    Google Scholar 

  • Pascual S, de Cal A, Magan N, Melgarejo P (2000) Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89:847–853

    CAS  PubMed  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martínez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    CAS  Google Scholar 

  • Petruccioli M, Piccioni P, Fenice M, Federici F (1994) Glucose oxidase, catalase and gluconic acid production by immobilized mycelium of Penicillium variabile P16. Biotechnol Lett 16:939–942

    CAS  Google Scholar 

  • Petruccioli M, Federici F, Bucke C, Keshavarz T (1999) Enhancement of glucose oxidase production by Penicillium variabile P16. Enzym Microb Technol 24:397–401

    CAS  Google Scholar 

  • Potin P, Bouarab K, Kupper F, Kloareg B (1999) Oligosaccharide recognition signals and defence reactions in marine plant–microbe interactions. Curr Opin Microbiol 2:276–283

    CAS  PubMed  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102

    CAS  PubMed  Google Scholar 

  • Raina S, De Vizio D, Odell M, Clements M, Vanhulle S, Keshavarz T (2009) Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Biochem 54:65–84

    CAS  PubMed  Google Scholar 

  • Rateb ME, Hallyburton I, Houssen W, Bull A, Goodfellow M, Santhanam R, Jaspars M, Ebel R (2013) Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Adv 3:14444–14450

    CAS  Google Scholar 

  • Ravnskov S, Larsen J, Olsson PA, Jakobsen I (1999) Effects of various compounds on growth and phosphorus uptake in an arbuscular mycorrhizal fungus. New Phytol 141:517–524

    CAS  Google Scholar 

  • Rayner ADM, Boddy L (1988) Fungal communities in the decay of wood. Adv Microb Ecol 10:115–166

    Google Scholar 

  • Relleve L, Abad L, Aranilla, C, Aliganga A, De La Rosa A, Yoshii F (2000) Biological activities of radiation degraded carrageenan. In Proceedings of the Symposium on Radiation Technology in Emerging Industrial Applications Beijing, People’s Republic of China, 6–10 November, pp. 98–108

  • Rice WA, Lupwayi NZ, Olsen PE, Schlechte D, Gleddie SC (2000) Field evaluation of dual inoculation of alfalfa with Sinorhizobium meliloti and Penicillium bilaii. Can J Plant Sci 80:303–308

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    PubMed  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155:721–734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140:339–353

    Google Scholar 

  • Singleton PW, Boonkerd N, Carr TJ, Thompson JA (1997) Technical and market constraints limiting legume inoculant use in Asia. In: Rupela OP, Johansen C, Herridge DF (eds) Extending Nitrogen Fixation Research to Farmers' Fields: Proceedings of an International Workshop on Managing Legume Nitrogen Fixation in the Cropping Systems of Asia. ICRISAT Asia Centre, India, 20 ± 24 August 1996. International Crops Research Institute for the Semi-Arid Tropics, Pantacheru 502 324, Andhra Pradesh, pp. 17–38

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier and Academic, New York

    Google Scholar 

  • Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    CAS  PubMed  Google Scholar 

  • Tengerby RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res Int 86:32–40. doi:10.1155/2013/863240

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Vassilev N, Vassileva M (1992) Production of organic acids by immobilized filamentous fungi. Mycol Res 96:563–570

    Google Scholar 

  • Vassilev N, Vassileva M (2003) Biotechnological solubilization of mineral phosphates on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440

    CAS  PubMed  Google Scholar 

  • Vassilev N, Baca MT, Vassileva M (1994) Plant lignocellulose and fungi: from nature to industrial use. Mycologist 8:113–115

    Google Scholar 

  • Vassilev N, Baca MT, Vassileva M, Franco I, Azcon R (1995) Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Appl Microbiol Biotechnol 44:546–549

    CAS  Google Scholar 

  • Vassilev N, Franco I, Vassileva M, Azcon R (1996) Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar beet waste. Bioresour Technol 55:237–241

    CAS  Google Scholar 

  • Vassilev N, Toro M, Vassileva M, Azcon R, Barea JM (1997) Rock phosphate solubilization by encapsulated Enterobacter sp. in fermentation and soil conditions. Bioresour Technol 61:29–33

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Fenice M, Federici F (2001a) Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresour Technol 79:263–271

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001b) Application of free and Ca-alginate-entrapped Glomus deserticola and Yarrowia lipolytica in a soil-plant system. J Biotechnol 91:237–242

    CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001c) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarrowia lipolytica. Biotechnol Lett 23:907–909

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001d) Interactions of an arbuscular mycorrhizal fungus with free and co-encapsulated cells of Rhizobium trifoli and Yarrowia lipolytica inoculated into a soil-plant system. Biotechnol Lett 23:149–151

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Barea J-M (2002) The use of 32P dilution techniques to evaluate the effect of mycorrhizal inoculation on plant uptake of P from products of fermentation mixtures including agrowastes, Aspergillus niger and rock phosphate. In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilizers to Optimize Crop Production. IAEA-TECDOC-1272, pp. 47–53. IAEA Technical Document. FAO/IAEA, Vienna, Austria. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/33/019/33019223.pdf.

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Bio Technol 4:235–243

    CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    CAS  PubMed  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2007) An improved technique for preparation of gel-entrapped fungal spores. Minerva Biotechnol 19:51–55

    Google Scholar 

  • Vassilev N, Requena A, Nieto L, Nikolaeva I, Vassileva M (2009) Production of manganese peroxidase by Phanerochaete chrysosporium grown on medium containing agro-wastes/rock phosphate and biocontrol properties of the final product. Ind Crop Prod 30:28–32

    CAS  Google Scholar 

  • Vassilev N, Eichler-Lobermann B, Vassileva M (2012) Stress tolerant P-solubilizing microorganisms. Appl Microbiol Biotechnol 95:851–859

    CAS  PubMed  Google Scholar 

  • Vassilev N, Martos E, Mendes G, Flor-Peregrin E, Martos V, Vassileva M (2013a) Biochar of animal origin: a sustainable solution of the high-grade rock phosphate scarcity. J Sci Food Agric 93:1799–1804

    CAS  PubMed  Google Scholar 

  • Vassilev N, Medina A, Martos E, Galvez A, Mendes G, Martos V, Vassileva M (2013b) Solubilization of animal bonechar by a filamentous fungus employed in solid state fermentation. Ecol Eng 58:165–169

    Google Scholar 

  • Vassilev N, Mendes G, Costa M, Vassileva M (2014) Biotechnological tools for enhancing microbial solubilization of insoluble inorganic phosphates. Geomicrobiol J 31:751–763. doi:10.1080/01490451.2013.822615

    CAS  Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassilev N (1999) Effect of encapsulated cells of Enterobacter sp. on plant growth and phosphate uptake. Bioresour Technol 67:229–232

    CAS  Google Scholar 

  • Vassileva M, Serrano M, Bravo V, Jurado E, Nikolaeva I, Martos V, Vassilev N (2010) Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2366-0

    PubMed  Google Scholar 

  • Vassileva M, Fenice M, Galvez A, Vassilev N (2014) Plant growth enhancement by biotechnological tools. New Biotechnol 31:S210

    Google Scholar 

  • Verma P, Madamwar D (2002) Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol 102–103:109–118

    PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I, Müller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357

    CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    PubMed  Google Scholar 

  • Weber J, Ducousso M, Tham FY, Nourissier-Mountou S, Galiana A, Prin Y, Lee SK (2005) Co-inoculation of Acacia mangium with Glomus intraradices and Bradyrhizobium sp. in aeroponic culture. Biol Fertil Soils 41:233–239

    Google Scholar 

  • Wen Z, Liao W, Chen S (2005) Production of cellulase/b-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem 40:3087–3094

    CAS  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microbes. Nat Rev Microbiol 4:597–607

    CAS  PubMed  Google Scholar 

  • Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166

    Google Scholar 

  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y (2009) Strigolactones: structures and biological activities. Pest Manag Sci 6:467–470

    Google Scholar 

  • Zafra D, Mendes G, Eichler-Löbermann B, Vassilev N, Vassileva M (2014) Effect of abiotic stress factors on phosphate solubilization by acid-producing Aspergillus niger in submerged and solid-state fermentations. In: Méndez-Vilas A (ed) Industrial, medical and environmental applications of microorganisms: current status and trends. Wageningen Academic Publishers, pp. 99–103

  • Zhang H, Hong YZ, Xiao YZ, Yuan J, Tu XM, Zhang XQ (2006) Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Appl Microbiol Biotechnol 73:89–94

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Project CTM2011-02779 and CTM2014-53186-R (Ministerio de Ciencia e Innovación, España) and the Polish Innovation Economy Operational Program, contract N. UDA-POIG.01.03.01-10-109/08-00.

Statement

The review has not been published before and is not under consideration for publication anywhere else. The manuscript has been approved by all co-authors.

Compliance with ethical standards/ethical statement

Conflict of interest

N. Vassilev has received Project Grants (CTM2011-02779 and CTM2014-53186-R) from the Spanish Ministerio de Ciencia e Innovación. E. Malusà has received a grant from the EU Regional Development Fund through the Polish Innovation Economy Operational Program, contract N. UDA-POIG.01.03.01-10-109/08-00. These authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vassilev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilev, N., Vassileva, M., Lopez, A. et al. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl Microbiol Biotechnol 99, 4983–4996 (2015). https://doi.org/10.1007/s00253-015-6656-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6656-4

Keywords

Navigation