Skip to main content

Advertisement

Log in

Effect of hybridization on endophytes: the endo-microbiome dynamics

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

In this era of dwindling natural resources and climate change, the target of increasing crop production for feeding 10 billion people by the year 2050 has mounted huge pressure on the scientific community. The cultivation of hybrid varieties has contributed immensely towards food security and made it possible to meet the requirements of the rapidly increasing human population. A typical plant breeding approach involves hybridization i.e. crossing two genetically different individuals, to create genetic variation. At the genetic level, the genomes of two individuals combine to form a hybrid, but what happens to the associated microbiota is largely unknown. Endophytes are one such class of plant-associated microbiota that have been reported to inhabit the internal tissues of plants, without causing any disease symptoms. With the advent of the holobiome concept, the importance of microbiome in plant health and productivity is being increasingly realized. In this perspective, understanding the nature of plant-endophyte association in hybrids and transmission/colonization of endophytes upon hybridization (i.e. from parents to progenies) is a pre-requisite for laying the foundation of plant holobiont breeding. This emerging discipline aims to integrate the best of both worlds (hybrid plant genome and microbiome) for realizing the untapped potential of the plant microbiota (and hence, the holobiont) to adverse environmental conditions. This review attempts to summarize our current understanding of the hybrid plant-associated microbiome with respect to its parental lines and wild progenitors. Further, the review highlights some research gaps in the field and beckons the attention of scientific community towards understanding and applying this knowledge for further boosting the crop productivity, the need of the hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam E, Bernhart M, Müller H, Winkler J, Berg G (2018) The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422(1–2):35–49

    Article  CAS  Google Scholar 

  • Adhikari J (2014) Seed sovereignty: Analysing the debate on hybrid seeds and GMOs and bringing about sustainability in agricultural development. J Forest Livelihood 12(1):33–57

    Google Scholar 

  • Bacon CW, and White J (Eds.) (2000) Microbial endophytes. CRC Press

    Google Scholar 

  • Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):1–22

    Google Scholar 

  • Brisson VL, Schmidt JE, Northen TR, Vogel JP, Gaudin AC (2019) Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Sci Rep 9(1):1–4

    Article  CAS  Google Scholar 

  • Burr FA, West JA (1970) Light and electron microscope observations on the vegetative and reproductive structures of Bryopsis hypnoides. Phycologia 9(1):17–37

    Article  Google Scholar 

  • Campisano A, Pancher M, Puopolo G, Puddu A, Lòpez-Fernàndez S, Biagini B, Yousaf S, Pertot I (2015) Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines. Am J Enol Vitic 66(1):12–21

    Article  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregger MA, Veach AM, Yang ZK, Crouch MJ, Vilgalys R, Tuskan GA, Schadt CW (2018) The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa Stuart AK, Stuart RM, Pimentel IC (2018) Effect of agrochemicals on endophytic fungi community associated with crops of organic and conventional soybean (Glycine max L. Merril). Agric Nat Resour 52(4):388–392

    Google Scholar 

  • Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A, Fekam FB (2019) Endophytic bacteria of desert cactus (Euphorbia trigonas mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol Res 228:126302

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Fadiji AE, Babalola OO (2020) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Methods 170:105860

    Article  CAS  PubMed  Google Scholar 

  • Frank AC, Saldierna Guzmán JP, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms. 5(4):70

    Article  PubMed Central  CAS  Google Scholar 

  • Gaylord ES, Preszler RW, Boecklen WJ (1996) Interactions between host plants, endophytic fungi, and a phytophagous insect in an oak (Quercus grisea x Q. gambelii) hybrid zone. Oecologia 105(3):336–342

    Article  PubMed  Google Scholar 

  • Goulet BE, Roda F, Hopkins R (2017) Hybridization in plants: old ideas, new techniques. Plant Physiol 73(1):65–78

    Article  CAS  Google Scholar 

  • Hardoim PR, Hardoim CC, van Overbeek LS, van Elsas JD (2012) Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7(2):e30438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison RG (1990) Hybrid zones: windows on evolutionary process. Oxford Survey Evol Biol 7:69–128

    Google Scholar 

  • Hassani MA, Özkurt E, Franzenburg S, Stukenbrock EH (2020) Ecological assembly processes of the bacterial and fungal microbiota of wild and domesticated wheat species. Phytobiomes J 4(3):217–224

    Article  Google Scholar 

  • Hodgson S, de Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Hollants J, Leroux O, Leliaert F, Decleyre H, De Clerck O, Willems A (2011) Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLoS One 6(10):e26458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Yang S, Gong J, Zhao Y, Feng Q, Gong H, Li W, Zhan Q, Cheng B, Xia J, Chen N (2015) Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun 6(1):1–9

    Google Scholar 

  • Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fert Soils 44(1):155–162

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65(2–3):197–209

    Article  Google Scholar 

  • Kernaghan G, Mayerhofer M, Griffin A (2017) Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can J Microbiol 63(7):583–595

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee YH (2020) The Rice microbiome: a model platform for crop Holobiome. Phytobiomes J 4(1):5–18

    Article  Google Scholar 

  • Lamit LJ, Lau MK, Sthultz CM, Wooley SC, Whitham TG, Gehring CA (2014) Tree genotype and genetically based growth traits structure twig endophyte communities. Am J Bot 101(3):467–478

    Article  PubMed  Google Scholar 

  • Liu Y, Wang R, Li Y, Cao Y, Chen C, Qiu C, Bai F, Xu T, Zhang X, Dai W, Zhao J (2017) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of “Beijing” hybrid maize planted in China. Plant Growth Regul 81(2):317–324

    Article  CAS  Google Scholar 

  • Liu Y, Xu P, Yang F, Li M, Yan H, Li N, Zhang X, Wang W (2019) Composition and diversity of endophytic bacterial community in seeds of super hybrid rice ‘Shenliangyou 5814’(Oryza sativa L.) and its parental lines. Plant Growth Regul 87(2):257–266

    Article  CAS  Google Scholar 

  • Liu Y, Yan H, Zhang X, Zhang R, Li M, Xu T, Yang F, Zheng H, Zhao J (2020) Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes. 3. Biotech 10(1):1

    CAS  Google Scholar 

  • Liu Y, Zuo S, Xu L, Zou Y, Song W (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194(12):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S, Zou YY, Wang JH, Song W (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63:71–79

    Article  Google Scholar 

  • Madmony A, Chernin L, Pleban S, Peleg E, Riov J (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol 50(3):209–216

    Article  CAS  Google Scholar 

  • Malfanova N, Lugtenberg B, Berg G (2013) Bacterial endophytes: who and where, and what are they doing there. Molecular microbial ecology of the rhizosphere Wiley-Blackwell, pp 15–37

    Google Scholar 

  • Martin FM, Uroz S, Barker DG (2017) Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Sci 356:6340

    Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist's view. Funct Plant Biol 28(9):983–990

    Article  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, Singh HB (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mintoo MN, Mishra S, Dantu PK (2019) Isolation and characterization of Endophytic Bacteria from Piper longum. Proc Natl Acad Sci India Sect B Biol Sci 89(4):1447–1454

    Article  CAS  Google Scholar 

  • Mishra S (2019) Targeted genome editing tools in plants. Innovations in life science research. NOVA Science Publisher, New York

    Google Scholar 

  • Nettles R, Watkins J, Ricks K, Boyer M, Licht M, Atwood LW, Peoples M, Smith RG, Mortensen DA, Koide RT (2016) Influence of pesticide seed treatments on rhizosphere fungal and bacterial communities and leaf fungal endophyte communities in maize and soybean. App Soil Ecol 102:61–69

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, NY, pp 179–197

    Chapter  Google Scholar 

  • Podolich O, Ardanov P, Zaets I, Pirttila AM, Kozyrovska N (2015) Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant Soil 388:367–377. https://doi.org/10.1007/s11104-014-2235-1

    Article  CAS  Google Scholar 

  • Rajamani T, Suryanarayanan TS, Murali TS, Thirunavukkarasu N (2018) Distribution and diversity of foliar endophytic fungi in the mangroves of Andaman Islands, India. Fungal Ecol 36:109–116

    Article  Google Scholar 

  • Ravanbakhsh M, Kowalchuk GA, Jousset A (2020) Targeted plant hologenome editing for plant trait enhancement. New Phytol 229:1067–1077. https://doi.org/10.1111/nph.16867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M et al (2020) Asymmetric outcome of community coalescence of seed and soil microbiota during early seedling growth

  • Rodriguez R, Durán P (2020) Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front Bioeng Biotechnol 8:568

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. mBio 7:2

    Article  Google Scholar 

  • Sahu PK, Thomas P, Singh S, Gupta A (2020) Taxonomic and functional diversity of cultivable endophytes with respect to the fitness of cultivars against Ralstonia solanacearum. J Plant Dis Protect 127:667–676

    Article  Google Scholar 

  • Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fert Soils 50(2):405–414

    Article  CAS  Google Scholar 

  • Singh D, Singh SK, Modi A, Singh PK, Zhimo VY, Kumar A (2020) Impacts of agrochemicals on soil microbiology and food quality. In agrochemicals detection, treatment and remediation (pp. 101-116). Butterworth-Heinemann

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Ann Rev Plant Biol 60:561–588

    Article  CAS  Google Scholar 

  • Sun X, Kosman E, Sharon A (2020) Stem Endophytic Mycobiota in wild and domesticated wheat: structural differences and hidden resources for wheat improvement. J Fungi 6(3):180

    Article  CAS  Google Scholar 

  • Tosi M, Mitter EK, Gaiero J, Dunfield K (2020) It takes three to tango: the importance of microbes, host plant, and soil management to elucidate manipulation strategies for the plant microbiome. Can J of Microbiol 66(7):413–433

    Article  CAS  Google Scholar 

  • Touchell DH, Palmer IE, Ranney TG (2020) In vitro ploidy manipulation for crop improvement. Front in Plant Sci 11:722

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64(2):283–296

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Wagner MR, Roberts JH, Balint-Kurti P, Holland JB (2020) Heterosis of leaf and rhizosphere microbiomes in field-grown maize. New Phytol 228(3):1055–1069 Wang K (2020) fixation of hybrid vigor in rice: synthetic apomixis generated by genome editing. aBIOTECH 1(1):15-20

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhu Y, Jing R, Wu X, Li N, Liu H, Zhang X, Wang W, Liu Y (2020) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of upland rice. https://doi.org/10.21203/rs.3.rs-23885/v1

  • White JF, Kingsley KL, Verma SK, Kowalski KPP (2018) Rhizophagy cycle: an oxidative process in plants for nutrient extraction from symbiotic microbes. Microorganisms 6(3):95

    Article  CAS  PubMed Central  Google Scholar 

  • Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM (2020) Host selection shapes crop microbiome assembly and network complexity. New Phytol 229(2):1091–104

  • Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, Kim YM, Zink EM, Engbrecht KM, Wang Y, Gao C (2018) Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc Natl Acad Sci U S A 115(18):E4284–E4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zampino D, Duro A, Sciandrello S, Parafati L, Restuccia C (2020) Pollen viability and endophytic yeast species of Cistus creticus and C. monspeliensis. Plant Biosyst 9:1–10

  • Zhang J, Zhang CW, Yang J, Zhang RJ, Gao JS, Zhao X, Zhao JJ, Zhao DF, Zhang XX (2018) Insights into endophytic bacterial community structures of seeds among various Oryza sativa L. rice genotypes. J Plant Growth Reg 38(1):93–102

  • Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X (2020) The progress of gut microbiome research related to brain disorders. J Neuroinflammation 17(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Zirkle C (1934) More records of plant hybridization before Koelreuter. J Hered 25:3–18

    Article  Google Scholar 

  • Zou YY, Liu L, Liu Y, Zhao L, Deng QY, Wu J, Zhuang W, Song W (2012) Diversity of indigenous bacterial communities in Oryza sativa seeds of different varieties (in Chinese). Chi J Plant Eco 36:880–890

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SM would like to acknowledge the financial support provided by Dayalbagh Educational Institute (Deemed-to-be-University), Agra, India [Grant No. DEI/GBMF (1732020) (vi)]. PKS gratefully acknowledges ICAR-NBAIM for financial support in the project IXX11627.

Funding

In-house funding by Dayalbagh Educational Institute (Deemed-to-be-University), Agra, India [Grant No. DEI/GBMF (1732020) (vi)] and ICAR-NBAIM for financial support in the project IXX11627.

Author information

Authors and Affiliations

Authors

Contributions

PKS and SM conceptualized the overall idea and wrote the manuscript.

Corresponding author

Correspondence to Sushma Mishra.

Ethics declarations

Conflicts of interest/competing interests

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, P.K., Mishra, S. Effect of hybridization on endophytes: the endo-microbiome dynamics. Symbiosis 84, 369–377 (2021). https://doi.org/10.1007/s13199-021-00760-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00760-w

Keywords

Navigation