Skip to main content
Log in

Alcohothermal Synthesis and Characterization of Chitosan Supported Nickel Cobaltite Composite for Enhanced Photocatalytic and Antibacterial Activity

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The transition metal oxide composites with biopolymer chitosan have captured the great interest of researchers for photocatalytic and antibacterial applications. Such composites enhance the photocatalytic degradation efficacy and inhibit bacterial growth effectively. In the present research, Nickel Cobaltite (NiCo2O4) and Chitosan Supported Nickel Cobaltite (Chitosan-NiCo2O4) composites were synthesized for the first time by employing alcohothermal method. Alcohothermal method was selected for its array of benefits including its capability to facilitate low-temperature synthesis, produce materials with controlled composition and morphology, reduce aggregation and promote good crystallinity. The synthesized composites were characterized by several techniques including XRD, FESEM, FTIR and UV-Vis spectroscopy. XRD pattern confirmed the formation of cubic spinel structure of NiCo2O4. FTIR analysis showed the stretching vibration mode of Ni-O and Co-O in NiCo2O4. FESEM image revealed nano-sheet like morphology with noticeable roughness and voids. The optical band gap of Chitosan-NiCo2O4 is narrower (1.37 eV) as compared to that of NiCo2O4 (1.27 eV). Chitosan-NiCo2O4 degraded the Methyl Blue (MB) dye up to 93% in 50 min when exposed to sunlight irradiation. After six cycles, Chitosan-NiCo2O4 retained its degradation efficiency up to 89% (with only 4% loss), demonstrating its good stability and reusability. This improvement is credited to the inclusion of chitosan which enhanced the surface area and porosity of the composite, which in turn exhibited good adsorbent behavior. Furthermore, Chitosan-NiCo2O4 exhibited superior antibacterial behavior compared to NiCo2O4 against both gram-negative and gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polym, 13(6), 904. https://doi.org/10.3390/polym13060904.

    Article  Google Scholar 

  2. Karpuraranjith, M., & Thambidurai, S. (2017). Chitosan/zinc oxide-polyvinylpyrrolidone (CS/ZnO-PVP) nanocomposite for better thermal and antibacterial activity. International Journal of Biological Macromolecules, 104, 1753–1761. https://doi.org/10.1016/j.ijbiomac.2017.02.079.

    Article  Google Scholar 

  3. Nandana, C. N., Christeena, M., & Bharathi, D. (2021). Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. J Clust Sci, 33, 1–11. https://doi.org/10.1007/s10876-020-01947-9.

    Article  Google Scholar 

  4. Pan, H., Xie, H., Chen, G., Xu, N., Wang, M., & Fakhri, A. (2020). Cr2S3-Co3O4 on polyethylene glycol-chitosan nanocomposites with enhanced ultraviolet light photocatalysis activity, antibacterial and antioxidant studies. International Journal of Biological Macromolecules, 148, 608–614. https://doi.org/10.1016/j.ijbiomac.2019.12.262.

    Article  Google Scholar 

  5. Xie, W., Xu, P., & Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic Med Chem Lett, 11(13), 1699–1701. https://doi.org/10.1016/S0960-894X(01)00285-2.

    Article  Google Scholar 

  6. Kamal, T., Ul-Islam, M., Khan, S. B., & Asiri, A. M. (2015). Adsorption and Photocatalyst assisted dye removal and bactericidal performance of ZnO/chitosan coating layer. International Journal of Biological Macromolecules, 81, 584–590. https://doi.org/10.1016/j.ijbiomac.2015.08.060.

    Article  Google Scholar 

  7. Marand, S. A., Almasi, H., & Marand, N. A. (2021). Chitosan-based nanocomposite films incorporated with NiO nanoparticles: Physicochemical, photocatalytic and antimicrobial properties. International Journal of Biological Macromolecules, 190, 667–678. https://doi.org/10.1016/j.ijbiomac.2021.09.024.

    Article  Google Scholar 

  8. Haldorai, Y., & Shim, J. J. (2013). Multifunctional chitosan-copper oxide hybrid material: photocatalytic and antibacterial activities. Int J Photoenergy 2013, 1–9. https://doi.org/10.1155/2013/245646.

  9. Jiang, A., Patel, R., Padhan, B., Palimkar, S., Galgali, P., Adhikari, A., et al. (2023). Chitosan Based Biodegradable Composite for Antibacterial Food Packaging Application. Polym, 15(10), 2235. https://doi.org/10.3390/polym15102235.

    Article  Google Scholar 

  10. Nithya, A., JeevaKumari, H. L., Rokesh, K., Ruckmani, K., Jeganathan, K., & Jothivenkatachalam, K. (2015). A versatile effect of chitosan-silver nanocomposite for surface plasmonic photocatalytic and antibacterial activity. J Photochem Photobiol B Biol, 153, 412–422. https://doi.org/10.1016/j.jphotobiol.2015.10.020.

    Article  Google Scholar 

  11. Madhan, G., Begam, A. A., Varsha, L. V., Ranjithkumar, R., & Bharathi, D. (2021). Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. International Journal of Biological Macromolecules, 190, 259–269. https://doi.org/10.1016/j.ijbiomac.2021.08.100.

    Article  Google Scholar 

  12. Anaya-Esparza, L. M., Ruvalcaba-Gómez, J. M., Maytorena-Verdugo, C. I., González-Silva, N., Romero-Toledo, R., Aguilera-Aguirre, S., et al. (2020). Chitosan-TiO2: A versatile hybrid composite. Materials, 13(4), 811. https://doi.org/10.3390/ma13040811.

    Article  Google Scholar 

  13. Bharathi, D., Ranjithkumar, R., Chandarshekar, B., & Bhuvaneshwari, V. (2019). Preparation of Chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: As a bionanocomposite. International Journal of Biological Macromolecules, 129, 989–996. https://doi.org/10.1016/j.ijbiomac.2019.02.061.

    Article  Google Scholar 

  14. Paul, D., Maiti, S., Sethi, D. P., & Neogi, S. (2021). Bi-functional NiO-ZnO nanocomposite: Synthesis, characterization, antibacterial and photo assisted degradation study. Advanced Powder Technology, 32(1), 131–143. https://doi.org/10.1016/j.apt.2020.11.022.

    Article  Google Scholar 

  15. Imranullah, M., Hussain, T., Ahmad, R., Ahmad, S., & Shakir, I. (2021). Stable and highly efficient natural sunlight driven photo-degradation of organic pollutants using hierarchical porous flower-like spinel nickel cobaltite nanoflakes. Ceramic International, 47(11), 15408–15414. https://doi.org/10.1016/j.ceramint.2021.02.106.

    Article  Google Scholar 

  16. Wan, Y., Chen, J., Zhan, J., & Ma, Y. (2018). Facile synthesis of mesoporous NiCo2O4 fibers with enhanced photocatalytic performance for the degradation of methyl red under visible light irradiation. J Environ Chem Eng, 6(5), 6079–6087. https://doi.org/10.1016/j.jece.2018.09.023.

    Article  Google Scholar 

  17. Wang, C., Zhou, E., He, W., Deng, X., Huang, J., Ding, M., et al. (2017). NiCo2O4-based supercapacitor nanomaterials. Nanomater, 7(2), 41. https://doi.org/10.3390/nano7020041.

    Article  Google Scholar 

  18. Ya-Wen, Z., Rui, S., Chun-Sheng, L., Chun-Hua, Y., Chao-Xian, X., & Yuan, K. (2003). Facile alcohothermal synthesis, size-dependent Ultraviolet absorption, and enhanced CO Conversion activity of Ceria Nanocrystals. The Journal of Physical Chemistry B, 107(37), 10159–10167. https://doi.org/10.1021/jp034981o.

    Article  Google Scholar 

  19. Kunming, P., Kangning, S., Shizhong, W., Yang, Z., Liujie, X., Jiaming, Z., & Hong, W. (2020). Two-step alcohothermal synthesis and characterization of enhanced visible-light-active WO3-coated TiO2 heterostructure. Ceramic International, 46(2), 2102–2109. https://doi.org/10.1016/j.ceramint.2019.09.192.

    Article  Google Scholar 

  20. Pore, O., Fulari, A., Chavare, C., Sawant, D., Patil, S., Shejwal, R., et al. (2023). Synthesis of NiCo2O4 microflowers by facile hydrothermal method: Effect of precursor concentration. Chemical Physics Letters, 824, 140551. https://doi.org/10.1016/j.cplett.2023.140551.

    Article  Google Scholar 

  21. Kaur, J., Sharma, M., & Pandey, O. (2014). Synthesis, characterization, photocatalytic and reusability studies of capped ZnS nanoparticles. Bulletin of Material Science, 37, 931–940. https://doi.org/10.1007/s12034-014-0028-z.

    Article  Google Scholar 

  22. Ou, C., Li, S., Shao, J., Fu, T., Liu, Y., Fan, W., et al. (2016). Effect of transition metal ions on the thermal degradation of Chitosan. Cogent Chem, 2(1), 1216247. https://doi.org/10.1080/23312009.2016.1216247.

    Article  Google Scholar 

  23. Catalano, E., & Di Benedetto, A. (2017). Characterization of physicochemical and colloidal properties of hydrogel chitosan-coated iron-oxide nanoparticles for cancer therapy. Journal of Physics: Conference Series, 841, 012010. https://doi.org/10.1088/1742-6596/841/1/012010.

    Article  Google Scholar 

  24. Kumar, S., & Koh, J. (2021). Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. International Journal of Molecular Sciences, 13(5), 6102–6116. https://doi.org/10.3390/ijms13056102.

    Article  Google Scholar 

  25. Ltaief, S., Jabli, M., & Ben Abdessalem, S. (2021). Immobilization of copper oxide nanoparticles onto chitosan biopolymer: Application to the oxidative degradation of Naphthol blue black. Carbohydrate Polymers, 26, 117908. https://doi.org/10.1016/j.carbpol.2021.117908.

    Article  Google Scholar 

  26. Rahdar, A., Aliahmad, M., & Azizi, Y. (2015). NiO nanoparticles: Synthesis and characterization. JNS, 5, 145–151.

    Google Scholar 

  27. Moavi, J., Buazar, F., & Sayahi, M. H. (2021). Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci rep, 11(1), 6296. https://doi.org/10.1038/s41598-021-85832-z.

    Article  Google Scholar 

  28. Venkatachalam, V., Alsalme, A., Alghamdi, A., & Jayavel, R. (2017). Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes. Ionics, 23, 977–984. https://doi.org/10.1007/s11581-016-1868-x.

    Article  Google Scholar 

  29. Wang, J. P., Wang, S. L., Huang, Z. C., Yu, Y. M., & Liu, J. L. (2014). Synthesis of long chain-like nickel cobalt oxide nanoneedles–reduced graphene oxide composite material for high-performance supercapacitors. Ceramic International, 40(8), 12751–12758. https://doi.org/10.1016/j.ceramint.2014.04.128.

    Article  Google Scholar 

  30. Aboelazm, E. A., Ali, G. A., & Chong, K. F. (2018). Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater, 3(4), 67–73.

    Google Scholar 

  31. Bibi, I., Ali, U., Kamal, S., Ata, S., Ibrahim, S., Majid, F., et al. (2020). Synthesis of La1 – xCoxFe1–yCryO3 nano crystallites for enhanced ferroelectric, magnetic and photocatalytic properties. J Mater Res & tech, 9(6), 12031–12042. https://doi.org/10.1016/j.jmrt.2020.08.100.

    Article  Google Scholar 

  32. Zhang, F., Yuan, C., Lu, X., Zhang, L., Che, Q., & Zhang, X. (2012). Facile growth of mesoporous Co3O4 nanowire arrays on ni foam for high performance electrochemical capacitors. Journal of Power Sources, 203, 250–256. https://doi.org/10.1016/j.jpowsour.2011.12.001.

    Article  Google Scholar 

  33. Ali, M., Rashid, S. A., Hamidon, M. N., & Yasin, F. M. (2018). Facile synthesis and characterization of Multi-layer Graphene Growth on Co-ni Oxide/Al2O3 substrate using Chemical Vapour Deposition. Bull Chem React Eng, 13(2), 341–354. https://doi.org/10.9767/bcrec.13.2.1453.341-354.

    Article  Google Scholar 

  34. Mishra, P., Islam, M., & Patel, R. (2013). Removal of lead (II) by chitosan from aqueous medium. Separation Science and Technology, 48(8), 1234–1242. https://doi.org/10.1080/01496395.2012.727059.

    Article  Google Scholar 

  35. Abdul Rahman, I., Ayob, M., & Radiman, S. (2014). Enhanced photocatalytic performance of NiO-decorated ZnO nanowhiskers for methylene blue degradation. J Nanotechnol, 2014, 1–9. https://doi.org/10.1155/2014/212694.

    Article  Google Scholar 

  36. Yang, Q., Lu, Z., Chang, Z., Zhu, W., Sun, J., Liu, J., et al. (2022). Hierarchical Co3O4 nanosheet@ nanowire arrays with enhanced pseudocapacitive performance. RSC Advances, 2(4), 1663–1668. https://doi.org/10.1039/C1RA01008E.

    Article  Google Scholar 

  37. Ikram, M., Muhammad Khan, A., Haider, A., Haider, J., Naz, S., Ul-Hamid, A., et al. (2022). Facile synthesis of La-and chitosan-doped CaO nanoparticles and their evaluation for catalytic and antimicrobial potential with molecular docking studies. ACS Omega, 7(32), 28459–28470. https://doi.org/10.1021/acsomega.2c02790.

    Article  Google Scholar 

  38. Vellakkat, M., & Hundekal, D. (2017). Journal of Applied Polymer Science 134(9), 1–12. https://doi.org/10.1002/app.44536.

    Article  Google Scholar 

  39. Udayachandran Thampy, U., Mahesh, A., Sibi, K., Jawahar, I., & Biju, V. (2019). Enhanced photocatalytic activity of ZnO–NiO nanocomposites synthesized through a facile sonochemical route. SN Appl Sci, 1, 1–15. https://doi.org/10.1007/s42452-019-1426-z.

    Article  Google Scholar 

  40. Kiani, M., Bagherzadeh, M., Kaveh, R., Rabiee, N., Fatahi, Y., Dinarvand, R., et al. (2020). Novel Pt-Ag3PO4/CdS/chitosan nanocomposite with enhanced photocatalytic and biological activities. Nanomater, 10(11), 2320. https://doi.org/10.3390/nano10112320.

    Article  Google Scholar 

  41. Theivasanthi, T., & Alagar, M. (2012). Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies. Journal of Nanoscience and Nanotechnology, 2(5), 134–138. https://doi.org/10.5923/j.nn.20120205.01.

    Article  Google Scholar 

  42. Alzahrani, E. (2018). Chitosan membrane embedded with ZnO/CuO nanocomposites for the photodegradation of fast green dye under artificial and solar irradiation. Anal Chem Insights, 13, 1–13. https://doi.org/10.1177/1177390118763361.

    Article  MathSciNet  Google Scholar 

  43. Bashir, B., Khalid, M. U., Aadil, M., Zulfiqar, S., Warsi, M. F., Agboola, P. O., et al. (2021). CuxNi1–xO nanostructures and their nanocomposites with reduced graphene oxide: Synthesis, characterization, and photocatalytic applications. Ceramic International, 47(3), 3603–3613. https://doi.org/10.1016/j.ceramint.2020.09.209.

    Article  Google Scholar 

  44. Alshammari, F. H. (2022). Physical characterization and dielectric properties of Chitosan incorporated by zinc oxide and graphene oxide nanoparticles prepared via laser ablation route. Journal of Materials Research, 20, 740–747. https://doi.org/10.1016/j.jmrt.2022.07.046.

    Article  Google Scholar 

  45. Chakraborty, P., Mustafa, V., & Abraham, J. (2018). Synthesis and characterization of Chitosan Nanoparticles and their application in removal of Wastewater contaminants. Nature, Environment and Pollution Technology, 17(2), 469–478.

    Google Scholar 

  46. Alves, D., Healy, B., Pinto, L., Cadaval, T., & Breslin, C. (2021). Recent developments in chitosan-based adsorbents for the removal of pollutants from aqueous environments. Molecules, 26(3), 1–45. https://doi.org/10.3390/molecules26030594.

    Article  Google Scholar 

  47. Chakrabarty, S., Mukherjee, A., & Basu, S. (2018). RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation. Acs Sustainable Chemistry & Engineering, 6(4), 5238–5247. https://doi.org/10.1021/acssuschemeng.7b04757.

    Article  Google Scholar 

  48. Yadav, S., Yadav, J., Kumar, M., & Saini, K. (2022). Synthesis and characterization of nickel oxide/cobalt oxide nanocomposite for effective degradation of methylene blue and their comparative electrochemical study as electrode material for supercapacitor application. International Journal of Hydrogen Energy, 47(99), 41684–41697. https://doi.org/10.1016/j.ijhydene.2022.02.011.

    Article  Google Scholar 

  49. Khan, N., Khan, I., Zada, N., Sadiq, M., & Saeed, K. (2022). Utilization of cross-linked chitosan for cobalt adsorption and its reutilization as a photocatalyst for the photodegradation of methyl violet dye in aqueous medium. Appl Water Sci, 12(5), 107. https://doi.org/10.1007/s13201-022-01633-3.

    Article  Google Scholar 

  50. Shahabuddin, S., Sarih, N. M., Ismail, F. H., Shahid, M. M., & Huang, N. M. (2015). Synthesis of Chitosan grafted-polyaniline/Co3O 4 nanocube nanocomposites and their photocatalytic activity toward methylene blue dye degradation. RSC Advances, 5(102), 83857–83867. https://doi.org/10.1039/c5ra11237k.

    Article  Google Scholar 

  51. Liu, R., Huang, Y., Xiao, A., & Liu, H. (2010). Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers. Journal of Alloys and Compounds, 503(1), 103–110. https://doi.org/10.1016/j.jallcom.2010.04.211.

    Article  Google Scholar 

  52. Sathiyavimal, S., Vasantharaj, S., Kaliannan, T., & Pugazhendhi, A. (2020). Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (azo) dye removal from aqueous solution and antibacterial properties. Carbohydr Polym, 241(1), 116243. https://doi.org/10.1016/j.carbpol.2020.116243.

    Article  Google Scholar 

  53. Haq, S., Dildar, S., Ali, M. B., Mezni, A., Hedfi, A., Shahzad, M. I., Shahzad, N., & Shah, A. (2021). Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. Sativus) extract. Mater Res Express, 8(5), 055006. https://doi.org/10.1088/2053-1591/abfc7c.

    Article  Google Scholar 

  54. Mayakannan, M., Gopinath, S., & Vetrivel, S. (2020). Synthesis and characterization of antibacterial activities nickel doped cobalt oxide nano particles. Materials Chemistry and Physics. https://doi.org/10.1016/j.matchemphys.2019.122282. 242,122282.

    Article  Google Scholar 

  55. Sun, J., Zhang, H., Zhang, Z., Chen, W., Zhou, T., & Tang, X. (2023). Surface antibacterial properties and mechanism of NiCo2O4 against E. Coli Ceram Int, 49(15), 24660–24669. https://doi.org/10.1016/j.ceramint.2023.03.319.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.Y. wrote the main manuscript. T.H. contributed to the study conception and design. U.S., F.E., M.A. and S.A. contributed to the samples preparation, measurements, data analyzing, and discussion. I.S. contributed to experimental facilities. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tousif Hussain.

Ethics declarations

Ethical Approval

All procedures performed in the studies comply with ethical standards.

Consent for Publication

All authors have approved the submission of the manuscript. The presented data are original and without fabrication and manipulation.

Research Involving Humans and Animals Statement

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors confirmed that there are no relevant financial or non-financial interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, A., Hussain, T., Shuaib, U. et al. Alcohothermal Synthesis and Characterization of Chitosan Supported Nickel Cobaltite Composite for Enhanced Photocatalytic and Antibacterial Activity. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01307-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01307-1

Keywords

Navigation