Skip to main content
Log in

Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g−1 at a current density of 0.5 A g−1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g−1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dong JY, Zhang XT (2015) The preparation and electrochemical characterization of urchin-like NiCo2O4 nanostructures. Appl Surf Sci 332:247–252

    Article  CAS  Google Scholar 

  2. Wang T, Guo Y, Zhao B, Yu S, Yang HP, Lu D, Fu XZ, Sun R, Wong CP (2015) NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors. J Power Sources 286:371–379

    Article  CAS  Google Scholar 

  3. Liu F, Xue DF (2015) Electrochemical energy storage applications of “pristine” graphene produced by non-oxidative routes. Sci China Tech Sci 58:1841–1850

    Article  CAS  Google Scholar 

  4. Chen K, Xue DF (2016) Colloidal supercapacitor electrode materials. Mater Res Bull 83:201–206

    Article  CAS  Google Scholar 

  5. Chen KF, Li G, Xue DF (2016) Architecture engineering of supercapacitor electrode materials. Funct Mater Lett 9(1):1640001

    Article  CAS  Google Scholar 

  6. Chen KF, Xue DF (2016) Materials chemistry toward electrochemical energy storage. J Mater Chem A 4:7522–7537

    Article  CAS  Google Scholar 

  7. Gao Z, Yang W, Wang J, Song N, Li X (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  CAS  Google Scholar 

  8. Naveen AN, Selladurai S (2015) Fabrication and performance evaluation of symmetrical supercapacitor based on manganese oxide nanorods–PANI composite. Mater Sci Semicond Process 40:468–478

    Article  Google Scholar 

  9. Zhu Y, Wang J, Wu Z, Jing M, Hou H, Jia X, Ji X (2015) An electrochemical exploration of hollow NiCo2O4 submicrospheres and its capacitive performances. J Power Sources 287:307–315

    Article  CAS  Google Scholar 

  10. Chen K, Xue DF (2015) Searching for electrode materials with high electrochemical reactivity. J Materiomics 1:170–187

    Article  Google Scholar 

  11. Chen KF, Xue DF (2015) Rare earth and transitional metal colloidal supercapacitors. Sci China Tech Sci 58:1768–1778

    CAS  Google Scholar 

  12. Wu Z, Pu X, Zhu Y, Jing M, Chen Q, Jia X, Ji X (2015) Uniform porous spinel NiCo2O4 with enhanced electrochemical performance. J Alloys Compd 632:208–217

    Article  CAS  Google Scholar 

  13. Yu M, Chen J, Liu J, Li S, Ma Y, Zhang J, An J (2015) Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim Acta 151:99–108

    Article  CAS  Google Scholar 

  14. Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW (2012) Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ Sci 5:9453–9456

    Article  CAS  Google Scholar 

  15. Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Adv Mater 25:976–979

    Article  CAS  Google Scholar 

  16. Gao S, Liao F, Ma S, Zhu L, Shao M (2015) Network-like mesoporous NiCo2O4 grown on carbon cloth for high-performance pseudocapacitors. J Mater Chem A 3:16520–16527

    Article  CAS  Google Scholar 

  17. Ma FX, Yu L, Xu CY, Lou XW (2016) Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ Sci 9:862–866

    Article  CAS  Google Scholar 

  18. Hu H, Guan B, Xia B, Lou XW (2015) Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J Am Chem Soc 137(16):5590–5595

    Article  CAS  Google Scholar 

  19. Shen L, Yu L, Yu XY, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54:1868–1872

    Article  CAS  Google Scholar 

  20. Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5:1500981

    Article  Google Scholar 

  21. Guan B, Shan QY, Chen H, Xue DF, Chen KF, Zhang YX (2016) Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim Acta 200:239–246

    Article  CAS  Google Scholar 

  22. Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M, Ladchumananandasiivam R, Umbelino De Gomes U, Maaza M (2016) Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials. Ceram Int 42:8385–8394

    Article  CAS  Google Scholar 

  23. Kaviyarasu K, Manikandan E, Kennedy J, Jayachandran M, Maaza M (2016) Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method—a review. Adv Mater Lett 7:684–696

    Article  Google Scholar 

  24. Kaviyarasu K, Manikandan E, Kennedy J, Maaza M (2015) A comparative study on the morphological features of highly ordered MgO:AgO nanocube arrays prepared via a hydrothermal method. RSC Adv 5:82421–82428

    Article  CAS  Google Scholar 

  25. Kaviyarasu K, Manikandan E, Paulraj P, Mohamed SB, Kennedy J (2014) One dimensional well-aligned CdO nanocrystal by solvothermal method. J Alloys Compd 593:67–70

    Article  CAS  Google Scholar 

  26. Ding R, Qi L, Wang H (2012) Scalable electro-deposition of cost-effective microsized NiCo2O4 electrode materials for practical applications in electrochemical capacitors. ECS Electrochem Lett 1(3):A43–A46

    Article  CAS  Google Scholar 

  27. Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5:981–988

    Article  CAS  Google Scholar 

  28. Lapham DP, Tseung ACC (2004) The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series NixCo1−xOy. J Mater Sci Lett 39:251–264

    Article  CAS  Google Scholar 

  29. Xue DF, Li K, Liu J, Sun CT, Chen KF (2012) Crystallization and functionality of inorganic materials. Mater Res Bull 47:2838–2842

    Article  CAS  Google Scholar 

  30. Yan XX, Xu DG, Xue DF (2007) SO2-4 ions direct the one-dimensional growth of 5Mg(OH)2 .MgSO4 .2H2O. Acta Mater 55:5747–5757

    Article  CAS  Google Scholar 

  31. Zhao X, Bao Z, Sun CT, Xue DF (2009) Polymorphology formation of Cu2O: a microscopic understanding of single crystal growth from both thermodynamic and kinetic models. J Cryst Growth 311:711–715

    Article  CAS  Google Scholar 

  32. Sun CT, Xue DF (2014) Chemical bonding theory of single crystal growth and its application to ϕ 3″ YAG bulk crystal. Cryst Eng Comm 16:2129–2135

    Article  CAS  Google Scholar 

  33. Lu P, Liu F, Xue DF, Yang H, Liu Y (2012) Phase selective route to Ni(OH)2 with enhanced supercapacitance: performance dependent hydrolysis of Ni(Ac)2 at hydrothermal conditions. Electrochim Acta 78:1–10

    Article  CAS  Google Scholar 

  34. Zhang YX, Huang M, Li F, Wen ZQ (2013) Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int J Electrochem Sci 8:8645–8661

    CAS  Google Scholar 

  35. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) CuO cauli-flowers for supercapacitor application: novel potentiodynamic deposition. Mater Res Bull 48:923–928

    Article  CAS  Google Scholar 

  36. Hu ZA, Xie YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009) Synthesis and electrochemical characterization of mesoporous CoxNi1−x layered double hydroxides as electrode materials for supercapacitors. Electrochim Acta 54:2737–2741

    Article  CAS  Google Scholar 

  37. Padmanathan N, Selladurai S (2013) Solvothermal synthesis of mesoporous NiCo2O4 spinel oxide nanostructure for high-performance electrochemical capacitor electrode. Ionics 19:1535–1544

    Article  CAS  Google Scholar 

  38. Venkatachalam V, Alsalme A, Alghamdi A, Jayavel R (2015) High performance electrochemical capacitor based on MnCo2O4 nanostructured electrode. J Electroanal Chem 756:94–100

    Article  CAS  Google Scholar 

  39. Dinga R, Qi L, Ji M, Wang H (2013) Facile and large-scale chemical synthesis of highly porous secondary submicron/micron-sized NiCo2O4 materials for high-performance aqueous hybrid AC-NiCo2O4 electrochemical capacitors. Electrochim Acta 107:494–502

    Article  Google Scholar 

  40. Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim Acta 56:7517–7522

    Article  CAS  Google Scholar 

  41. Hsu CT, Hu CC (2013) Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. J Power Sources 242:662–671

    Article  CAS  Google Scholar 

  42. Lu X, Huang X, Xie S, Zhai T, Wang C, Zhang P, Yu M, Li W, Liang C, Tong Y (2012) Controllable synthesis of porous nickel–cobalt oxide nanosheets for supercapacitors. J Mater Chem 22:13357–13364

    Article  CAS  Google Scholar 

  43. Pu JJ, Jin X, Wang J, Cui F, Chu S, Sheng E, Wang Z (2013) Shape-controlled synthesis of ternary nickel cobaltite and their application in supercapacitors. J Electroanal Chem 707:66–73

    Article  CAS  Google Scholar 

  44. Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with a three dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603

    Article  CAS  Google Scholar 

  45. Bello A, Fashedemi OO, Lekitima JN, Fabiane M, Arhin DD, Ozoemena KI, Gogotsi Y, Charlie Johnson AT, Manyala N (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:082118–082119

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the King Saud University, Deanship of Scientific Research, College of Science, Research Center. One of the authors (VV) gratefully acknowledges the University Grants Commission, Government of India for the award of the Rajiv Gandhi National Fellowship to carry out this work (F1-17.1/2012-13/RGNF-2012-13-SC-TAM-25531/(SA-III/Website)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayavel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, V., Alsalme, A., Alghamdi, A. et al. Hexagonal-like NiCo2O4 nanostructure based high-performance supercapacitor electrodes. Ionics 23, 977–984 (2017). https://doi.org/10.1007/s11581-016-1868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1868-x

Keywords

Navigation