Skip to main content
Log in

Mouse Bioassay Acute and Subchronic Safety Assessment of Biomass from Swine Wastewater Phycoremediation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Swine wastewater is nutrients-rich (N and P) and also may contain toxic environmental contaminants. Both nutrients and contaminants can be removed by microalgae-based treatment (phycoremediation) and the harvested biomass from this process has the potential to be used as animal feed, provided that safety precautions are taken. We have assessed the acute and subchronic toxicity of microalgae biomass harvested from swine effluent digestate by mouse bioassays.

Methods

Acute toxicity tests (14 days) were carried out with the mice receiving microalgae extracts at doses of 1500 and 2500 mg kg−1 i.p. and 2500 mg kg−1 orally. Subchronic toxicity tests (30 days) were performed with the mice fed orally with 1500 and 2500 mg kg−1 doses. Clinical-behavioral signs, body and organ weight gain, and water and feed intake were monitored.

Results

Administration of the microalgae extract at 1500 mg kg−1 and 2500 mg kg−1 i.p. doses resulted in deaths of 20 and 60%, respectively. Oral intake in the acute test caused none deaths and signs of toxicity were not observed. Subchronical administration of 1500 mg kg−1 dose proved safe, while 2500 mg kg−1 dose showed up low toxicity with 25% lethality.

Conclusion

Microalgae biomass resulted from swine wastewater phycoremediation, due to it is nutritional content and versatile biochemical composition, can be a valuable source with high application potential. However, the definition of safety margins through toxicity assessments for more noble uses, such as animal feed, is an extremely important step in this process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO: Food and Agriculture Organization: How to Feed the World in 2050. FAO, Rome (2009)

    Google Scholar 

  2. Prosekov, A.Y., Ivanova, S.A.: Food security: the challenge of the present. Geoforum 91, 73–77 (2018). https://doi.org/10.1016/j.geoforum.2018.02.030

    Article  Google Scholar 

  3. Madeira, M.S., Cardoso, C., Lopes, P.A., Coelho, D., Afonso, C., Bandarra, N.M., Prates, J.A.M.: Microalgae as feed ingredients for livestock production and meat quality: a review. Livest. Sci. 205, 111–121 (2017). https://doi.org/10.1016/j.livsci.2017.09.020

    Article  Google Scholar 

  4. Lum, K.K., Kim, J., Lei, X.G.: Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 4, 1–7 (2013). https://doi.org/10.1186/2049-1891-4-53

    Article  Google Scholar 

  5. Bertrand, J.-C., Caumette, P., Normand, P., Ollivier, B., Sime-Ngando, T.: Prokaryote/eukaryote dichotomy and bacteria/archaea/eukarya domains: two inseparable concepts. In: Bertrand, J.C., Normand, P., Ollivier, B., Sime-Ngando, T. (eds.) Prokaryotes and Evolution, pp. 1–21. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  6. Procházková, G., Brányiková, I., Zachleder, V., Brányik, T.: Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26, 1359–1377 (2014). https://doi.org/10.1007/s10811-013-0154-9

    Article  Google Scholar 

  7. Cheng, H.-H., Narindri, B., Chu, H., Whang, L.-M.: Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 303, 122861 (2020). https://doi.org/10.1016/j.biortech.2020.122861

    Article  Google Scholar 

  8. Cheng, D.L., Ngo, H.H., Guo, W.S., Chang, S.W., Nguyen, D.D., Kumar, S.M.: Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresour. Technol. 275, 109–122 (2019). https://doi.org/10.1016/j.biortech.2018.12.019

    Article  Google Scholar 

  9. Michelon, W., Da Silva, M.L.B., Mezzari, M.P., Pirolli, M., Prandini, J.M., Soares, H.M.: Effects of nitrogen and phosphorus on biochemical composition of microalgae polyculture harvested from phycoremediation of piggerywastewater digestate. Appl. Biochem. Biotechnol. 178, 1407–1419 (2015). https://doi.org/10.1007/s12010-015-1955-x

    Article  Google Scholar 

  10. Sudhakar, M.P., Kumar, B.R., Mathimani, T., Arunkumar, K.: A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 228, 1320–1333 (2019). https://doi.org/10.1016/j.jclepro.2019.04.287

    Article  Google Scholar 

  11. Becker, E.W.: Micro-algae as a source of protein. Biotechnol. Adv. 25, 207–210 (2007). https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  Google Scholar 

  12. Bleakley, S., Hayes, M.: Algal proteins: extraction, application, and challenges concerning production. Food 6, 1–34 (2017). https://doi.org/10.3390/foods6050033

    Article  Google Scholar 

  13. Gatrell, S.K., Kim, J., Derksen, T.J., O’Neil, E.V., Lei, X.G.: Creating ω-3 fatty-acid-enriched chicken using defatted green microalgal biomass. J. Agric. Food Chem. 63, 9315–9322 (2015). https://doi.org/10.1021/acs.jafc.5b03137

    Article  Google Scholar 

  14. Hemaiswarya, S., Raja, R., Ravi Kumar, R., Ganesan, V., Anbazhagan, C.: Microalgae: a sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 27, 1737–1746 (2011). https://doi.org/10.1007/s11274-010-0632-z

    Article  Google Scholar 

  15. Grinstead, G.S., Tokach, M.D., Dritz, S.S., Goodband, R.D., Nelssen, J.L.: Effects of Spirulina platensis on growth performance of weanling pigs. Anim. Feed Sci. Technol. 83, 237–247 (2000). https://doi.org/10.1016/S0377-8401(99)00130-3

    Article  Google Scholar 

  16. Saeid, A., Chojnacka, K., Korczyński, M., Korniewicz, D., Dobrzański, Z.: Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J. Appl. Phycol. 25, 667–675 (2013). https://doi.org/10.1007/s10811-012-9901-6

    Article  Google Scholar 

  17. Yap, T.N., Wu, J., Pond, W.G., Krook, L.: Feasibility of feeding spirulina-maxima, arthrospira-platensis or chlorella sp to pigs weaned to a dry diet at 4 to 8 days of age. Nutr. Rep. Int. 25, 543–552 (1982)

    Google Scholar 

  18. Yan, L., Lim, S.U., Kim, I.H.: Effect of fermented chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australas. J. Anim. Sci. 25, 1742–1747 (2012). https://doi.org/10.5713/ajas.2012.12352

    Article  Google Scholar 

  19. Vidyashankar, S., VenuGopal, K.S., Chauhan, V.S., Muthukumar, S.P., Sarada, R.: Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed. J. Appl. Phycol. 27, 1871–1879 (2015). https://doi.org/10.1007/s10811-014-0498-9

    Article  Google Scholar 

  20. Abril, R., Garrett, J., Zeller, S.G., Sander, W.J., Mast, R.W.: Safety assessment of DHA-rich microalgae from Schizochytrium sp. Part V: target animal safety/toxicity study in growing swine. Regul. Toxicol. Pharmacol. 37, 73–82 (2003). https://doi.org/10.1016/S0273-2300(02)00030-2

    Article  Google Scholar 

  21. Markou, G., Wang, L., Ye, J., Unc, A.: Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol. Adv. 36, 1238–1254 (2018). https://doi.org/10.1016/j.biotechadv.2018.04.003

    Article  Google Scholar 

  22. Torres-Tiji, Y., Fields, F.J., Mayfield, S.P.: Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020). https://doi.org/10.1016/j.biotechadv.2020.107536

    Article  Google Scholar 

  23. AOCS: Official Methods and Recommended Practices of the AOCS. American Oil Chemists’ Society, Champaign (2013)

    Google Scholar 

  24. AOAC: Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists, Washington, DC (2000)

    Google Scholar 

  25. BCAA: Ash or mineral matter. In: Brazilian Compendium of Animal Nutrition. BCAA, São José do Rio Preto. p. 204 (2009)

  26. Bi, Z., He, B.B.: Characterization of microalgae for the purpose of biofuel production. Trans. ASABE. 56, 1529–1539 (2013). https://doi.org/10.13031/trans.56.10090

    Article  Google Scholar 

  27. Malone, M.H.: The pharmacological evaluation of natural products—general and specific approaches to screening ethnopharmaceuticals. J. Ethnopharmacol. 8, 127–147 (1983). https://doi.org/10.1016/0378-8741(83)90050-8

    Article  Google Scholar 

  28. Malone, M., Robichaud, R.: A hippocratic screening for pure or drug materials. Lloydia 25, 320–332 (1962)

    Google Scholar 

  29. Rostagno, H.S., Albino, L.F.T., Donzele, J.L., Gomes, P.C., Oliveira, R.D., Lopes, D.C., Euclides, R.F.: Tabelas Brasileiras para Aves e Suínos: Composição de alimentos e exigências nutricionais (2017)

  30. Koller, M., Muhr, A., Braunegg, G.: Microalgae as versatile cellular factories for valued products. Algal Res. 6, 52–63 (2014). https://doi.org/10.1016/j.algal.2014.09.002

    Article  Google Scholar 

  31. Chu, F.L., Pirastru, L., Popovic, R., Sleno, L.: Carotenogenesis up-regulation in Scenedesmus sp. using a targeted metabolomics approach by liquid chromatography−high-resolution mass spectrometry. J. Agric. Food Chem. 59, 3004–3013 (2011). https://doi.org/10.1021/jf105005q

    Article  Google Scholar 

  32. Erisgin, Z., Ayas, B., Nyengaard, J.R., Ercument Beyhun, N., Terzi, Y.: The neurotoxic effects of prenatal gabapentin and oxcarbazepine exposure on newborn rats. J. Matern. Neonatal Med. 32, 461–471 (2019). https://doi.org/10.1080/14767058.2017.1383378

    Article  Google Scholar 

  33. Teo, S., Stirling, D., Thomas, S., Hoberman, A., Kiorpes, A., Khetani, V.: A 90-day oral gavage toxicity study of d-methylphenidate and d, l-methylphenidate in Sprague-Dawley rats. Toxicology 179, 183–196 (2002). https://doi.org/10.1016/S0300-483X(02)00338-4

    Article  Google Scholar 

  34. Hess, R., Riess, W., Stäubli, W.: Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature 208, 856–858 (1965)

    Article  Google Scholar 

  35. Silva, S.L., Nascimento, A.A., Ribeiro, E.F., Ribeiro, R.B., Alves, C.M., Santos, A.M., Burmann, A.P., Mira-Neto, R.D.: Preclinical acute toxicological evaluation of the methanolic stem bark extract of Parahancornia amapa (Apocynaceae). Acta Amaz. 46, 73–80 (2016). https://doi.org/10.1590/1809-4392201501746

    Article  Google Scholar 

  36. Pabst, W., Payer, H.D., Rolle, I., Soeder, C.J.: Multigeneration feeding studies in mice for safety evaluation of the microalga, Scenedesmus acutus. I. Biological and haematological data. Food Cosmet. Toxicol. 16, 249–254 (1976). https://doi.org/10.1016/S0015-6264(76)80521-4

    Article  Google Scholar 

  37. Venkataraman, L.V., Becker, W.E., Khanum, P.M., Mathew, K.R.: Short term feeding of alga scenedesmus acutus processed by different method growth pattern and histo pathological studies. Nutr. Rep. Int. 16, 231–240 (1977)

    Google Scholar 

  38. Venkataraman, L.V., Becker, W.E., Rajasekaran, T., Mathew, K.R.: Investigations on the toxicology and safety of algal diets in albino rats. Food Cosmet. Toxicol. 18, 271–275 (1980). https://doi.org/10.1016/0015-6264(80)90107-8

    Article  Google Scholar 

  39. Kuntz, E.: Biochemistry and functions of the liver. In: Kuntz, E., Kuntz, H.D. (eds.) Hepatology Principles and Practice, pp. 31–71. Springer-Verlag, Berlin/Heidelberg (2006)

    Chapter  Google Scholar 

  40. Kraan, S.: Algal polysaccharides, novel applications and outlook. In: Chang, C.F. (ed.) Carbohydrates - Comprehensive Studies on Glycobiology and Glycotechnology. InTech, London (2012)

    Google Scholar 

  41. Niewold, T.A., Schroyen, M., Geens, M.M., Verhelst, R.S.B., Courtin, C.M.: Dietary inclusion of arabinoxylan oligosaccharides (AXOS) down regulates mucosal responses to a bacterial challenge in a piglet model. J. Funct. Foods. 4, 626–635 (2012). https://doi.org/10.1016/j.jff.2012.04.002

    Article  Google Scholar 

  42. Nuño, K., Villarruel-López, A., Puebla-Pérez, A.M., Romero-Velarde, E., Puebla-Mora, A.G., Ascencio, F.: Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J. Funct. Foods 5, 106–115 (2013). https://doi.org/10.1016/j.jff.2012.08.011

    Article  Google Scholar 

  43. Takahashi, J., Tsukahara, H., Minota, S.: Toxicological studies of astaxanthin from Haematococcus pluvialis-Ames test, oral single dose and 90-days subchronic toxicity studies in rats. J. Clin. Ther. Med. 20, 867–881 (2005)

    Google Scholar 

  44. Stewart, J.S., Lignell, Å., Pettersson, A., Elfving, E., Soni, M.G.: Safety assessment of astaxanthin-rich microalgae biomass: acute and subchronic toxicity studies in rats. Food Chem. Toxicol. 46, 3030–3036 (2008). https://doi.org/10.1016/j.fct.2008.05.038

    Article  Google Scholar 

  45. Dvir, I., Chayoth, R., Sod-Moriah, U., Shany, S., Nyska, A., Stark, A.H., Madar, Z., Arad, S.M.: Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Br. J. Nutr. 84, 469–476 (2000). https://doi.org/10.1017/S000711450000177X

    Article  Google Scholar 

  46. Erhirhie, E.O., Ihekwereme, C.P., Ilodigwe, E.E.: Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip. Toxicol. 11, 5–12 (2018). https://doi.org/10.2478/intox-2018-0001

    Article  Google Scholar 

  47. Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., Das, D.: Microalgae–nutritious, sustainable aqua- and animal feed source. J. Funct. Foods. 62, 103545 (2019). https://doi.org/10.1016/j.jff.2019.103545

    Article  Google Scholar 

  48. Raja, R., Coelho, A., Hemaiswarya, S., Kumar, P., Carvalho, I.S., Alagarsamy, A.: Applications of microalgal paste and powder as food and feed: an update using text mining tool. Beni-Suef Univ. J. Basic Appl. Sci. 7, 740–747 (2018). https://doi.org/10.1016/j.bjbas.2018.10.004

    Article  Google Scholar 

  49. Moheimani, N.R., Vadiveloo, A., Ayre, J.M., Pluske, J.R.: Nutritional profile and in vitro digestibility of microalgae grown in anaerobically digested piggery effluent. Algal Res. 35, 362–369 (2018). https://doi.org/10.1016/j.algal.2018.09.007

    Article  Google Scholar 

  50. Michelon, W., Dinnebier, H., Da Silva, M.L.B., Matthiensen, A., Soares, H.M.: Microalgae obtained from swine wastewater treatment as source of aminoacids and omega-3. Int. Symp. Agric. Agroind Waste Manag. 6, 218–221 (2019)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Michelon.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Ethical approval

Approved by the Ethics Committee on the Use of Animals (CEUA) of the Universidade Regional Integrada do Alto Uruguai e das Missões—URI/Erechim/RS (CEUA approval number 30/2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelon, W., Viancelli, A., Breda, M. et al. Mouse Bioassay Acute and Subchronic Safety Assessment of Biomass from Swine Wastewater Phycoremediation. Waste Biomass Valor 12, 6811–6822 (2021). https://doi.org/10.1007/s12649-021-01470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01470-6

Keywords

Navigation