Skip to main content
Log in

Microalgae: a sustainable feed source for aquaculture

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The need for nutritional sources safer than traditional animal products has renewed interest generally in plants and particularly in microalgae. Microalgae have diverse uses in aquaculture, their applications are mainly to provide nutrition and to enhance the colour of the flesh of salmonids. The larvae of molluscs, echinoderms and crustaceans as well as some fish larvae feed on microalgae. Several studies have confirmed that a live multi-specific, low bacterial and microalgal biomass remains essential for shellfish hatcheries. Major advances are expected from new production system, designs and operations from batch run open tanks to more sophisticated continuously-run and closed loop reactors. Currently, studies are underway to examine the cost-effectiveness of the on- and off-site microalgal production systems which can only be achieved by substantial scaling-up and improved quality control. In order to attain sustainability in the usage of microalgae, a systems-based approach is required which integrates different fields such as biotechnology, bioprocess and management procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam MS, Watanabe WO, Daniels HV (2009) Effect of different dietary protein and lipid levels on growth performance and body composition of juvenile southern flounder (Paralichthys lethostigma) reared in recirculating aquaculture system. J World Aquac Soc 40:513–521

    Article  Google Scholar 

  • Alvarez JS, Llamas AH, Galindo J, Fraga I, Garca T, Villarreal H (2007) Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti. Aquacul Res 38:689–695

    Article  CAS  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Atalah E, Hernández Cruz CM, Izquierdo MS, Rosenlund G, Caballero MJ, Valencia A, Robaina L (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquacul 270:178–185

    Article  CAS  Google Scholar 

  • Baker RTM (2002) Canthaxanthin in aquafeed applications: is there any risk? Trends Food Sci Tech 12:240–243

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Brown MR (2002) Nutritional value of microalgae for aquculture. In: Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (eds) Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición. Acuícola. 3 al 6 de Septiembre del. ancún. Quintana Roo, México

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata XF (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    CAS  Google Scholar 

  • Catarina Guedes A, Meireles LA, Amaro HM, Xavier Malcata F (2010) Changes in lipid class and fatty acid composition of cultures of Pavlova lutheri, in response to light intensity. J Am Oil Chem Soc 87:791–801

    Article  Google Scholar 

  • Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acids composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J Agric Food Chem 55:4043–4051

    Article  CAS  Google Scholar 

  • Dhont J, Van Stappen G (2003) Live feeds in marine aquaculture. Blackwell Science Ltd. pp 65–121

  • Dunstan GH, Volkman JK, Barret SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Durmaz Y (2007) Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquacul 272:717–722

    Article  CAS  Google Scholar 

  • FAO (Food and Agriculture Organization) (2002) Fishery Statistics: Commodities, vol 21. FAO, Rome

  • Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y (2010) Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. J Appl Phycol 22:363–369

    Article  CAS  Google Scholar 

  • Gagneux-Moreaux S, Moreau C, Gonzalez JL, Cosson RP (2007) Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. J Appl Phycol 19:549–556

    Article  CAS  Google Scholar 

  • Gara B, Shields RJ, McEvoy L (1998) Feeding strategies to achieve correct metamorphosis of Atlantic halibut, Hippoglossus hippoglossus L., is using enriched Artemia. Aquacul Res 29:935–948

    Article  Google Scholar 

  • Gentsch E, Kreibich T, Hagen W, Barbara N (2009) Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feeding experiments. J Plankton Res 31:45–60

    Article  CAS  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and application. Trends Biotechnol 15:401–409

    Article  CAS  Google Scholar 

  • Guerin M, Huntley ME, Olaizol M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–215

    Article  CAS  Google Scholar 

  • Hong HA, Duc HL, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  Google Scholar 

  • Kang CD, Sim SJ (2008) Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnol Lett 30:441–444

    Article  CAS  Google Scholar 

  • Knauer J, Southgate PC (1999) A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Rev Fish Sci 7:241–280

    Article  CAS  Google Scholar 

  • Knuckey RM, Brown MR, Barrett SM, Hallegraeff GM (2002) Isolation of new nanoplanktonic diatom strains and their evaluation as diets for the juvenile Pacific oyster. Aquacul 211:253–274

    Article  Google Scholar 

  • Knuckey RM, Brown MR, René Robert R, Frampton MFD (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacul Eng 35:300–313

    Article  Google Scholar 

  • Laing I, Millican PF (1992) Indoor nursery cultivation of juvenile bivalve molluscs using diets of dried algae. Aquacul 102:231–243

    Article  Google Scholar 

  • Lavens P, Sorgeloos P (1996) Manual on the production and use of live food for aquaculture. FAO Fisheries Technical paper. In: Lavens P, Sorgeloos P (eds) Rome. pp 36–19

  • León R, Inmaculada C, Emilio F (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga, Chlamydomonas reinhardtii. J Biotechnol 130:143–152

    Article  Google Scholar 

  • Li SS, Tsai HJ (2009) Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol 26:316–325

    Article  Google Scholar 

  • Liang H, Gong W-J, Chen Z-L, Tian J-Y, Qi L, Li G-B (2009) Effect of chemical preoxidation coupled with in-line coagulation as a pretreatment to ultrafi ltration for algae fouling control. Desalination Water Treat 9:241–245

    Article  CAS  Google Scholar 

  • López Elías JA, Voltolina D, Chavira Ortega CO, Rodríguez Rodríguez BB, Sáenz Gaxiola LM, Esquivel BC, Nieves M (2003) Mass production of microalgae in six commercial shrimp hatcheries of the Mexican northwest. Aquacultural Eng 29:155–164

    Article  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  • Lubzens E, Gibson O, Zmora O, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquacul 133:295–309

    Article  Google Scholar 

  • Martínez-Fernández E, Paul C (2007) Southgate Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquacul 263:220–226

    Article  Google Scholar 

  • Masuda R (2003) The critical role of docosahexaenoic acid in marine and terrestrial ecosystems: from bacteria to human behaviour. The big fish bang. In: Browman HI, Skiftesvik AB (eds) Proceedings of the 26th annual larval fish conference. Published by the Institute of Marine Research, Postboks 1870 Nordnes, N-5817, Bergen, Norway. ISBN 82-7461-059-8

  • Meireles LA, Catarina Guedes A, Xavier Malcata F (2003) Increase of the yields of Eicosapentaenoic and Docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:5

    Article  Google Scholar 

  • Meireles LA, Catarina GA, Barbosa CR, Azevedo JL, Cunhab JP, Malcata FX (2008) On-line control of light intensity in a microalgal bioreactor using a novel automatic system. Enzyme Microbial Tech 42:554–559

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Muller-Feuga A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, pp 352–364

  • Muller-Feuga A, Moal J, Kaas R (2003) The microalgae of aquaculture. In aquaculture. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Ltd. pp 253–299

  • Yúfera M, Navarro N (1995) Population growth dynamic of the rotifer Brachionus plicatilis cultured in non-limiting food condition. Hydrobiologia 313/314, 399–405

    Google Scholar 

  • New MB, Wagner CV (2000) Freshwater prawn culture. Blackwell Science, Oxford, pp 1–11

    Book  Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacul Int 15:1–9

    Article  CAS  Google Scholar 

  • Pedro C, Fernández-Díaz JC (2001) Pilot evaluation of freeze-dried microalgae in the mass rearing of gilthead seabream (Sparus aurata) larvae. Aquacul 193:257–269

    Article  Google Scholar 

  • Ponis E, Robert R, Parisi G (2003) Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquacul 221:491–505

    Article  CAS  Google Scholar 

  • Ponis E, Probert I, Véron B, Mathieu M, Robert R (2006) New microalgae for the Pacific oyster Crassostrea gigas larvae. Aquacul 253:618–627

    Article  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototropic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Pulz O, Scheibenbogen K (1998) Photobioreactors: design and performance with respect to light energy input. Adv Biochem Eng Biotechnol 59:123–151

    Article  CAS  Google Scholar 

  • Raja R (2003) Studies on Dunaliella salina (Dunal) Teod. with special reference to its anticancer properties. Ph.D., thesis, University of Madras, Chennai, India

  • Raja R (2009) Microalgae [Pourriel probable] a column in the IInd Chapter in ‘Un monde invisible’ edited by Laurence Bordenave, Publisher: Aubanel-La Martinière, La Martinière Group, ISBN: 978-2-7006-0670-6, France, pp 124–126 (French)

  • Raja R, Hemaiswarya S (2010) Microalgae and immune potential a chapter in dietary components and immune function–prevention and treatment of disease and cancer. In: Watson RR, Zibadi S, Preedy VR (eds) Humana Press/Springer, ISBN: 978-1-60761-060-1, USA, pp 517–529

  • Raja R, Anbazhagan C, Ganesan V, Rengasamy R (2004a) Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asi J Chem 16:1081–1088

    CAS  Google Scholar 

  • Raja R, Anbazhagan C, Lakshmi D, Rengasamy R (2004b) Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions. Seaweed Res Utili 26:127–146

    Google Scholar 

  • Raja R, Hemaiswarya S, Balasubramanyam D, Rengasamy R (2007a) PCR-identification of Dunaliella salina (Volvocales, Chlorophyceae) and its growth characteristics. Microbiol Res 162:168–176

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Balasubramanyam D, Rengasamy R (2007b) Protective effect of Dunaliella salina (Volvocales, Chlorophyta) on experimentally induced fibrosarcoma on wistar rats. Microbiol Res 162:177–184

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Rengasamy R (2007c) Exploitation of Dunaliella for β-carotene production. Appl Microbiol Biotechnol 74:517–523

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Ashok Kumar N, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Cri Rev Microbiol 34:77–88

    Article  CAS  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd. pp 1–544

  • Robert R, Parisi G, Rodolfi L, Poli BM, Tredici MR (2001) Use of fresh and preserved Tetraselmis suecica for feeding Crassostrea gigas larvae. Aquacul 192:333–346

    Article  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  • Rosenberry B (1991) World shrimp farming 1991. Aquaculture Digest, San Diego

    Google Scholar 

  • Sanderson GW, Jolly SO (1994) The value of Phaffia yeast as a feed ingredient for Salmonid fish. Aquacul 124:193–200

    Article  Google Scholar 

  • Sargent JR, McEvoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquacul 155:117–128

    Article  CAS  Google Scholar 

  • Sayre RT, Wagner RE, Siripornadulsil S, Farias C (2001) Use of Chalmydomonas reinharditii and other transgenic algae in food or feed for delivery of antigens

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Tacon AJ (2003) Aquaculture production trends analysis. Review of the state of world aquaculture, Food and Agriculture Organisation of the United Nations, FAO Fisheries Circular No. 886, Rome, pp 5–29

  • Volkman JK, Jeffrey SW, Nichols PD, Rodgers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Wen Z-Y, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  Google Scholar 

  • Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37:968–974

    Article  Google Scholar 

  • Yamasaki S, Tanabe K, Hirata H (1989) Efficiency of chilled and frozen Nannochloropsis sp. (marine Chlorella) for culture of rotifer. Mem Fac Fish Kagoshima Univ 38:77–82

    Google Scholar 

Download references

Acknowledgments

The authors wish to express their sincere gratitude to Dr. Velusubramani, Senior Scientist, Refining Technology, The British Petroleum Company Ltd., Chicago, USA and Prof. R. Manivasakan, Indian Institute of Technology Madras for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Raja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemaiswarya, S., Raja, R., Ravi Kumar, R. et al. Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27, 1737–1746 (2011). https://doi.org/10.1007/s11274-010-0632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0632-z

Keywords

Navigation