Skip to main content
Log in

Effect of nutrient supply status on biomass composition of eukaryotic green microalgae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In eukaryotic green microalgae, manipulation of metabolic pathways by altering the culture medium and/or culture conditions represents a powerful tool for physiological control and is usually more practicable than metabolic or genetic engineering. Strategies for nutrient-induced shifts in biomass composition are generally cost-efficient, environmentally friendly, applicable on a large scale and flexible for various industrially attractive microalgae species. In addition, processes, such as nutrient limitation/deprivation, can be readily scheduled and optimised to achieve high levels of productivity for the desired target compound(s). These strategies are currently used in microalgae to achieve overproduction of metabolites such as lipids, polysaccharides and pigments. This paper presents an overview of the species and strain-specific responses of eukaryotic, green microalgal cells that are triggered by variations in selected macronutrient and micronutrient availability. Individual and mutually associated physiological responses to nutrient supply status are described at the molecular level as well as discussed from the perspective of potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B (2013) Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour Technol 131:188–194

    CAS  PubMed  Google Scholar 

  • Antal T, Krendeleva T, Rubin A (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15

    CAS  PubMed  Google Scholar 

  • Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891

    CAS  PubMed  Google Scholar 

  • Axley MJ, Stadtman TC (1989) Selenium metabolism and selenium-dependent enzymes in microorganisms. Annu Rev Nutr 9:127–137

    CAS  PubMed  Google Scholar 

  • Badger MR, Kaplan A, Berry JA (1980) Internal inorganic carbon pool of Chlamydomonas reinhardtii: evidence for a carbon dioxide-concentrating mechanism. Plant Physiol 66:407–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballin G, Doucha J, Zachleder V, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of nitrogen starvation. Biol Plant 30:81–91

    CAS  Google Scholar 

  • Bannister T (1979) Quantitative description of steady state, nutrient-saturated algal growth, including adaptation. Limnol Oceanogr 24:76–96

    CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algal culturing. In: Barsanti L, Gualtieri P (eds) Algae: anatomy, biochemistry and biotechnology. CRC Press, Boca Ranton, pp 209–250

    Google Scholar 

  • Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrogen Energy 37:8834–8839

    CAS  Google Scholar 

  • Becker EW (1994) Culture media. In: Becker EW (ed) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, pp 9–41

    Google Scholar 

  • Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68

    CAS  Google Scholar 

  • Besser JM, Canfield TJ, La Point TW (1993) Bioaccumulation of organic and inorganic selenium in a laboratory food chain. Environ Toxicol Chem 12:57–72

    CAS  Google Scholar 

  • Borowitzka MA (2013) Dunaliella: biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley, pp 359–368

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    CAS  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    PubMed  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    CAS  PubMed  Google Scholar 

  • Buetow DE (1965) Growth, survival and biochemical alteration of Euglena gracilis in medium limited in sulfur. J Cell Comp Physiol 66:235–242

    CAS  Google Scholar 

  • Burrows EH, Chaplen FWR, Ely RL (2008) Optimization of media nutrient composition for increased photofermentative hydrogen production by Synechocystis sp. PCC 6803. Int J Hydrogen Energy 33:6092–6099

    CAS  Google Scholar 

  • Cade-Menun BJ, Paytan A (2010) Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae. Mar Chem 121:27–36

    CAS  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    CAS  PubMed  Google Scholar 

  • Caperon J, Meyer J (1972) Nitrogen-limited growth of marine phytoplankton—I. Changes in population characteristics with steady-state growth rate. Deep Sea Res Oceanogr Abstr 19:601–632

    CAS  Google Scholar 

  • Cárdenas J, Rivas J, Paneque A, Losada M (1972) Effect of iron supply on the activities of the nitrate-reducing system from Chlorella. Arch Microbiol 81:260–263

    Google Scholar 

  • Carfagna S, Salbitani G, Vona V, Esposito S (2011) Changes in cysteine and O-acetyl-l-serine levels in the microalga Chlorella sorokiniana in response to the S-nutritional status. J Plant Physiol 168:2188–2195

    CAS  PubMed  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    CAS  PubMed  Google Scholar 

  • Choi G-G, Kim B-H, Ahn C-Y, Oh H-M (2011) Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii. J Appl Phycol 23:1031–1037

    CAS  Google Scholar 

  • Chojnacka K (2007) Using biosorption to enrich the biomass of Chlorella vulgaris with microelements to be used as mineral feed supplement. World J Microbiol Biotechnol 23:1139–1147

    CAS  Google Scholar 

  • Davies J, Grossman A (2004) Responses to deficiencies in macronutrients. In: Rochaix J, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas, vol 7. Advances in photosynthesis and respiration. Springer, Netherlands, pp 613–635

    Google Scholar 

  • Del Campo JA, Moreno J, Rodríguez H, Angeles Vargas M, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    PubMed  Google Scholar 

  • Del Campo J, García-González M, Guerrero M (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    CAS  PubMed  Google Scholar 

  • DeMott W, Van Donk E (2013) Strong interactions between stoichiometric constraints and algal defenses: evidence from population dynamics of Daphnia and algae in phosphorus-limited microcosms. Oecologia 171:175–186

    Google Scholar 

  • Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270

    CAS  Google Scholar 

  • Di Martino Rigano V, Vona V, Carfagna S, Esposito S, Carillo P, Rigano C (2000) Effects of sulfate-starvation and re-supply on growth, NH4 + uptake and starch metabolism in Chlorella sorokiniana. Funct Plant Biol 27:335–342

    Google Scholar 

  • Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826

    CAS  Google Scholar 

  • Doucha J, Lívanský K, Kotrbáček V, Zachleder V (2009) Production of Chlorella biomass enriched by selenium and its use in animal nutrition: a review. Appl Microbiol Biotechnol 83:1001–1008

    CAS  PubMed  Google Scholar 

  • Doušková I, Hlavová M, Umysová D, Vítová M, Zachleder V (2009a) Industrial strain Scenedesmus quadricauda SeIV of green chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. Czech Republic Patent 300861, 13.05.2009

  • Doušková I, Hlavová M, Umysová D, Vítová M, Zachleder V (2009b) Industrial strain Scenedesmus quadricauda SeIV+VI of green chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. Czech Republic Patent 300808, 13.05.2009

  • Doušková I, Hlavová M, Umysová D, Vítová M, Zachleder V (2009c) Industrial strain Scenedesmus quadricauda SeVI of green chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. Czech Republic Patent 300809, 13.05.2009

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    CAS  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J Phycol 9:264–272

    CAS  Google Scholar 

  • Droop MR (1983) 25 years of algal growth kinetics: a personal view. Bot Mar 26:99–112

    Google Scholar 

  • Eixler S, Karsten U, Selig U (2006) Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45:53–60

    Google Scholar 

  • Elsheek MM, Rady AA (1995) Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green-alga Chlorella kessleri. Phyton 35:139–151

    CAS  Google Scholar 

  • Estevez MS, Malanga G, Puntarulo S (2001) Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci 161:9–17

    CAS  Google Scholar 

  • Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105

    CAS  PubMed  Google Scholar 

  • Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bišová K, Přibyl P, Zachleder V, Vítová M (2013) Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour Technol 144:268–274

    CAS  PubMed  Google Scholar 

  • Fernandez E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58:2279–2287

    CAS  PubMed  Google Scholar 

  • Fernie AR, Obata T, Allen AE, Araújo WL, Bowler C (2012) Leveraging metabolomics for functional investigations in sequenced marine diatoms. Trends Plant Sci 17:395–403

    CAS  PubMed  Google Scholar 

  • Flynn KJ (1990) The determination of nitrogen status in microalgae. Mar Ecol Prog Ser 61:297–307

    CAS  Google Scholar 

  • Fournier E, Adam-Guillermin C, Potin-Gautier M, Pannier F (2010) Selenate bioaccumulation and toxicity in Chlamydomonas reinhardtii: influence of ambient sulphate ion concentration. Aquat Toxicol 97:51–57

    CAS  PubMed  Google Scholar 

  • Franco AR, Cárdenas J, Fernández E (1988) Two different carriers transport both ammonium and methylammonium in Chlamydomonas reinhardtii. J Biol Chem 263:14039–14043

    CAS  PubMed  Google Scholar 

  • Galván A, Quesada A, Fernández E (1996) Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J Biol Chem 271:2088–2092

    PubMed  Google Scholar 

  • Geoffroy L, Gilbin R, Simon O, Floriani M, Adam C, Pradines C, Cournac L, Garnier-Laplace J (2007) Effect of selenate on growth and photosynthesis of Chlamydomonas reinhardtii. Aquat Toxicol 83:149–158

    CAS  PubMed  Google Scholar 

  • Giordano M, Pezzoni V, Hell R (2000) Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol 124:857–864

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gómez-Jacinto V, Arias-Borrego A, García-Barrera T, Garbayo I, Vílchez C, Gómez-Ariza JL (2010) Iodine speciation in iodine-enriched microalgae Chlorella vulgaris. Pure Appl Chem 82:473–481

    Google Scholar 

  • González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661

    PubMed  Google Scholar 

  • Griffiths M, Hille R, Harrison SL (2012) Lipid productivity, settling potential and fatty acid profile of 11 microalgal species grown under nitrogen replete and limited conditions. J Appl Phycol 24:989–1001

    CAS  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition: mineral nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, pp 97–115

    Google Scholar 

  • Han F, Huang J, Li Y, Wang W, Wan M, Shen G, Wang J (2013) Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresour Technol 136:418–424

    CAS  PubMed  Google Scholar 

  • Harwood JL, Nicholls RG (1979) The plant sulpholipid: a major component of the sulphur cycle. Biochem Soc Trans 7:440–447

    CAS  PubMed  Google Scholar 

  • Ho S-H, Chen W-M, Chang J-S (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    CAS  PubMed  Google Scholar 

  • Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198

    CAS  PubMed  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, pp 83–94

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  • Iriani D, Suriyaphan O, Chaiyanate N (2011) Effect of iron concentration on growth, protein content and total phenolic content of Chlorella sp. cultured in basal medium. Sains Malays 40:353–358

    CAS  Google Scholar 

  • Jian-Ming L, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Google Scholar 

  • Kauss H (1987) Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol 38:47–71

    CAS  Google Scholar 

  • Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91:905–915

    CAS  PubMed  Google Scholar 

  • Kirk DL, Kirk MM (1978) Carrier-mediated uptake of arginine and urea by Chlamydomonas reinhardtii. Plant Physiol 61:556–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koller M, Salerno A, Tuffner P, Koinigg M, Böchzelt H, Schober S, Pieber S, Schnitzer H, Mittelbach M, Braunegg G (2012) Characteristics and potential of microalgal cultivation strategies: a review. J Clean Prod 37:377–388

    CAS  Google Scholar 

  • Kotrbáček V, Doucha J, Offenbartil T (2004) Use of Chlorella as a carrier of organic-bound iodine in the nutrition of sows. Czech J Anim Sci 49:28–32

    Google Scholar 

  • Krauss F, Schmidt A (1987) Sulphur sources for growth of Chlorella fusca and their influence on key enzymes of sulphur metabolism. J Gen Microbiol 133:1209–1219

    CAS  Google Scholar 

  • Kruskopf MM, Du Plessis S (2004) Induction of both acid and alkaline phosphatase activity in two green-algae (Chlorophyceae) in low N and P concentrations. Hydrobiologia 513:59–70

    CAS  Google Scholar 

  • La Fontaine S, Quinn JM, Nakamoto SS, Page MD, Göhre V, Moseley JL, Kropat J, Merchant S (2002) Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot Cell 1:736–757

    PubMed Central  PubMed  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26:631–638

    CAS  PubMed  Google Scholar 

  • Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    CAS  PubMed  Google Scholar 

  • Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    CAS  PubMed  Google Scholar 

  • Laws E, Bannister T (1980) Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean. Limnol Oceanogr 25:457–473

    CAS  Google Scholar 

  • Lee T-M, Liu C-H (1999) Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J Exp Bot 50:1855–1862

    CAS  Google Scholar 

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular genetic studies. Annu Rev Plant Physiol 51:141–165

    CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan C (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    CAS  PubMed  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    CAS  PubMed  Google Scholar 

  • Li X, Přibyl P, Bišová K, Kawano S, Cepák V, Zachleder V, Čížková M, Brányiková I, Vítová M (2012) The microalga Parachlorella kessleri—a novel highly efficient lipid producer. Biotechnol Bioeng 110:97–107

    PubMed  Google Scholar 

  • Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 25:311–318

    CAS  Google Scholar 

  • Lin Q, Lin J (2011) Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour Technol 102:1615–1621

    CAS  PubMed  Google Scholar 

  • Lin Q, Gu N, Lin J (2012) Effect of ferric ion on nitrogen consumption, biomass and oil accumulation of a Scenedesmus rubescens-like microalga. Bioresour Technol 112:242–247

    CAS  PubMed  Google Scholar 

  • Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    CAS  PubMed  Google Scholar 

  • Low SC, Berry MJ (1996) Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21:203–208

    CAS  PubMed  Google Scholar 

  • Maillard P, Thepenier C, Gudin C (1993) Determination of an ethylene biosynthesis pathway in the unicellular green alga, Haematococcus pluvialis. Relationship between growth and ethylene production. J Appl Phycol 5:93–98

    CAS  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    CAS  PubMed  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenerg Res 1–11

  • Maršálková B, Širmerová M, Kuřec M, Brányik T, Brányiková I, Melzoch K, Zachleder V (2010) Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem Eng Trans 21:1279–1284

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    CAS  PubMed  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    CAS  PubMed  Google Scholar 

  • Milinki E, Molnár S, Kiss A, Virág D, Pénez-Kónya E (2011) Study of microelement accumulating characteristics of microalgae. Acta Bot Hung 53:159–167

    Google Scholar 

  • Morlon H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou A (2005) Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: comparison between effects at the population and sub-cellular level. Aquat Toxicol 73:65–78

    CAS  PubMed  Google Scholar 

  • Morris I (1974) Nitrogen assimilation and protein synthesis. In: Stewart WDP (ed) Algal physiology and biochemistry. University of California Press, Berkeley, pp 560–582

    Google Scholar 

  • Morrissey J, Bowler C (2012) Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 3:43. doi:10.3389/fmicb.2012.00043

    PubMed Central  PubMed  Google Scholar 

  • Moseley J, Grossman AR (2009) Phosphate metabolism and responses to phosphorus deficiency. In: The Chlamydomonas sourcebook: organellar and metabolic processes, vol 2, 2nd edn. Academic Press, New York, pp 189–215

  • Mujtaba G, Choi W, Lee C-G, Lee K (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour Technol 123:279–283

    CAS  PubMed  Google Scholar 

  • Muñoz-Blanco J, Hidalgo-Martínez J, Cárdenas J (1990) Extracellular deamination of l-amino acids by Chlamydomonas reinhardtii cells. Planta 182:194–198

    PubMed  Google Scholar 

  • Neumann PM, De Souza MP, Pickering IJ, Terry N (2003) Rapid microalgal metabolism of selenate to volatile dimethylselenide. Plant Cell Environ 26:897–905

    CAS  PubMed  Google Scholar 

  • Niedobová E, Machát J, Kanický V, Otruba V (2005) Determination of iodine in enriched Chlorella by ICP-OES in the VUV region. Microchim Acta 150:103–107

    Google Scholar 

  • Palmqvist K, Yu J-W, Badger MR (1994) Carbonic anhydrase activity and inorganic carbon fluxes in low- and high-C1 cells of Chlamydomonas reinhardtii and Scenedesmus obliquus. Physiol Plant 90:537–547

    CAS  Google Scholar 

  • Pawlik-Skowrońska B (2003) When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquat Toxicol 62:155–163

    PubMed  Google Scholar 

  • Pinto E, Sigaud-kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    CAS  Google Scholar 

  • Plumley FG, Schmidt GW (1989) Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci U S A 86:2678–2682

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powell N, Shilton AN, Pratt S, Chisti Y (2008) Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol 42:5958–5962

    CAS  PubMed  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S (2009) Towards a luxury uptake process via microalgae–defining the polyphosphate dynamics. Water Res 43:4207–4213

    CAS  PubMed  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    PubMed  Google Scholar 

  • Ratha SK, Prasanna R, Prasad RBN, Sarika C, Dhar DW, Saxena AK (2013) Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture 392–395:69–76

    Google Scholar 

  • Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    CAS  Google Scholar 

  • Reunova Y, Aizdaicher N, Khristoforova N, Reunov A (2007) Effects of selenium on growth and ultrastructure of the marine unicellular alga Dunaliella salina (Chlorophyta). Russ J Mar Biol 33:125–132

    CAS  Google Scholar 

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    CAS  PubMed  Google Scholar 

  • Ruangsomboon S, Ganmanee M, Choochote S (2013) Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. J Appl Phycol 25:867–874

    CAS  Google Scholar 

  • Schrauzer GN (2001) Nutritional selenium supplements: product types, quality, and safety. J Am Coll Nutr 20:1–4

    CAS  PubMed  Google Scholar 

  • Šetlík I, Ballin G, Doucha J, Zachleder V (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of sulphur starvation. Biol Plant 30:161–169

    Google Scholar 

  • Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    CAS  Google Scholar 

  • Siderius M, Musgrave A, van den Ende H, Koerten H, Cambier P, van der Meer P (1996) Chlamydomonas eugametos (Chlorophyta) stores phopshate in polphosphate bodies together with calcium1. J Phycol 32:402–409

    CAS  Google Scholar 

  • Sigee DC, Bahrami F, Estrada B, Webster RE, Dean AP (2007) The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis. Phycologia 46:583–592

    Google Scholar 

  • Sirisansaneeyakul S, Singhasuwan S, Choorit W, Phoopat N, Garcia J, Chisti Y (2011) Photoautotrophic production of lipids by some Chlorella strains. Mar Biotechnol 13:928–941

    CAS  PubMed  Google Scholar 

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100

    CAS  Google Scholar 

  • Soeder CJ, Hegewald E, Kneifel H (1987) Green microalgae can use naphthalenesulfonic acids as sources of sulfur. Arch Microbiol 148:260–263

    CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251

    CAS  Google Scholar 

  • Stefels J, van Leeuwe MA (1998) Effects of iron and light stress on the biochemical composition of antarctic Phaeocystis sp. (Prymnesiophyceae): I. Intracellular DSMP concentrations. J Phycol 34:486–495

    CAS  Google Scholar 

  • Sterner RW, Smutka TM, McKay RML, Xiaoming Q, Brown ET, Sherrell RM (2004) Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49:495–507

    CAS  Google Scholar 

  • Sunda WG, Huntsman SA (2004) Relationships among photoperiod, carbon fixation, growth, chlorophyll a, and cellular iron and zinc in a coastal diatom. Limnol Oceanogr 49:1742–1753

    CAS  Google Scholar 

  • Sunda WG, Neil MP, Francois MMM (2005) Trace metal ion buffers and their use in culture. In: Anderson RA (ed) Algal culturing techniques. Elsevier Academic Press, San Diego, pp 35–64

    Google Scholar 

  • Tababa HG, Hirabayashi S, Inobushi K (2012) Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor. J Appl Phycol 24:887–895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    CAS  PubMed  Google Scholar 

  • Tan Y, Lin J (2011) Biomass production and fatty acid profile of a Scenedesmus rubescens-like microalga. Bioresour Technol 102:10131–10135

    CAS  PubMed  Google Scholar 

  • Tang H, Chen M, Garcia MED, Abunasser N, Ng KYS, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287

    CAS  Google Scholar 

  • Theodorou ME, Elrifi IR, Turpin DH, Plaxton WC (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiol 95:1089–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tran H-L, Kwon J-S, Kim ZH, Oh Y, Lee C-G (2010) Statistical optimization of culture media for growth and lipid production of Botryococcus braunii LB572. Biotechnol Bioproc Eng 15:277–284

    CAS  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, London, pp 178–214

    Google Scholar 

  • Twiss MR, Nalewajko C (1992) Influence of phosphorus nutrition on copper toxicity to three strains of Scenedesmus acutus (Chlorophyceae). J Phycol 28:291–298

    CAS  Google Scholar 

  • Umysová D, Vítová M, Doušková I, Bišová K, Hlavová M, Čížková M, Machát J, Doucha J, Zachleder V (2009) Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda. BMC Plant Biol 9:58

    PubMed Central  PubMed  Google Scholar 

  • Wang W-X, Dei RCH (2006) Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii. Environ Pollut 142:303–312

    CAS  PubMed  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starch-less Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webster RE, Dean AP, Pittman JK (2011) Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii. Environ Sci Technol 45:7489–7496

    CAS  PubMed  Google Scholar 

  • Wheeler AE, Zingaro RA, Irgolic K, Bottino NR (1982) The effect of selenate, selenite, and sulfate on the growth of 6 unicellular marine-species. J Exp Mar Biol Ecol 57:181–194

    CAS  Google Scholar 

  • Wong D, Olivesra L (1991) Effects of selenite and selenate on the growth and motility of seven species of marine microalgae. Can J Fish Aquat Sci 48:1193–1200

    CAS  Google Scholar 

  • Worms I, Simon DF, Hassler CS, Wilkinson KJ (2006) Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88:1721–1731

    CAS  PubMed  Google Scholar 

  • Wu Y-H, Yu Y, Li X, Hu H-Y, Su Z-F (2012) Biomass production of a Scenedesmus sp. under phosphorous-starvation cultivation condition. Bioresour Technol 112:193–198

    CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    CAS  PubMed  Google Scholar 

  • Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R (2012) Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS ONE. doi:10.1371/journal.pone.0035084

    Google Scholar 

  • Yamaoka Y, Takimura O, Fuse H, Kamimura K (1990) Accumulation of arsenic and selenium by Dunaliella sp. Appl Organomet Chem 4:261–264

    CAS  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004a) Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzym Microb Technol 35:46–50

    CAS  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004b) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243

    CAS  PubMed  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    CAS  PubMed  Google Scholar 

  • Yao C-H, Ai J-N, Cao X-P, Xue S (2013) Characterization of cell growth and starch production in the marine green microalga Tetraselmis subcordiformis under extracellular phosphorus-deprived and sequentially phosphorus-replete conditions. Appl Microbiol Biotechnol 97:6099–6110

    CAS  PubMed  Google Scholar 

  • Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    CAS  PubMed  Google Scholar 

  • Yildiz FH, Davies JP, Grossman AR (1994) Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zachleder V, Ballin G, Doucha J, Šetlík I (1988) Macromolecular syntheses and the course of cell cycle events in the chlorococcal alga Scenedesmus quadricauda under nutrient starvation: effect of phosphorus starvation. Biol Plant 30:92–99

    CAS  Google Scholar 

  • Zhang Z, Shrager J, Jain M, Chang C-W, Vallon O, Grossman AR (2004) Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell 3:1331–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou X, Ge H, Xia L, Zhang D, Hu C (2013) Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresour Technol 134:24–29

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the Czech Grant Agency (P503/10/1270) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Brányik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procházková, G., Brányiková, I., Zachleder, V. et al. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol 26, 1359–1377 (2014). https://doi.org/10.1007/s10811-013-0154-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-013-0154-9

Keywords

Navigation