Skip to main content
Log in

Multiscale control of MnO2 growth via [WO6]-perturbed [MnO6] assembly toward a favorable balance between capacitance and rate performance

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Although pseudocapacitive manganese dioxide (MnO2) integrates the high-power merit of carbonaceous materials with the high-energy merit of battery-type materials, it still has a long way to go in achieving a more satisfactory balance of higher energy and power density, and in decoupling the relationship of structural characteristics with energy storage performance. To realize such goals, a bottom-up [WO6]-perturbed [MnO6] assembly strategy has been developed here due to their similar structure, yet mismatched lattice parameters. This facile protocol is capable of finely controlling the morphology and crystal structure of MnO2 by adjusting its internal [WO6] concentration. Therefore, the as-prepared Wx–MnO2 is treated as an ideal platform to scrutinize the correlations of the structure with the energy storage performance. The operando Raman spectra and finite element analysis have fully demonstrated the superiority of the locally ordered defects-enriched structure of W0.02–MnO2, which could reach a favorable balance between the ion diffusion equilibrium time and the number of active sites. As a result, the W0.02–MnO2 is able to deliver a high capacitance of 292 F·g−1 at a current density of 1 A·g−1 and a remarkable rate performance with a 60% capacity retention at a current density of 50 A·g−1. The further unveiled structure–performance relationship provides a guideline for the design of better pseudocapacitive energy storage devices.

Graphical Abstract

摘要

二氧化锰(MnO2)因结合了碳基材料的高功率密度与电池型材料的高能量密度优点,是一种极具潜力的赝电容型材料。目前,研究的主要方向是实现功率密度和能量密度之间更好的平衡,并解耦其结构与性能之间的构效关系。本研究采用了一种称为“自下而上”的策略,通过引入[WO6]扰动[MnO6]的组装来精确调整MnO2的结构。由于[WO6]和[MnO6]具有相似的结构单元但不同的晶格参数,通过调节MnO2内部的[WO6]浓度,可以精确控制所得产物的形貌、晶型和内部缺陷。原位拉曼光谱和有限元分析的结果表明:适度的[WO6]浓度(W0.02–MnO2)导致的局部有序、缺陷富集的结构,使得活性位点数量和离子扩散平衡时间达到最佳平衡。因此,该样品在1 A·g−1的电流密度下提供了292 F·g−1的高比电容,并在50 A·g−1的电流密度下保持着60%的容量。这项研究不仅提供了一种性能优越的储能材料,还揭示了结构-性能之间的关系,为下一代赝电容材料的设计提供了理论指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu YT, Wu Y, Wang J. Manganese-oxide-based electrode materials for energy storage applications: how close are we to the theoretical capacitance? Adv Mater. 2018;30:1. https://doi.org/10.1002/adma.201802569.

    Article  ADS  CAS  Google Scholar 

  2. Yang RJ, Fan YY, Ye RQ, Tang YX, Cao XH, Yin ZY, Zeng ZY. MnO2-based materials for environmental applications. Adv Mater. 2021;33:1. https://doi.org/10.1002/adma.202004862.

    Article  CAS  Google Scholar 

  3. Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX. Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett. 2012;12:3803. https://doi.org/10.1021/nl301748m.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Xiang W, Liu (Frank) SZ, Tress W. Interfaces and interfacial layers in inorganic perovskite solar cells. Angew Chem. 2021;133:26644. https://doi.org/10.1002/ange.202108800.

    Article  ADS  Google Scholar 

  5. Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater. 2004;16:3184. https://doi.org/10.1021/cm049649j.

    Article  CAS  Google Scholar 

  6. Liu YP, Xu CX, Ren WQ, Hu LY, Bin FuW, Wang W, Yin H, He BH, Hou ZH, Chen L. Self-template synthesis of peapod-like MnO@N–doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 2023;42(3):929. https://doi.org/10.1007/s12598-022-02203-x.

    Article  CAS  Google Scholar 

  7. Zhu ZX, Lin ZW, Sun ZW, Zhang PX, Li CP, Dong R, Mi HW. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022;41(11):3729. https://doi.org/10.1007/s12598-022-02088-w.

    Article  CAS  Google Scholar 

  8. Liu JY, Bao JL, Zhang X, Gao YF, Zhang Y, Liu L, Cao ZZ. MnO2-based materials for supercapacitor electrodes: challenges, strategies and prospects. RSC Adv. 2022;12:35556. https://doi.org/10.1039/d2ra06664e.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang YX, Cui XS, Fu JC, Liu YP, Wu Y, Zhou JY, Zhang ZX, Xie EQ. Commercial-level mass-loading MnO2 with ion diffusion channels for high-performance aqueous energy storage devices. J Mater Chem A. 2021;9:17945. https://doi.org/10.1039/d1ta04850c.

    Article  CAS  Google Scholar 

  10. Singu BS, Yoon KR. Porous manganese oxide nanospheres for pseudocapacitor applications. J Alloys Compd. 2017;695:771. https://doi.org/10.1016/j.jallcom.2016.08.239.

    Article  CAS  Google Scholar 

  11. Yuan YF, Liu C, Byles BW, Yao WT, Song BA, Cheng M, Huang ZN, Amine K, Pomerantseva E, Shahbazian-Yassar R, Lu J. Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule. 2019;3:471. https://doi.org/10.1016/j.joule.2018.10.026.

    Article  CAS  Google Scholar 

  12. Simon P, Gogotsi Y. Confined water controls capacitance. Nat Mater. 2021;20:1597. https://doi.org/10.1038/s41563-021-01155-4.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Costentin C, Porter TR, Savéant JM. How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl Mater Interfaces. 2017;9:8649. https://doi.org/10.1021/acsami.6b14100.

    Article  CAS  PubMed  Google Scholar 

  14. Conway BE. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources. 1997;66:1. https://doi.org/10.4134/CKMS.2010.25.2.313.

    Article  CAS  Google Scholar 

  15. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845. https://doi.org/10.1142/9789814317665_0021.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wang JJ, Wang JG, Qin XP, Wang YA, You ZY, Liu HY, Shao MH. Superfine MnO2 nanowires with rich defects toward boosted zinc ion storage performance. ACS Appl Mater Interfaces. 2020;12:34949. https://doi.org/10.1021/acsami.0c08812.

    Article  CAS  PubMed  Google Scholar 

  17. Wang JF, Yang HP, Zhou CS, Xu J, Wang J, Ren YJ. Template-assisted preparation of MnO2@MnO2 hollow nanospheres and their research of capacitance performance. Mater Lett. 2020;262:127139. https://doi.org/10.1016/j.matlet.2019.127139.

    Article  CAS  Google Scholar 

  18. Devaraj S, Gabriel GS, Gajjela SR, Balaya P. Mesoporous MnO2 and its capacitive behavior. Electrochem Solid State Lett. 2012;15:57. https://doi.org/10.1149/2.016204esl.

    Article  CAS  Google Scholar 

  19. Ma JP, Cheng QL, Pavlinek V, Saha P, Li CZ. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J Chem. 2013;37:722. https://doi.org/10.1039/c2nj40880e.

    Article  CAS  Google Scholar 

  20. Zhang N, Ji YR, Wang JC, Wang PF, Zhu YR, Yi TF. Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: reaction processes and regulation strategies. J Energy Chem. 2023;82:423. https://doi.org/10.1016/j.jechem.2023.03.052.

    Article  CAS  Google Scholar 

  21. Yuan Y, He K, Byles BW, Liu C, Amine K, Lu J, Pomerantseva E, Shahbazian-Yassar R. Deciphering the atomic patterns leading to MnO2 polymorphism. Chem. 2019;5:1793. https://doi.org/10.1016/j.chempr.2019.03.021.

    Article  CAS  Google Scholar 

  22. Meng JX, Xu LS, Ma QX, Yang MQ, Fang YZ, Wan GY, Li RH, Yuan JJ, Zhang XK, Yu HJ, Liu LL, Liu TF. Modulating crystal and interfacial properties by W–gradient doping for highly stable and long life Li–rich layered cathodes. Adv Funct Mater. 2022;32:1. https://doi.org/10.1002/adfm.202113013.

    Article  CAS  Google Scholar 

  23. Chen T, Tang HD, Shao C, Zhang XJ, Jiang WH. Preparation of chromium-doped α-Al2O3 red pigments by non-hydrolytic sol-gel method. Chin J Rare Met. 2021;45(8):989. https://doi.org/10.13373/j.cnki.cjrm.xy19090013.

    Article  CAS  Google Scholar 

  24. Yao SY, Wang SY, Liu RC, Liu X, Fu ZZ, Wang DW, Hao HJ, Yang ZY, Yan YM. Delocalizing the d-electrons spin states of Mn site in MnO2 for anion-intercalation energy storage. Nano Energy. 2022;99:107391. https://doi.org/10.1016/j.nanoen.2022.107391.

    Article  CAS  Google Scholar 

  25. Zhang QZ, Zhang D, Miao ZC, Zhang XL, Chou SL. Research progress in MnO2–carbon based supercapacitor electrode materials. Small. 2018;14:1. https://doi.org/10.1002/smll.201702883.

    Article  CAS  Google Scholar 

  26. Wu ZK, Peacock CL, Lanson B, Yin H, Zheng LR, Chen ZJ, Tan WF, Qiu JH, Liu F, Feng XH. Transformation of Co–containing birnessite to todorokite: effect of Co on the transformation and implications for Co mobility. Geochim Cosmochim Acta. 2019;246:21. https://doi.org/10.1016/j.gca.2018.11.001.

    Article  ADS  CAS  Google Scholar 

  27. Lokhande V, Lokhande A, Namkoong G, Kim JH, Ji T. Charge storage in WO3 polymorphs and their application as supercapacitor electrode material. Results Phys. 2019;12:2012. https://doi.org/10.1016/j.rinp.2019.02.012.

    Article  ADS  Google Scholar 

  28. Okejiri F, Fan JT, Huang ZN, Siniard KM, Chi MF, Polo-Garzon F, Yang ZZ, Dai S. Ultrasound-mediated synthesis of nanoporous fluorite-structured high-entropy oxides toward noble metal stabilization. Iscience. 2022;25:104214. https://doi.org/10.1016/j.isci.2022.104214.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Kartikowati CW, Horie S, Ogi T, Iwaki T, Okuyama K. Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci Rep. 2017;7:1. https://doi.org/10.1038/s41598-017-09897-5.

    Article  CAS  Google Scholar 

  30. Joshi A, Singh G, Sharma RK. Engineering multiple defects for active sites exposure towards enhancement of Ni3S2 charge storage characteristics. Chem Eng J. 2020;384:123364. https://doi.org/10.1016/j.cej.2019.123364.

    Article  CAS  Google Scholar 

  31. Zhou J, Qin LF, Xiao W, Zeng C, Li N, Lv T, Zhu H. Oriented growth of layered–MnO2 nanosheets over α–MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl Catal B Environ. 2017;207:233. https://doi.org/10.1016/j.apcatb.2017.01.083.

    Article  CAS  Google Scholar 

  32. Yang YJ, Jia JB, Liu Y, Zhang PY. The effect of tungsten doping on the catalytic activity of α–MnO2 nanomaterial for ozone decomposition under humid condition. Appl Catal A Gen. 2018;562:132. https://doi.org/10.1016/j.apcata.2018.06.006.

    Article  CAS  Google Scholar 

  33. Chen Q, Jin JL, Song MD, Zhang XY, Li H, Zhang JL, Hou GY, Tang YP, Mai LQ, Zhou L. High-energy aqueous ammonium-ion hybrid supercapacitors. Adv Mater. 2022;34:1. https://doi.org/10.1002/adma.202107992.

    Article  CAS  Google Scholar 

  34. Rong SP, Zhang PY, Liu F, Yang YJ. Engineering crystal facet of α–MnO2 nanowire for highly efficient catalytic oxidation of carcinogenic airborne formaldehyde. ACS Catal. 2018;8:3435. https://doi.org/10.1021/acscatal.8b00456.

    Article  CAS  Google Scholar 

  35. Duan CM, Meng MW, Huang H, Wang H, Ding H, Zhang Q. Ag-promoted Cr/MnO2 catalyst for catalytic oxidation of low concentration formaldehyde at room temperature. Phys Chem Chem Phys. 2023;25:10155. https://doi.org/10.1039/d3cp00557g.

    Article  CAS  PubMed  Google Scholar 

  36. Jin YY, Chen ZL, Yang LX, Zhang K, Ma TZ, Zhang SQ, Dai WL, Luo SL. Implanted-electron-eydrogen boosted breaking of W–O bonds to generate crater/oxygen vacancy filled WO3 nanoflakes for efficient oxidation of emerging pollutant. J Alloys Compd. 2022;890:161831. https://doi.org/10.1016/j.jallcom.2021.161831.

    Article  CAS  Google Scholar 

  37. Zhang NQ, Li LC, Guo YZ, He JD, Wu R, Song LY, Zhang GZ, Zhao JS, Wang DS, He H. A MnO2-based catalyst with H2O resistance for NH3–SCR: study of catalytic activity and reactants–H2O competitive adsorption. Appl Catal B Environ. 2020;270:118860. https://doi.org/10.1016/j.apcatb.2020.118860.

    Article  CAS  Google Scholar 

  38. Xu W, Ni XM, Zhang LJ, Yang F, Peng Z, Huang YF, Liu Z. Tuning the electronic structure of tungsten oxide for enhanced hydrogen evolution reaction in alkaline electrolyte. ChemElectroChem. 2022;9:5. https://doi.org/10.1002/celc.202101300.

    Article  CAS  Google Scholar 

  39. Zhou PS, Xu Q, Li HX, Wang Y, Yan B, Zhou YC, Chen JF, Zhang JN, Wang KX. Fabrication of two-dimensional lateral heterostructures of WS2/WO3·H2O through selective oxidation of monolayer WS2. Angew Chem. 2015;54:15226. https://doi.org/10.1002/anie.201508216.

    Article  CAS  Google Scholar 

  40. Kim KW, Yun TY, You SH, Tang X, Lee J, Seo Y, Kim YT, Kim SH, Moon HC, Kim JK. Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly. NPG Asia Mater. 2020;12:84. https://doi.org/10.1038/s41427-020-00257-w.

    Article  ADS  CAS  Google Scholar 

  41. Liao MY, Lin JM, Wang JH, Yang CT, Chou TL, Mok BH, Chong NS, Tang HY. Electrochemical synthesis of α–MnO2 octahedral molecular sieve. Electrochem Commun. 2003;5:312. https://doi.org/10.1016/S1388-2481(03)00054-7.

    Article  CAS  Google Scholar 

  42. Boyd S, Ganeshan K, Tsai WY, Wu T, Saeed S, Jiang DE, Balke N, Duin A, Augustyn V. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat Mater. 2021;20:1689. https://doi.org/10.1038/s41563-021-01066-4.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wang Y, Zhang YZ, Gao YQ, Sheng G, Elshof JE. Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors. Nano Energy. 2020;68:104306. https://doi.org/10.1016/j.nanoen.2019.104306.

    Article  CAS  Google Scholar 

  44. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7:1597. https://doi.org/10.1039/c3ee44164d.

    Article  CAS  Google Scholar 

  45. Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat Mater. 2014;13:726. https://doi.org/10.1038/nmat4000.

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Tian W, Hu H, Wang YX, Li P, Liu JY, Liu JL, Wang XB, Xu XD, Li ZT, Zhao QS, Ning H, Wu TT, Wu MB. Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage. ACS Nano. 2018;12:1990. https://doi.org/10.1021/acsnano.7b09175.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang DZ, Wang RC, Wang XH, Gogotsi Y. In situ monitoring redox processes in energy storage using UV–vis spectroscopy. Nat Energy. 2023;8:567. https://doi.org/10.1038/s41560-023-01240-9.

    Article  ADS  CAS  Google Scholar 

  48. Brousse T, Bélanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015;162:5185. https://doi.org/10.1149/2.0201505jes.

    Article  CAS  Google Scholar 

  49. Wang JW, Sun XL, Zhao HY, Xu LL, Xia JL, Luo M, Yang YD, Du YP. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C. 2019;123:22735. https://doi.org/10.1021/acs.jpcc.9b05535.

    Article  CAS  Google Scholar 

  50. Yang LF, Cheng S, Wang JH, Ji X, Jiang Y, Yao MH, Wu P, Wang MK, Zhou J, Liu ML. Investigation into the origin of high stability of δ–MnO2 pseudo-capacitive electrode using operando raman spectroscopy. Nano Energy. 2016;30:293. https://doi.org/10.1016/j.nanoen.2016.10.018.

    Article  CAS  Google Scholar 

  51. Ali GAM, Yusoff MM, Shaaban ER, Chong KF. High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int. 2017;43:8440. https://doi.org/10.1016/j.ceramint.2017.03.195.

    Article  CAS  Google Scholar 

  52. Gaberscek M, Moskon J, Erjavec B, Dominko R, Jamnik J. The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc. Electrochem Solid State Lett. 2008;11:170. https://doi.org/10.1149/1.2964220.

    Article  CAS  Google Scholar 

  53. Atebamba JM, Moskon J, Pejovnik S, Gaberscek M. On the interpretation of measured impedance spectra of insertion cathodes for lithium-ion batteries. J Electrochem Soc. 2010;157:1218. https://doi.org/10.1149/1.3489353.

    Article  CAS  Google Scholar 

  54. Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y. Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Appl Mater Interfaces. 2014;6:8886. https://doi.org/10.1021/am501650q.

    Article  CAS  PubMed  Google Scholar 

  55. Cao JY, Wang YM, Zhou Y, Ouyang JH, Jia DC, Guo LX. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem. 2013;689:201. https://doi.org/10.1016/j.jelechem.2012.10.024.

    Article  CAS  Google Scholar 

  56. Wu ZS, Ren WC, Wang DW, Li F, Liu BL, Cheng HM. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano. 2010;4:5835. https://doi.org/10.1021/nn101754k.

    Article  CAS  PubMed  Google Scholar 

  57. Saravanakumar B, Purushothaman KK. MnO2 grafted V2O5 nano structures: formation mechanism, morphology and supercapacitive features. CrystEngComm. 2014;1:1. https://doi.org/10.1039/C4CE01476F.

    Article  CAS  Google Scholar 

  58. Cakici M, Reddy KR, Alonso–Marroquin F. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J. 2017;309:151. https://doi.org/10.1016/j.cej.2016.10.012.

    Article  CAS  Google Scholar 

  59. Putjuso T, Putjuso S, Karaphun A, Nijpanich S, Chanlek N, Swatsitang E. Hydrothermally obtained β–MnO2 nanoparticles/activated carbonized coconut fibers composites, electrochemical properties study for future energy storage devices. Appl Surf Sci. 2023;618:156653. https://doi.org/10.1016/j.apsusc.2023.156653.

    Article  CAS  Google Scholar 

  60. Liang Y, Zhu DH, Chao SX, Hu MH, Li DQ, Zhou WQ, Xu JK, Duan XM, Liu PP. Oxygen-vacancy europium-doped MnO2 ultrathin nanosheets used as asymmetric supercapacitors. J Energy Storage. 2023;60:106673. https://doi.org/10.1016/j.est.2023.106673.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 22105164 and 21875205), the National Natural Science Foundation of Hebei Province (No. B2022203009), Hebei Province Foundation for the National Natural Science Foundation (No. 206Z4404G), and the subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance (No. 22567616H). The authors also acknowledge Dr. Ning Dang from Xihua University for the help of COMSOL simulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fa-Ming Gao or Jian-Ren Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 41228 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JK., Yang, TS., Ren, ZB. et al. Multiscale control of MnO2 growth via [WO6]-perturbed [MnO6] assembly toward a favorable balance between capacitance and rate performance. Rare Met. 43, 1658–1671 (2024). https://doi.org/10.1007/s12598-023-02542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02542-3

Keywords

Navigation