Skip to main content
Log in

Recent advances of emerging tin disulfide for room temperature gas sensing

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Effectively monitoring of hazardous gases has become increasingly important for ecological environment and human health. As an emerging component of two-dimensional materials, layered metal dichalcogenides are gaining significant attention due to their unique physical and chemical properties, thus catering well to the gas sensing application. Particularly, tin disulfide (SnS2) has been widely examined recently owing to its low-cost, earth-abundant, and environmental friendliness features, which meet the requirements of advanced sensing platforms. Herein, the booming research advancements of SnS2-based gas sensors have been presented. Firstly, the basic attributes of SnS2 and its ability to detect various hazardous gases are introduced. Secondly, innovative approaches that have demonstrated the effectiveness of improving the room temperature sensing performance of SnS2 are summarized. Finally, the major challenges and future opportunities of SnS2 are also outlined. It is ultimately expected that this timely review could offer guidance for designing high-performance gas sensing materials and further push forward their potential applications.

Graphical abstract

摘要

有毒有害气体的高效检测对于生态环境和人体健康至关重要。层状金属硫族化合物因其独特的物理化学特性在气体传感领域引起广泛关注。其中,二硫化锡(SnS2)具有成本低、储量丰富、环境友好等特点,近年来成为研究热点之一。本文系统总结了SnS2材料在气体传感领域的最新进展,介绍了SnS2的基本特性及气体传感机理,列举了改善其室温传感性能的有效策略,包括形貌调控,缺陷工程,构建异质结构以及外部光照辅助等,并对其在传感应用中的潜在挑战和未来发展趋势进行展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang H, Lustig WP, Li J. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks. Chem Soc Rev. 2018;47(13):4729. https://doi.org/10.1039/C7CS00885F.

    Article  CAS  Google Scholar 

  2. Zhang H, Xiao J, Chen J, Zhang L, Zhang Y, Pei XL. Pd-modified SmFeO3 with hollow tubular structure under light shows extremely high acetone gas sensitivity. Rare Met. 2023;42(2):545. https://doi.org/10.1007/s12598-022-02192-x.

    Article  CAS  Google Scholar 

  3. Li J, Zheng M, Yang M, Zhang XF, Cheng XL, Zhou X, Gao S, Xu YM, Huo LH. Three-in-one Ni doped porous SnO2 nanorods sensor: controllable oxygen vacancies content, surface site activation and low power consumption for highly selective NO2 monitoring. Sens Actuators B Chem. 2023;382:133550. https://doi.org/10.1016/j.snb.2023.133550.

    Article  CAS  Google Scholar 

  4. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  5. Sun XM, Gao R, Wu YY, Zhang XF, Cheng XL, Gao S, Xu YM, Huo LH. Novel in-situ deposited V2O5 nanorods array film sensor with enhanced gas sensing performance to n-butylamine. Chem Eng J. 2023;459:141505. https://doi.org/10.1016/j.cej.2023.141505.

    Article  CAS  Google Scholar 

  6. Goswami P, Gupta G. Recent progress of flexible NO2 and NH3 gas sensors based on transition metal dichalcogenides for room temperature sensing. Mater Today Chem. 2022;23:100726. https://doi.org/10.1016/j.mtchem.2021.100726.

    Article  CAS  Google Scholar 

  7. Zhang L, Khan K, Zou J, Zhang H, Li Y. Recent advances in emerging 2D material-based gas sensors: potential in disease diagnosis. Adv Mater Interfaces. 2019;6(22):1901329. https://doi.org/10.1002/admi.201901329.

    Article  Google Scholar 

  8. Milone A, Monteduro AG, Rizzato S, Leo A, Di Natale C, Kim SS, Maruccio G. Advances in materials and technologies for gas sensing from environmental and food monitoring to breath analysis. Adv Sustain Syst. 2023;7(2):2200083. https://doi.org/10.1002/adsu.202200083.

    Article  CAS  Google Scholar 

  9. Potyrailo RA. Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet. Chem Rev. 2016;116(19):11877. https://doi.org/10.1021/acs.chemrev.6b00187.

    Article  CAS  Google Scholar 

  10. Jeong SY, Kim JS, Lee JH. Rational design of semiconductor-based chemiresistors and their libraries for next-generation artificial olfaction. Adv Mater. 2020;32(51):2002075. https://doi.org/10.1002/adma.202002075.

    Article  CAS  Google Scholar 

  11. Ji HC, Zeng W, Li YQ. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale. 2019;11(47):22664. https://doi.org/10.1039/C9NR07699A.

    Article  CAS  Google Scholar 

  12. Gai LY, Lai RP, Dong XH, Wu X, Luan QT, Wang J, Lin HF, Ding WH, Wu GL, Xie WF. Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 2022;41(6):1818. https://doi.org/10.1007/s12598-021-01937-4.

    Article  CAS  Google Scholar 

  13. Malik R, Tomer VK, Mishra YK, Lin LW. Functional gas sensing nanomaterials: a panoramic view. Appl Phys Rev. 2020;7(2):021301. https://doi.org/10.1063/1.5123479.

    Article  CAS  Google Scholar 

  14. Yu HX, Guo CY, Zhang XF, Xu YM, Cheng XL, Gao S, Huo LH. Recent development of hierarchical metal oxides based gas sensors: from gas sensing performance to applications. Adv Sustain Syst. 2022;6(4):2100370. https://doi.org/10.1002/adsu.202100370.

    Article  CAS  Google Scholar 

  15. Xiao RQ, Wang TT, Feng S, Zhang XF, Cheng XL, Gao R, Huo LH, Gao S, Xu YM. Porous MoO3 nanosheets for conductometric gas sensors to detect diisopropylamine. Sens Actuators B Chem. 2023;382:133472. https://doi.org/10.1016/j.snb.2023.133472.

    Article  CAS  Google Scholar 

  16. Zhang Y, Liu Q, Shao X, Ma W, Feng YN. Progress in fabrication and application of graphene nanoribbons. Chin J Rare Met. 2021;45(9):1119. https://doi.org/10.13373/j.cnki.cjrm.XY20100009.

    Article  Google Scholar 

  17. Zhou X, Zhang Q, Gan L, Li HQ, Xiong J, Zhai TY. Booming development of group IV–VI semiconductors: fresh blood of 2D family. Adv Sci. 2016;3(12):1600177. https://doi.org/10.1002/advs.201600177.

    Article  CAS  Google Scholar 

  18. Liu C, Chen XW, Luo HY, Li BL, Shi J, Fan C, Yang JH, Zeng M, Zhou ZH, Hu NT, Su YJ, Yang Z. Highly sensitive and recoverable room-temperature NO2 gas detection realized by 2D/0D MoS2/ZnS heterostructures with synergistic effects. Sens Actuators B Chem. 2021;347:130608. https://doi.org/10.1016/j.snb.2021.130608.

    Article  CAS  Google Scholar 

  19. Shi ZT, Zhao HB, Chen XQ, Wu GM, Wei F, Tu HL. Chemical vapor deposition growth and transport properties of MoS2-2H thin layers using molybdenum and sulfur as precursors. Rare Met. 2022;41(10):3574. https://doi.org/10.1007/s12598-015-0599-x.

    Article  CAS  Google Scholar 

  20. Zhao QN, Zhang YJ, Duan ZH, Wang S, Liu C, Jiang YD, Tai HL. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 2021;40(6):1459. https://doi.org/10.1007/s12598-020-01602-2.

    Article  CAS  Google Scholar 

  21. Tsai HS, Wang Y, Liu CM, Wang TQ, Huo MX. The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. J Hazard Mater. 2022;423:127148. https://doi.org/10.1016/j.jhazmat.2021.127148.

    Article  CAS  Google Scholar 

  22. Lee E, Yoon YS, Kim DJ. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 2018;3(10):2045. https://doi.org/10.1021/acssensors.8b01077.

    Article  CAS  Google Scholar 

  23. Li J, Zhang YH, Huo MX, Ho SH, Tsai HS. Metallic group VB transition metal dichalcogenides for electrochemical energy storage. Mater Today Chem. 2022;26:101241. https://doi.org/10.1016/j.mtchem.2022.101241.

    Article  CAS  Google Scholar 

  24. Agrawal AV, Kumar N, Kumar M. Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 2021;13(1):38. https://doi.org/10.1007/s40820-020-00558-3.

    Article  CAS  Google Scholar 

  25. Zhang H, Zhang ZX, Zhan Q, Liu DD, Zhao PQ, Cheng YC. Recent advances of substitutionally doped tin dichalcogenides. J Mater Chem C. 2022;10(20):7771. https://doi.org/10.1039/D2TC01034H.

    Article  CAS  Google Scholar 

  26. Tang HY, Sacco LN, Vollebregt S, Ye HY, Fan XJ, Zhang GQ. Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives. J Mater Chem A. 2020;8(47):24943. https://doi.org/10.1039/D0TA08190F.

    Article  CAS  Google Scholar 

  27. Hermawan A, Septiani NLW, Taufik A, Yuliarto B, Suyatman YS. Advanced strategies to improve performances of molybdenum-based gas sensors. Nano-Micro Lett. 2021;13(1):207. https://doi.org/10.1007/s40820-021-00724-1.

    Article  CAS  Google Scholar 

  28. Guo XW, Zhang F, Zhang YC, Hu JH. Review on the advancement of SnS2 in photocatalysis. J Mater Chem A. 2023;11:7331. https://doi.org/10.1039/D2TA09741A.

    Article  CAS  Google Scholar 

  29. Ansari MZ, Ansari SA, Kim SH. Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: a comprehensive review. J Energy Storag. 2022;53:105187. https://doi.org/10.1016/j.est.2022.105187.

    Article  Google Scholar 

  30. Ou JZ, Ge WY, Carey B, Daeneke T, Rotbart A, Shan W, Wang YC, Fu ZQ, Chrimes AF, Wiodarski W, Russo SP, Li YX, Kalantar-zadeh K. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano. 2015;9(10):10313. https://doi.org/10.1021/acsnano.5b04343.

    Article  CAS  Google Scholar 

  31. Mishra RK, Choi GJ, Choi HJ, Singh J, Lee SH, Gwag JS. Potentialities of nanostructured SnS2 for electrocatalytic water splitting: a review. J Alloys Compd. 2022;921:166018. https://doi.org/10.1016/j.jallcom.2022.166018.

    Article  CAS  Google Scholar 

  32. Zhan SP, Zheng L, Xiao Y, Zhao LD. Phonon and carrier transport properties in low-cost and environmentally friendly SnS2: a promising thermoelectric material. Chem Mater. 2020;32(24):10348. https://doi.org/10.1021/acs.chemmater.0c04184.

    Article  CAS  Google Scholar 

  33. Wei ZX, Wang L, Zhuo M, Ni W, Wang HX, Ma JM. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J Mater Chem A. 2018;6(26):12185. https://doi.org/10.1039/C8TA02695E.

    Article  CAS  Google Scholar 

  34. Huang Y, Sutter E, Sadowski JT, Cotlet M, Monti OLA, Racke DA, Neupane MR, Wickramaratne D, Lake RK, Parkinson BA, Sutter P. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics. ACS Nano. 2014;8(10):10743. https://doi.org/10.1021/nn504481r.

    Article  CAS  Google Scholar 

  35. Giberti A, Gaiardo A, Fabbri B, Gherardi S, Guidi V, Malagu C, Bellutti P, Zonta G, Casotti D, Cruciani G. Tin(IV) sulfide nanorods as a new gas sensing material. Sens Actuators B Chem. 2016;223:827. https://doi.org/10.1016/j.snb.2015.10.007.

    Article  CAS  Google Scholar 

  36. Kim YH, Phan DT, Ahn S, Nam KH, Park CM, Jeon KJ. Two-dimensional SnS2 materials as high-performance NO2 sensors with fast response and high sensitivity. Sens Actuators B Chem. 2018;255:616. https://doi.org/10.1016/j.snb.2017.08.091.

    Article  CAS  Google Scholar 

  37. Yang Z, Su C, Wang ST, Han YT, Chen XW, Xu SS, Zhou ZH, Hu NT, Su YJ, Zeng M. Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology. 2020;31(7):075501. https://doi.org/10.1088/1361-6528/ab5271.

    Article  CAS  Google Scholar 

  38. Guo SY, Hu XM, Huang Y, Zhou WH, Qu HZ, Xu LL, Song XF, Zhang SL, Zeng HB. A highly sensitive and selective SnS2 monolayer sensor in detecting SF6 decomposition gas. Appl Surf Sci. 2021;541:148494. https://doi.org/10.1016/j.apsusc.2020.148494.

    Article  CAS  Google Scholar 

  39. Jiang MM, Xu J, Munroe P, Xie ZH. SnS2 monolayer as a promising candidate for NO2 sensor or capturer with high selectivity and sensitivity: a first-principles study. Mater Sci Semicond Process. 2022;152:107073. https://doi.org/10.1016/j.mssp.2022.107073.

    Article  CAS  Google Scholar 

  40. Zhou TT, Zhang T. Recent progress of nanostructured sensing materials from 0D to 3D: overview of structure-property-application relationship for gas sensors. Small Methods. 2021;5(9):2100515. https://doi.org/10.1002/smtd.202100515.

    Article  CAS  Google Scholar 

  41. Sun MH, Huang SZ, Chen LH, Li Y, Yang XY, Yuan ZY, Su BL. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev. 2016;45(12):3479. https://doi.org/10.1039/C6CS00135A.

    Article  CAS  Google Scholar 

  42. Ge WY, Jiao SY, Chang Z, He XM, Li YX. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Appl Mater Interfaces. 2020;12(11):13200. https://doi.org/10.1021/acsami.9b23181.

    Article  CAS  Google Scholar 

  43. Xiong Y, Xu WW, Ding DG, Lu WB, Zhu L, Zhu ZY, Wang Y, Xue QZ. Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-ppm detection ability. J Hazard Mater. 2018;341:159. https://doi.org/10.1016/j.jhazmat.2017.07.060.

    Article  CAS  Google Scholar 

  44. Zhang QX, Ma SY, Yang GJ, Zhang R, Wang XT, Chen Q, Ma L, Pei ST, Zhu KM, Wang WQ, Tie Y. 3D SnS2 hierarchical micro-flowers synthesized by ZnSn(OH)6 for ultra-sensitive NH3 sensor. Mater Lett. 2019;236:600. https://doi.org/10.1016/j.matlet.2018.11.005.

    Article  CAS  Google Scholar 

  45. Liu D, Tang ZL, Zhang ZT. Nanoplates-assembled SnS2 nanoflowers for ultrasensitive ppb-level NO2 detection. Sens Actuators B Chem. 2018;273:473. https://doi.org/10.1016/j.snb.2018.06.031.

    Article  CAS  Google Scholar 

  46. Mishra RK, Choi GJ, Mishra YK, Kaushik A, Sohn Y, Lee SH, Gwag JS. A highly stable, selective, and high-performance VOC sensor using a SnS2 nano-lotus structure. J Mater Chem C. 2021;9(24):7713. https://doi.org/10.1039/D1TC00615K.

    Article  CAS  Google Scholar 

  47. Kumar A, Sharma N, Gutal AP, Kumar D, Kumar P, Paranjothy M, Kumar M. Growth and NO2 gas sensing mechanisms of vertically aligned 2D SnS2 flakes by CVD: experimental and DFT studies. Sens Actuators B Chem. 2022;353:131078. https://doi.org/10.1016/j.snb.2021.131078.

    Article  CAS  Google Scholar 

  48. Kim C, Park JC, Choi SY, Kim Y, Seo SY, Park TE, Kwon SH, Cho B, Ahn JH. Self-formed channel devices based on vertically grown 2D materials with large-surface-area and their potential for chemical sensor applications. Small. 2018;14(15):1704116. https://doi.org/10.1002/smll.201704116.

    Article  CAS  Google Scholar 

  49. Pyeon JJ, Baek IH, Song YG, Kim GS, Cho AJ, Lee GY, Han JH, Chung TM, Hwang CS, Kang CY, Kim SK. Highly sensitive flexible NO2 sensor composed of vertically aligned 2D SnS2 operating at room temperature. J Mater Chem C. 2020;8(34):11874. https://doi.org/10.1039/D0TC02242J.

    Article  CAS  Google Scholar 

  50. Rajbhar MK, De S, Sanyal G, Kumar A, Chakraborty B, Chatterjee S. Defect-engineered 3D nanostructured MoS2 for detection of ammonia gas at room temperature. ACS Appl Nano Mater. 2023;6(7):5284. https://doi.org/10.1021/acsanm.2c05361.

    Article  CAS  Google Scholar 

  51. Babariya B, Gupta SK, Gajjar PN. Role of defect engineering in revealing the electronic and sensing applications of Janus WSSe monolayer. J Mater Chem C. 2023;11(12):4219. https://doi.org/10.1039/D2TC03574J.

    Article  CAS  Google Scholar 

  52. Ghasemian MB, Zavabeti A, Mousavi M, Murdoch BJ, Christofferson AJ, Meftahi N, Tang JB, Han JL, Jalili R, Allioux FM, Mayyas M, Chen ZB, Elbourne A, McConville CF, Russo SP, Ringer S, Kalantar-Zadeh K. Doping process of 2D materials based on the selective migration of dopants to the interface of liquid metals. Adv Mater. 2021;33(43):2104793. https://doi.org/10.1002/adma.202104793.

    Article  CAS  Google Scholar 

  53. Zhao ZJ, Li W, Zeng Y, Huang XX, Yun C, Zhang B, Hou YL. Structure engineering of 2D materials toward magnetism modulation. Small Struct. 2021;2(10):2100077. https://doi.org/10.1002/sstr.202100077.

    Article  CAS  Google Scholar 

  54. Yang YC, Mao JP, Yin DM, Zhang TY, Liu CL, Hao WX, Wang Y, Hao JY. Synergy of S-vacancy and heterostructure in BiOCl/Bi2S3-x boosting room-temperature NO2 sensing. J Hazard Mater. 2023;455:131591. https://doi.org/10.1016/j.jhazmat.2023.131591.

    Article  CAS  Google Scholar 

  55. Zhao RM, Wang TX, Zhao MY, Xia CX, Zhao X, An YP, Dai XQ. A theoretical simulation of small-molecules sensing on an S-vacancy SnS2 monolayer. Phys Chem Chem Phys. 2017;19(16):10470. https://doi.org/10.1039/C7CP00336F.

    Article  CAS  Google Scholar 

  56. Qin ZY, Xu K, Yue HC, Wang H, Zhang J, Ouyang C, Xie CS, Zeng DW. Enhanced room-temperature NH3 gas sensing by 2D SnS2 with sulfur vacancies synthesized by chemical exfoliation. Sens Actuators B Chem. 2018;262:771. https://doi.org/10.1016/j.snb.2018.02.060.

    Article  CAS  Google Scholar 

  57. Kwon KC, Suh JM, Lee TH, Choi KS, Hong K, Song YG, Shim YS, Shokouhimehr M, Kang CY, Kim SY, Jang HW. SnS2 nanograins on porous SiO2 nanorods template for highly sensitive NO2 sensor at room temperature with excellent recovery. ACS Sens. 2019;4(3):678. https://doi.org/10.1021/acssensors.8b01253.

    Article  CAS  Google Scholar 

  58. Zhou JH, Xue K, Liu YD, Liang TT, Zhang PF, Zhang X, Zhang WT, Dai ZF. Highly sensitive NO2 response and abnormal P-N sensing transition with ultrathin Mo-doped SnS2 nanosheets. Chem Eng J. 2021;420:127572. https://doi.org/10.1016/j.cej.2020.127572.

    Article  CAS  Google Scholar 

  59. Qiu PL, Wang XY, Qin YX. S-vacancies and Ag nanoparticles in SnS2 nanoflakes for ethanol sensing: a combined experimental and theoretical investigation. ACS Appl Nano Mater. 2022;5(8):10839. https://doi.org/10.1021/acsanm.2c02153.

    Article  CAS  Google Scholar 

  60. Wu RZ, Hao JY, Wang TT, Zheng SL, Wang Y. Carbon-doping-induced energy-band modification and vacancies in SnS2 nanosheets for room-temperature ppb-level NO2 detection. Inorg Chem Front. 2021;8(23):5006. https://doi.org/10.1039/D1QI00930C.

    Article  CAS  Google Scholar 

  61. Sun Q, Gong ZM, Zhang YJ, Hao JY, Zheng SL, Lu W, Cui Y, Liu LZ, Wang Y. Synergically engineering defect and interlayer in SnS2 for enhanced room-temperature NO2 sensing. J Hazard Mater. 2022;421:126816. https://doi.org/10.1016/j.jhazmat.2021.126816.

    Article  CAS  Google Scholar 

  62. Min Y, Im E, Hwang GT, Kim JW, Ahn CW, Choi JJ, Hahn BD, Choi JH, Yoon WH, Park DS, Hyun DC, Moon GD. Heterostructures in two-dimensional colloidal metal chalcogenides: synthetic fundamentals and applications. Nano Res. 2019;12(8):1750. https://doi.org/10.1007/s12274-019-2432-6.

    Article  CAS  Google Scholar 

  63. Li R, Jiang K, Chen S, Lou Z, Huang TT, Chen D, Shen GZ. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. RSC Adv. 2017;7(83):52503. https://doi.org/10.1039/C7RA10537A.

    Article  CAS  Google Scholar 

  64. Xu K, Li N, Zeng DW, Tian SQ, Zhang SS, Hu D, Xie CS. Interface bonds determined gas-sensing of SnO2-SnS2 hybrids to ammonia at room temperature. ACS Appl Mater Interfaces. 2015;7(21):11359. https://doi.org/10.1021/acsami.5b01856.

    Article  CAS  Google Scholar 

  65. Bai JZ, Shen YB, Zhao SK, Li A, Kang ZK, Cui BY, Wei DZ, Yuan ZY, Meng FL. Room-temperature NH3 sensor based on SnO2 quantum dots functionalized SnS2 nanosheets. Adv Mater Technol. 2023;8:2201671. https://doi.org/10.1002/admt.202201671.

    Article  CAS  Google Scholar 

  66. Liu JB, Hu JY, Liu C, Tan YM, Peng X, Zhang Y. Mechanically exfoliated MoS2 nanosheets decorated with SnS2 nanoparticles for high-stability gas sensors at room temperature. Rare Met. 2021;40(6):1536. https://doi.org/10.1007/s12598-020-01565-4.

    Article  CAS  Google Scholar 

  67. Kuchi PS, Roshan H, Sheikhi MH. A novel room temperature ethanol sensor based on PbS:SnS2 nanocomposite with enhanced ethanol sensing properties. J Alloys Compd. 2020;816:152666. https://doi.org/10.1016/j.jallcom.2019.152666.

    Article  CAS  Google Scholar 

  68. Xu XH, Ma SY, Xu XL, Pei ST, Han T, Liu WW. Transformation synthesis of heterostructured SnS2/ZnS microspheres for ultrafast triethylamine detection. J Alloys Compd. 2021;868:159286. https://doi.org/10.1016/j.jallcom.2021.159286.

    Article  CAS  Google Scholar 

  69. Zheng W, Xu YS, Zheng LL, YangC PN, Liu XH, Zhang J. MoS2 van der Waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv Funct Mater. 2020;30:2000435. https://doi.org/10.1002/adfm.202000435.

    Article  CAS  Google Scholar 

  70. Sun Q, Wang JX, Hao JY, Zheng SL, Wan P, Wang TT, Fang HT, Wang Y. SnS2/SnS p-n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale. 2019;11(29):13741. https://doi.org/10.1039/c9nr02780g.

    Article  CAS  Google Scholar 

  71. Qin YX, Chen SH, Bai YA. Adsorption and sensing performance toward methanol vapor on SnS/SnS2 in-plane heterostructures. ACS Appl Electron Mater. 2022;4(1):158. https://doi.org/10.1021/acsaelm.1c00911.

    Article  CAS  Google Scholar 

  72. Zheng Y, Zhou TF, Zhang CF, Mao JF, Liu HK, Guo ZP. Boosted charge transfer in SnS/SnO2 heterostructures: toward high rate capability for sodium-ion batteries. Angew Chem Int Edit. 2016;55(10):3408. https://doi.org/10.1002/ange.201510978.

    Article  CAS  Google Scholar 

  73. Liu W, Gu D, Li XG. Ultrasensitive NO2 detection utilizing mesoporous ZnSe/ZnO heterojunction-based chemiresistive-type sensors. ACS Appl Mater Interfaces. 2019;11(32):29029. https://doi.org/10.1021/acsami.9b07263.

    Article  CAS  Google Scholar 

  74. Wang XD, Huang YH, Liao JF, Jiang Y, Zhou L, Zhang XY, Chen HY, Kuang DB. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J Am Chem Soc. 2019;141(34):13434. https://doi.org/10.1021/jacs.9b04482.

    Article  CAS  Google Scholar 

  75. Wang TT, Wang Y, Fan WQ, Wu RZ, Liang QH, Hao JY. Boosting room-temperature NO2 detection via in-situ interfacial engineering on Ag2S/SnS2 heterostructures. J Hazard Mater. 2022;434:128782. https://doi.org/10.1016/j.jhazmat.2022.128782.

    Article  CAS  Google Scholar 

  76. Wu RZ, Xin TZ, Wang Y, Wang TT, Liu LZ, Hao JY. A lateral built-in field of the 2D/2D SnS2/SnSe2 in-plane heterostructure with boosted interfacial charge transfer. J Mater Chem A. 2022;10(28):14810. https://doi.org/10.1039/d2ta03333j.

    Article  CAS  Google Scholar 

  77. Ma LF, Zhang XY, Wang J, Ikram M, Ullah M, Lv H, Wu HY, Shi KY. Controllable synthesis of an intercalated SnS2/aEG structure for enhanced NO2 gas sensing performance at room temperature. New J Chem. 2020;44(20):8650. https://doi.org/10.1039/d0nj01005g.

    Article  CAS  Google Scholar 

  78. Huang YF, Jiao WC, Chu ZM, Wang SY, Chen LY, Nie XM, Wang RG, He XD. High sensitivity, humidity-independent, flexible NO2 and NH3 gas sensors based on SnS2 hybrid functional graphene ink. ACS Appl Mater Interfaces. 2020;12(1):997. https://doi.org/10.1021/acsami.9b14952.

    Article  CAS  Google Scholar 

  79. Sun Q, Hao JY, Zheng SL, Wan P, Li JL, Zhang D, Li YQ, Wang TT, Wang Y. 2D/2D heterojunction of g-C3N4/SnS2: room-temperature sensing material for ultrasensitive and rapid-recoverable NO2 detection. Nanotechnology. 2020;31(42):425502. https://doi.org/10.1088/1361-6528/aba05b.

    Article  CAS  Google Scholar 

  80. Liang TT, Dai ZF, Liu YD, Zhang X, Zeng HB. Suppression of Sn2+ and lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Sci Bull. 2021;66(24):2471. https://doi.org/10.1016/j.scib.2021.07.007.

    Article  CAS  Google Scholar 

  81. He TT, Sun SP, Huang BY, Li XG. MXene/SnS2 heterojunction for detecting sub-ppm NH3 at room temperature. ACS Appl Mater Interfaces. 2023;15:4194. https://doi.org/10.1021/acsami.2c18097.

    Article  CAS  Google Scholar 

  82. Li F, Zeng ZQ, Wu MY, Liu LD, Li WL, Huang FB, Li W, Guan H, Geng WC. Room-temperature triethylamine sensing of a chemiresistive sensor based on Sm-doped SnS2/ZnS hierarchical microspheres. New J Chem. 2022;46(32):15701. https://doi.org/10.1039/d2nj02683j.

    Article  CAS  Google Scholar 

  83. Zheng SL, Li Y, Hao JY, Fang HT, Yuan Y, Tsai HS, Sun Q, Wan P, Zhang X, Wang Y. Hierarchical assembly of graphene-bridged SnO2-rGO/SnS2 heterostructure with interfacial charge transfer highway for high-performance NO2 detection. Appl Surf Sci. 2021;568:150926. https://doi.org/10.1016/j.apsusc.2021.150926.

    Article  CAS  Google Scholar 

  84. Chen TD, Yan WH, Wang Y, Li JL, Hu HB, Ho D. SnS2/MXene derived TiO2 hybrid for ultra-fast room temperature NO2 gas sensing. J Mater Chem C. 2021;9(23):7407. https://doi.org/10.1039/d1tc00197c.

    Article  CAS  Google Scholar 

  85. Lu GC, Liu XH, Zheng W, Xie JY, Li ZS, Lou CM, Lei GL, Zhang J. UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 2022;41(5):1520. https://doi.org/10.1007/s12598-021-01899-7.

    Article  CAS  Google Scholar 

  86. Cheng YF, Ren BY, Xu K, Jeerapan I, Chen H, Li Z, Ou JZ. Recent progress in intrinsic and stimulated room-temperature gas sensors enabled by low-dimensional materials. J Mater Chem C. 2021;9(9):3026. https://doi.org/10.1039/d0tc04196c.

    Article  CAS  Google Scholar 

  87. Lim K, Jo YM, Yoon JW, Kim JS, Lee DJ, Moon YK, Yoon JW, Kim JH, Choi HJ, Lee JH. A transparent nanopatterned chemiresistor: visible-light plasmonic sensor for trace-level NO2 detection at room temperature. Small. 2021;17(20):2100438. https://doi.org/10.1002/smll.202100438.

    Article  CAS  Google Scholar 

  88. Lu GC, Liu XH, Zheng W, Xie JY, Li ZS, Lou CM, Lei GL, Zhang J. UV-activated single-layer WSe2 for highly sensitive NO2 detection. Rare Met. 2022;41(5):1520. https://doi.org/10.1007/s12598-021-01899-7.

    Article  CAS  Google Scholar 

  89. Chen HW, Chen YT, Zhang H, Zhang DW, Zhou P, Huang J. Suspended SnS2 layers by light assistance for ultrasensitive ammonia detection at room temperature. Adv Funct Mater. 2018;28(20):1801035. https://doi.org/10.1002/adfm.201801035.

    Article  CAS  Google Scholar 

  90. Yan WJ, Chen DY, Fuh HR, Li YL, Zhang D, Liu HJ, Wu G, Zhang L, Ren XK, Cho J, Choi M, Chun BS, Coileain CO, Xu HJ, Wang Z, Jiang ZT, Chang CR, Wu HC. Photo-enhanced gas sensing of SnS2 with nanoscale defects. RSC Adv. 2019;9(2):626. https://doi.org/10.1039/c8ra08857h.

    Article  CAS  Google Scholar 

  91. Gu D, Wang XY, Liu W, Li XG, Lin SW, Wang J, Rumyantseva MN, Gaskov AM, Akbar SA. Visible-light activated room temperature NO2 sensing of SnS2 nanosheets based chemiresistive sensors. Sens Actuators B Chem. 2020;305:127455. https://doi.org/10.1016/j.snb.2019.127455.

    Article  CAS  Google Scholar 

  92. Eom TH, Cho SH, Suh JM, Kim T, Lee TH, Jun SE, Yang JW, Lee J, Hong SH, Jang HW. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. J Mater Chem A. 2021;9(18):11168. https://doi.org/10.1039/d1ta00953b.

    Article  CAS  Google Scholar 

  93. Saggu IS, Singh S, Chen KW, Xuan ZX, Swihart MT, Sharma S. Ultrasensitive room-temperature NO2 detection using SnS2/MWCNT composites and accelerated recovery kinetics by UV activation. ACS Sens. 2023;8:243. https://doi.org/10.1021/acssensors.2c02104.

    Article  CAS  Google Scholar 

  94. Huang YF, Jiao WC, Chu ZM, Ding GM, Yan ML, Zhong X, Wang RG. Ultrasensitive room temperature ppb-level NO2 gas sensors based on SnS2/rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance. J Mater Chem C. 2019;7(28):8616. https://doi.org/10.1039/c9tc02436k.

    Article  CAS  Google Scholar 

  95. Sun Q, Li YQ, Hao JY, Zheng SL, Zhang TY, Wang TT, Wu RZ, Fang HT, Wang Y. Increased active sites and charge transfer in the SnS2/TiO2 heterostructure for visible-light-assisted NO2 sensing. ACS Appl Mater Interfaces. 2021;13(45):54152. https://doi.org/10.1021/acsami.1c16095.

    Article  CAS  Google Scholar 

  96. Wang TT, Liu JY, Zhang YL, Liang QH, Wu RZ, Tsai HS, Wang Y, Hao JY. Bifunctional gas sensor based on Bi2S3/SnS2 heterostructures with improved selectivity through visible light modulation. J Mater Chem A. 2022;10(8):4306. https://doi.org/10.1039/d1ta10461f.

    Article  CAS  Google Scholar 

  97. Lei GL, Pan HY, Mei HS, Liu XH, Lu GC, Lou CM, Li ZS, Zhang J. Emerging single atom catalysts in gas sensors. Chem So Rev. 2022;51:7260. https://doi.org/10.1039/d2cs00257d.

    Article  CAS  Google Scholar 

  98. Chen XW, Shi J, Wang T, Zheng SY, Lv W, Chen XY, Yang JH, Zeng M, Hu NT, Su YJ, Wei H, Zhou ZH, Yang Z. High-performance wearable sensor inspired by the neuron conduction mechanism through gold-induced sulfur vacancies. ACS Sens. 2022;7(3):816. https://doi.org/10.1021/acssensors.1c02452.

    Article  CAS  Google Scholar 

  99. Quan WJ, Shi J, Luo HY, Fan C, Lv W, Chen XW, Zeng M, Yang JH, Hu NT, Su YJ, Wei H, Yang Z. Fully flexible MXene-based gas sensor on paper for highly sensitive room-temperature nitrogen dioxide detection. ACS Sens. 2023;8(1):103. https://doi.org/10.1021/acssensors.2c01748.

    Article  CAS  Google Scholar 

  100. Chen XW, Wang T, Shi J, Lv W, Han YT, Zeng M, Yang JH, Hu NT, Su YJ, Wei H, Zhou ZH, Yang Z, Zhang YF. A novel artificial neuron-like gas sensor constructed from CuS quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 2022;14(1):8. https://doi.org/10.1007/s40820-021-00740-1.

    Article  CAS  Google Scholar 

  101. Huang YF, Yang F, Liu SH, Wang RG, Guo JH, Ma X. Liquid metal-based epidermal flexible sensor for wireless breath monitoring and diagnosis enabled by highly sensitive SnS2 nanosheets. Research. 2021;2021:9847285. https://doi.org/10.34133/2021/9847285.

    Article  CAS  Google Scholar 

  102. Wu QJ, Feng ZG, Wang ZH, Peng ZC, Zhang L, Li YC. Visual chemiresistive dual-mode sensing platform based on SnS2/Ti3C2 MXene Schottky junction for acetone detection at room temperature. Talanta. 2023;253:124063. https://doi.org/10.1016/j.talanta.2022.124063.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Reform and Development Fund Project of Local University supported by the Central Government, the National Natural Science Foundation of China (No. 21771060), Heilongjiang Provincial Natural Science Foundation of China (No. LH2023B021), the Basic Scientific Research Expenses of Colleges and Universities in Heilongjiang Province (No. 2022-KYYWF-1106) and New Era Excellent Master’s and Doctoral Dissertations of Heilongjiang Province (No. LJYXL2022-019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Li Cheng or Ying-Ming Xu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TT., Xing, BS., Guo, CY. et al. Recent advances of emerging tin disulfide for room temperature gas sensing. Rare Met. 42, 3897–3913 (2023). https://doi.org/10.1007/s12598-023-02484-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02484-w

Keywords

Navigation