Skip to main content

Chemically Synthesized Novel Materials for Gas-Sensing Applications Based on Metal Oxide Nanostructure

  • Chapter
  • First Online:
Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Abstract

Most homes and industrial places require a tool for detecting destructive and toxic gases very dangerous to production, human, animals and plants which brings about fabrication of detecting device capable of sense and detecting harmful gases as well as alerting users for suitable precautionary measures. Several on going studies indicates that on now metal oxide nanostructures application as gas sensors is flourishing worldwide. The prominence of nanostructured materials-established gas sensor has attracted interest of numerous research populations, because of their excellent reproducibility, high sensitivity, portability and cheap and non-toxic nature. Here, synthesis techniques, performance and application of p-type semiconducting metal oxides as gas sensors were evaluated. Also discussed were fundamental gases-sensing features of these nanostructured materials. The history, development and progress of nanostructured material gas sensors with emphasis on recent innovative researches towards enhancing their performances are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Industry analysis report, 2018–2025. https://www.grandviewresearch.com/industry-analysis/gassensors

  2. Obodo RM, Shinde NM, Chime UK, Ezugwu SC, Nwanya AC, Ahmad I, Maaza M, Ejikeme PM, Ezema FI (2020) Recent advances in metal oxide/hydroxide on three-dimensional nickel foam substrate for high-performance pseudocapacitive electrodes. Curr Opin Electrochem 21:242–249

    Google Scholar 

  3. Obodo RM, Nwanya AC, Iroegbu C, Ahmad I, Ekwealor ABC, Osuji RU, Maaza M, Ezema FI (2020) Int J Energy Res 44:6792–6803

    Article  CAS  Google Scholar 

  4. Yamazoe N, Sakai G, Shimanoe K (2003) Catal Surv Asia 7:63–75

    Article  CAS  Google Scholar 

  5. Kim H-J, Lee J-H (2014) Sens Actuators B 192:607–627

    Article  CAS  Google Scholar 

  6. Obodo RM, Nwanya AC, Arshad M, Iroegbu C, Ahmad I, Osuji RU, Maaza M, Ezema FI (2020) Int J Energy Res 44:3192–3202

    Article  CAS  Google Scholar 

  7. Kim TH, Yoon J-W, Kang YC, Abdel-Hady F, Wazzan A, Lee J-H (2017) Sens Actuators B 240:1049–1057

    Article  CAS  Google Scholar 

  8. Korotcenkov G (2008) Mater Sci Eng R 61:1–39

    Article  CAS  Google Scholar 

  9. Brinzari V, Korotcenkov G, Golovanov V (2001) Thin Solid Films 391:167–175

    Article  CAS  Google Scholar 

  10. Korotcenkov G, Macsanov V, Brinzari V, Tolstoy V, Schwank J, Cornet A, Morante J (2004) Thin Solid Films 467:209–214

    Article  CAS  Google Scholar 

  11. Choi JK, Hwang I-S, Kim S-J, Park J-S, Park S-S, Jeong U, Kang YC, Lee J-H (2010) Sens Actuators B 150:191–199

    Article  CAS  Google Scholar 

  12. Kim HR, Haensch A, Kim ID, Barsan N, Weimar U, Lee JH (2011) Adv Funct Mater 21:4456–4463

    Article  CAS  Google Scholar 

  13. Jeong S-Y, Yoon J-W, Kim T-H, Jeong H-M, Lee C-S, Kang YC, Lee J-H (2017) J Mater Chem A 5:1446–1454

    Article  CAS  Google Scholar 

  14. Chandra L, Dwivedi R, Mishra V (2017) Mater Res Exp 4:105030

    Article  Google Scholar 

  15. Li F, Guo S, Shen J, Shen L, Sun D, Wang B, Chen Y, Ruan S. Xylene gas sensor based on Au-loaded WO3 H2O nanocubes with enhanced sensing performance. Sens Actuators

    Google Scholar 

  16. Hooker SA (2002) Nanotechnology advantages applied in gas sensor development. In: The nanoparticles 2002 conference proceedings, USA

    Google Scholar 

  17. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012) A survey on gas sensing technology. Sensor 12:9635–9665

    Article  CAS  Google Scholar 

  18. Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chem Acta 568:28–40

    Article  CAS  Google Scholar 

  19. Korotcenkov G (2007) Metal oxides for solid-state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23

    Article  CAS  Google Scholar 

  20. Obodo RM, Nwanya AC, Ekwealor ABC, Ahmad I, Zhao T, Maaza M, Ezema FI (2019) Surf Interfaces 16:114–119

    Article  CAS  Google Scholar 

  21. Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, Tuantranont A, Phanichphant S, Wisitsoraat A (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B 160:580–591

    Article  CAS  Google Scholar 

  22. Patil SJ, Patil AV, Dighavkar VG, Thakare KS, Borase RY, Nandre SJ, Deshpande NG, Ahire RR (2015) Front Mater Sci 9:14–37

    Article  Google Scholar 

  23. Obodo RM, Ahmad A, Jain G, Ahmad I, Maaza M, Ezema FI (2020) Mater Sci Energy Technol 3:193–200

    CAS  Google Scholar 

  24. Yamazoe N, Shimanoe K (2002) Theory of power laws for semiconductor gas sensors. Sens Actuators B 128:566–573

    Article  CAS  Google Scholar 

  25. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  CAS  Google Scholar 

  26. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  27. Hoefer U, Böttner H, Felske A, Kühner G, Steiner K, Sulz G (1997) Thin-film SnO2 sensor arrays controlled by variation of contact potential—a suitable tool for chemometric gas mixture analysis in the TLV range. Sens Actuators B 44:429–433

    Article  CAS  Google Scholar 

  28. Fraiwan L, Lweesy K, Bani-Salma A, Mani N (2011) A wireless home safety gas leakage detection system. In: Proceedings of the 1st Middle East conference on biomedical engineering (MECBME), Sharjah, United Arab Emirates, 21–24 February 2011, pp 11–14

    Google Scholar 

  29. Hallil H, Chebila F, Menini P, Pons P, Aubert H (2010) Feasibility of wireless gas detection with an FMCW RADAR interrogation of passive RF gas sensor. In: Proceedings of 2010 IEEE sensors, Kona, HI, USA, 1–4 November 2010, pp 759–762

    Google Scholar 

  30. Niskanen AJ, Varpula A, Utriainen M, Natarajan G, Cameron DC, Novikov S, Airaksinen V, Sinkkonen J, Franssila S (2010) Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors. Sens Actuators B 148:227–232

    Article  CAS  Google Scholar 

  31. Berger F, Sanchez J, Heintz O (2009) Detection of hydrogen fluoride using SnO2-based gas sensors: understanding of the reactional mechanism. Sens Actuators B 143:152–157

    Article  CAS  Google Scholar 

  32. Kwan TN, Boussaid F, Bermak A (2011) A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays. IEEE Trans Circuit Syst I 58:1569–1580

    Google Scholar 

  33. Mirzaei A, Leonard SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceramics Int 42(14):15119–15141

    Article  CAS  Google Scholar 

  34. Givargizov EI (1975) Fundamental aspects of VLS growth. J Cryst Growth 31:20–30

    Article  CAS  Google Scholar 

  35. Obodo RM, Nwanya AC, Iroegbu C, Ezekoye BA, Ekwealor ABC, Ahmad I, Maaza M, Ezema FI (2020) Adv Powder Technol 31:1728–1735

    Article  CAS  Google Scholar 

  36. Robertson J (2006) High dielectric constant gate oxides for metal oxide Si transistors. Rep Prog Phys 69:327

    Article  CAS  Google Scholar 

  37. Emeline AV, Kataeva GV, Panasuk AV, Ryabchuk VK, Sheremetyeva NV, Serpone N (2005) Effect of surface photoreactions on the photocoloration of a wide band gap metal oxide: probing whether surface reactions are photocatalytic. J Phys Chem B 109:5175–5185

    Article  CAS  Google Scholar 

  38. Korotcenkov GC (2013) Engineering approaches for the improvement of conductometric gas sensor parameters. Sens Actuator B Chem 188:709–728

    Article  CAS  Google Scholar 

  39. Korotcenkov GC (2014) Engineering approaches to improvement of conductometric gas sensor parameters: II. Decrease of dissipated (consumable) power and improvement stability and reliability. Sens Actuator B Chem 198:316–341

    Article  CAS  Google Scholar 

  40. Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 10:5469–5502. https://doi.org/10.3390/s100605469

    Article  CAS  Google Scholar 

  41. Wang H, Rogach A (2013) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133. https://doi.org/10.1021/cm4018248

    Article  CAS  Google Scholar 

  42. Zhang H, Zeng W, Hao J, Li Y, Miao B (2015) Hydrothermal synthesis of flower-like SnO2 architectures with superior gas sensing properties. J Mater Lett 145:133–136. https://doi.org/10.1016/j.matlet.2015.01.098

    Article  CAS  Google Scholar 

  43. Inyawilert K, Wisitsoraat A, Sriprachaubwong C, Tuantranont A, Phanichphant S, Liewhiran C (2015) Rapid ethanol sensor based on electrolytically exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sens Actuators B Chem 209:40–55. https://doi.org/10.1016/j.snb.2014.11.086

    Article  CAS  Google Scholar 

  44. Leite ER, Weber IT, Longo E, Varela JA (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12:965–968. https://doi.org/10.1002/1521

    Article  CAS  Google Scholar 

  45. Pang G, Chen S, Koltypin Y, Zaban A, Feng S, Gedanken A (2001) Controlling the particle size of calcined SnO2 nanocrystals. Nano Lett 1:723–726. https://doi.org/10.1021/nl0156181

    Article  CAS  Google Scholar 

  46. Illyaskutty N, Knoblauch J, Schwotzer M, Kohler H (2015) Thermally modulated multi sensor arrays of SnO2/additive/electrode combinations for enhanced gas identification. Sens Actuators B Chem 217:2–12. https://doi.org/10.1016/j.snb.2015.03.018

    Article  CAS  Google Scholar 

  47. Ionescu R, Llobet E, Al-Khalifa S, Gardner JW, Vilanova X, Brezmes J, Correig X (2003) Response model for thermally modulated tin oxide-based microhotplate gas sensors. Sens Actuators B 95:203–211. https://doi.org/10.1016/S0925-4005(03)00420-9

    Article  CAS  Google Scholar 

  48. Boroun Z, Ghorbani M, Mohammadpour R, Moosavi A (2017) Origin of working temperature in H2S sensing process of SnO2-CuO thin bilayer: a theoretical macroscopic approach. Sens Actuators B Chem. 252:944–950. https://doi.org/10.1016/j.snb.2017.05.165

    Article  CAS  Google Scholar 

  49. Yu JH, Choi GM (1998) Electrical and CO gas sensing properties of ZnO-SnO2 composites. Sens Actuators B Chem. 52:251–256. https://doi.org/10.1016/S0925-4005(98)00275-5

    Article  CAS  Google Scholar 

  50. Hemmati S, Firooz AA, Khodadadi AA, Mortazavi Y (2011) Nanostructured SnO2-ZnO sensors: highly sensitive and selective to ethanol. Sens Actuators B Chem 160:1298–1303. https://doi.org/10.1016/j.snb.2011.09.065

    Article  CAS  Google Scholar 

  51. Tang W (2017) Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects. J Phys D Appl Phys 50:475105. https://doi.org/10.1088/1361-6463/aa90b5

    Article  CAS  Google Scholar 

  52. Zhang Z, Xu M, Liu L, Ruan X, Yan J, Zhao W, Yun J, Wang Y, Qin S, Zhang T (2018) Novel SnO2@ ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing. Sens Actuators B Chem 257:714–727. https://doi.org/10.1016/j.snb.2017.10.190

    Article  CAS  Google Scholar 

  53. Liu B, Li Y, Gao L, Zhou F, Duan G (2018) Ultrafine Pt NPs-decorated SnO2/a-Fe2O3 hollow nanospheres with highly enhanced sensing performances for styrene. J Hazard Mater 358:355–365. https://doi.org/10.1016/j.jhazmat.2018.07.021

    Article  CAS  Google Scholar 

  54. Zhang B, Fu W, Meng X, Ruan A, Su P, Yang H (2018) Enhanced ethanol sensing properties based on spherical-coral-like SnO2 nanorods decorated with a-Fe2O3 nanocrystallites. Sens Actuators B Chem. 261:505e514. https://doi.org/10.1016/j.snb.2018.01.133

    Article  CAS  Google Scholar 

  55. Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylaminesensing properties of NiO/SnO2 hollow sphere PeN heterojunction sensors. Sens Actuators B Chem 215:39–44. https://doi.org/10.1016/j.snb.2015.03.015

    Article  CAS  Google Scholar 

  56. Bai S, Liu C, Luo R, Chen A (2018) Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of trimethylamine. Appl Surf Sci 437:304–313. https://doi.org/10.1021/acsami.7b17669

    Article  CAS  Google Scholar 

  57. Wei W, Dai Y, Huang B (2011) Role of Cu doping in SnO2 sensing properties toward H2S. J Phys Chem C 115:18597–18602. https://doi.org/10.1021/jp204170j

    Article  CAS  Google Scholar 

  58. Li W, Shen C, Wu G, Ma Y, Gao Z, Xia X, Du G (2011) New model for a Pd-doped SnO2-based CO gas sensor and catalyst studied by online in-situ X-ray photoelectron spectroscopy. J Phys Chem C 115:21258–21263. https://doi.org/10.1021/jp2068733

    Article  CAS  Google Scholar 

  59. Kocemba I, Rynkowski J (2011) The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen. Sens Actuators B Chem 155:659–666. https://doi.org/10.1016/j.snb.2011.01.026

    Article  CAS  Google Scholar 

  60. Hoa ND, Tong PV, Duy NV, Dao TD, Chung HV, Nagao T, Hieu NV (2014) Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J Hazard Mater 265:124–132. https://doi.org/10.1016/j.jhazmat.2013.11.054

    Article  CAS  Google Scholar 

  61. Absalan S, Nasresfahani S, Sheikhi MH (2019) High-performance carbon monoxide gas sensor based on palladium/tin oxide/porous graphitic carbon nitride nanocomposite. J Alloys Compd 795:79–90. https://doi.org/10.1016/j.jallcom.2019.04.187

    Article  CAS  Google Scholar 

  62. Lee SC, Hwang BW, Lee SJ, Choi HY, Kim SY, Jung SY, Ragupathy D, Lee DD, Kim JC (2011) A novel tin oxide-based recoverable thick film SO2 gas sensor promoted with magnesium and vanadium oxides. Sens Actuators B 160:1328–1334. https://doi.org/10.1016/j.snb.2011.09.070

    Article  CAS  Google Scholar 

  63. Obodo RM, Onah EO, Nsude HE, Agbogu A, Nwanya AC, Ahmad I, Zhao T, Ejikeme PM, Maaza M, Ezema FI (2020) Performance evaluation of graphene oxide based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO electrodes for supercapacitors. Electroanalysis 32:1–10

    Article  CAS  Google Scholar 

  64. Le-jiao Y, De-liang Q, Fei Y, Shou-gang C, Yan-sheng Y (2011) 3D flowerlike ZnO micro-nanostructures via sitespecific second nucleation in the zinc–ethylenediamine– hexamethylenetetramine tertiary system. Mater Sci Semicond Process 14:193–198

    Article  CAS  Google Scholar 

  65. Choo TF, Saidin NU, Kok KY (2018) Hydrogen sensing enhancement of zinc oxide nanorods via voltage biasing. R Soc Open Sci 5:172372

    Article  CAS  Google Scholar 

  66. Rout CS, Hari Krishna S, Vivekchand SRC, Govindaraj A, Rao CNR (2006) Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chem Phys Lett 418:586–590

    Article  CAS  Google Scholar 

  67. Lupan O, Chai G, Chow L (2008) Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron Eng 85:2220–2225

    Article  CAS  Google Scholar 

  68. Huang F-C, Chen Y-Y, Wu T-T (2009) A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods. Nanotechnology 20(6):065501

    Article  CAS  Google Scholar 

  69. Huh J, Pwark J, Kim GT, Park JY (2011) Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth. Nanotechnology 22:085502

    Article  CAS  Google Scholar 

  70. Banerjee N, Roy S, Sarkar Bhattacharyya CK (2013) Pd modified ZnO nanorod based high dynamic range hydrogen sensor. In: Proceedings of the 13th IEEE international conference on nanotechnology Beijing, China, August 5–8, 2013.

    Google Scholar 

  71. Hassan JJ, Mahdi MA, Kasim SJ, Ahmed NM, Hassan HA, Hassan Z (2013) Fast UV detection and hydrogen sensing by ZnO nanorod arrays grown on a flexible Kapton tape. Mater Sci Poland 31:180–185

    Article  CAS  Google Scholar 

  72. Kashif M, Ali ME, Usman SM, Hashim Ali U (2013) Sol–gel synthesis of Pd doped ZnO nanorods for room temperature hydrogen sensing applications. Ceram Int 39(6):6461–6466

    Article  CAS  Google Scholar 

  73. Ranwa S, Kulriya PK, Sahu VK, Kukreja LM, Kumar M (2014) Defect-free ZnO nanorods for low temperature hydrogen sensor applications. Appl Phys Lett 105:213103

    Article  CAS  Google Scholar 

  74. Ranwa S, Kumar M, Singh J, Fanetti M, Kumar M (2015) Schottky-contacted vertically self-aligned ZnO nanorods for hydrogen gas nanosensor applications. J Appl Phys 118:034509

    Article  CAS  Google Scholar 

  75. Sinha M, Mahapatra R, Mondal B, Maruyama T, Ghosh R (2016) Ultra-fast and reversible gas sensing properties of ZnO nanowire arrays grown by hydrothermal technique. J Phys Chem C 120:3019–3025

    Article  CAS  Google Scholar 

  76. Eranna G (2011) Metal oxide nanostructures as gas sensing devices. CRC Press, Boca Raton, p 316. ISBN 978-1-4398-6340-4

    Google Scholar 

  77. Choo TF, Saidin NU, Kok KY (2018) A novel self-heating zinc oxide/indium tin oxide based hydrogen gas sensor: dual sensing mode of hydrogen gas detection. Chem Phys Lett 713:180–184

    Article  CAS  Google Scholar 

  78. Zubair N, Akhtar K (2019) High performance room temperature gas sensor based on novel morphology of zinc oxide nanostructures. Trans Nonferrous Met Soc Chin 29:143–156

    Article  CAS  Google Scholar 

  79. Gao H, Yu Q, Chen K, Sun P, Liu F, Yan X, Liu F, Lu G (2019) Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. J Colloid Interface Sci 535:458–468. https://doi.org/10.1016/j.jcis.2018.10.010

    Article  CAS  Google Scholar 

  80. Basyooni MA, Zaki SE, Ertugrul S, Yilmaz M, Eker YR (2020) Fast response of CO2 room temperature gas sensor based on mixed-valence phases in molybdenum and tungsten oxide nanostructured thin films. Ceram Int 46:9839–9853

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian I. Ezema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iwueke, D.C., Obodo, R.M., Iroegbu, C., Ahmad, I., Ezema, F.I. (2021). Chemically Synthesized Novel Materials for Gas-Sensing Applications Based on Metal Oxide Nanostructure. In: Ezema, F.I., Lokhande, C.D., Jose, R. (eds) Chemically Deposited Nanocrystalline Metal Oxide Thin Films. Springer, Cham. https://doi.org/10.1007/978-3-030-68462-4_28

Download citation

Publish with us

Policies and ethics