Skip to main content
Log in

Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a new class of two-dimensional materials, two-dimensional (2D) heterostructures constructed from metal chalcogenides (MCs) have been gaining tremendous attention due to their unprecedented physical and chemical phenomena, mainly originated from their distinct structural features such as composition, architecture type, spatial arrangement of each component, crystal structure, exposed facet and interface, dimensionality in their heterostructures. Towards the realization of practical applications, synthetic approaches need a rational design with a variety of architecture types including laterally-combined, vertically-aligned, and conformally-coated 2D MC heterostructures. Among various synthetic routes, solution-based synthesis is thought of as an alternative to fabrication through high-cost setups since it can control those structural features in a cheap fashion. This review presents recent progress on solution-based synthesis to produce various 2D MC heterostructures with a focus on the synthetic fundamentals in terms of thermodynamic and kinetic aspects related to the growth mechanism. Four different synthetic approaches are reviewed: seeded growth, cation exchange reaction, colloidal atomic layer deposition, direct synthesis including one-step process and modified electrochemical method. We also provide some representative applications of 2D MC heterostructures and their hybrid composites in various fields including optoelectronics, thermoelectrics, catalysis, and battery. Finally, we offer an insight into challenges and future directions in a synthetic improvement of 2D MC heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Google Scholar 

  2. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Google Scholar 

  3. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–721.

    Google Scholar 

  4. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Google Scholar 

  5. Zhang, X. D.; Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187–8199.

    Google Scholar 

  6. Tan, C. L.; Zhang, H. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nat. Commun. 2015, 6, 7873.

    Google Scholar 

  7. Fan, Z. X.; Huang, X.; Tan, C. L.; Zhang, H. Thin metal nanostructures: Synthesis, properties and applications. Chem. Sci. 2015, 6, 95–111.

    Google Scholar 

  8. Lhuillier, E.; Pedetti, S.; Ithurria, S.; Nadal, B.; Heuclin, H.; Dubertret, B. Two-dimensional colloidal metal chalcogenides semiconductors: Synthesis, spectroscopy, and applications. Acc. Chem. Res. 2015, 48, 22–30.

    Google Scholar 

  9. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Google Scholar 

  10. Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.

    Google Scholar 

  11. Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

    Google Scholar 

  12. Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.

    Google Scholar 

  13. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Google Scholar 

  14. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Google Scholar 

  15. Chen, X. L.; Wu, Y. Y.; Wu, Z. F.; Han, Y.; Xu, S. G.; Wang, L.; Ye, W. G.; Han, T. Y.; He, Y. H.; Cai. Y. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 2015, 6, 7315.

    Google Scholar 

  16. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

    Google Scholar 

  17. Naylor, C. H.; Parkin, W. M.; Gao, Z. L.; Berry, J.; Zhou, S. S.; Zhang, Q. C.; McClimon, J. B.; Tan, L. Z.; Kehayias, C. E.; Zhao, M. Q. et al. Synthesis and physical properties of phase-engineered transition metal dichalcogenide monolayer heterostructures. ACS Nano 2017, 11, 8619–8627.

    Google Scholar 

  18. Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Dan, J. D.; Zhou, W.; Pennycook, S. J.; Castro Neto, A. H. et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 2018, 12, 7562–7570.

    Google Scholar 

  19. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Google Scholar 

  20. Tan, C. L.; Zeng, Z. Y.; Huang, X.; Rui, X. H.; Wu, X. J.; Li, B.; Luo, Z. M.; Chen, J. Z.; Chen, B.; Yan, Q. Y. et al. Liquid-phase epitaxial growth of two-dimensional semiconductor hetero-nanostructures. Angew. Chem., Int. Ed. 2015, 54, 1841–1845.

    Google Scholar 

  21. Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J. W.; Kim, S. I.; Lee, K. H.; Jeong, U. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS Nano 2015, 9, 6843–6853.

    Google Scholar 

  22. Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of twodimensional heterostructures. Chem 2018, 4, 671–689.

    Google Scholar 

  23. Withers, F.; Yang, H.; Britnell, L.; Rooney, A. P.; Lewis, E.; Felten, A.; Woods, C. R.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A. et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992.

    Google Scholar 

  24. Hu, G. H.; Albrow-Owen, T.; Jin, X. X.; Ali, A.; Hu, Y. W.; Howe, R. C. T.; Shehzad, K.; Yang, Z. Y.; Zhu, X. K.; Woodward, R. I. et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nat. Commun. 2018, 8, 278.

    Google Scholar 

  25. Jo, S.; Choo, S.; Kim, F.; Heo, S. H.; Son, J. S. Ink processing for thermoelectric materials and power-generating devices. Adv. Mater. 2018, 28, e1804930.

    Google Scholar 

  26. Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

    Google Scholar 

  27. Yan, Y. C.; Shan, H.; Li, G.; Xiao, F.; Jiang, Y. Y.; Yan, Y. Y.; Jin, C. H.; Zhang, H.; Wu, J. B.; Yang, D. R. Epitaxial growth of multimetallic Pd@PtM (M = Ni, Rh, Ru) core-shell nanoplates realized by in situ-produced CO from interfacial catalytic reactions. Nano Lett. 2016, 16, 7999–8004.

    Google Scholar 

  28. Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Wang, J.; Yu, A. M. Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 2018, 6, 13509–13537.

    Google Scholar 

  29. Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.

    Google Scholar 

  30. Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.

    Google Scholar 

  31. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

    Google Scholar 

  32. Li, Q. Y.; Xu, Z. H.; McBride, J. R.; Lian, T. Q. Low threshold multiexciton optical gain in colloidal CdSe/CdTe core/crown type-II nanoplatelet heterostructures. ACS Nano 2017, 11, 2545–2553.

    Google Scholar 

  33. Dufour, M.; Steinmetz, V.; Izquierdo, E.; Pons, T.; Lequeux, N.; Lhuillier, E.; Legrand, L.; Chamarro, M.; Barisien, T.; Ithurria, S. Engineering bicolor emission in 2D core/crown CdSe/CdSe1−xTex nanoplatelet heterostructures using band-offset tuning. J. Phys. Chem. C 2017, 121, 24816–24823.

    Google Scholar 

  34. Lhuillier, E.; Robin, A.; Ithurria, S.; Aubin, H.; Dubertret, B. Electrolytegated colloidal nanoplatelets-based phototransistor and its use for bicolor detection. Nano Lett. 2014, 14, 2715–2719.

    Google Scholar 

  35. Wang, X. S.; Wang, Z. W.; Zhang, J. D.; Wang, X.; Zhang, Z. P.; Wang, J. L.; Zhu, Z. H.; Li, Z. Y.; Liu, Y.; Hu, X. F. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 2018, 9, 3611.

    Google Scholar 

  36. Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed twodimensional MoS2 nanosheets: Preparation, hybridization, and application. Angew. Chem., Int. Ed. 2016, 55, 8816–8838.

    Google Scholar 

  37. Lu, Q. P.; Yu, Y. F.; Ma, Q. L.; Chen, B.; Zhang, H. 2D transition-metaldichalcogenide- nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917–1933.

    Google Scholar 

  38. Min, Y.; Moon, G. D.; Kim, C. E.; Lee, J. H.; Yang, H.; Soon, A.; Jeong, U. Solution-based synthesis of anisotropic metal chalcogenide nanocrystals and their applications. J. Mater. Chem. C 2014, 2, 6222–6248.

    Google Scholar 

  39. Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.

    Google Scholar 

  40. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    Google Scholar 

  41. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    Google Scholar 

  42. Liu, X. L.; Hersam, M. C. Interface characterization and control of 2D materials and heterostructures. Adv. Mater. 2018, 30, 1801586.

    Google Scholar 

  43. Ekimov, A. I.; Onushchenko, A. A. Quantum size effect in three-dimensional microscopic semiconductor crystals. J. Exp. Theor. Phys. Lett. 1981, 34, 345–349.

    Google Scholar 

  44. Efros, Al. L.; Efros, A. L. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 1982, 16, 772–775.

    Google Scholar 

  45. Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–5571.

    Google Scholar 

  46. Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

    Google Scholar 

  47. Feng, X. M.; Hu, G. Q.; Hu, J. Q. Solution-phase synthesis of metal and/or semiconductor homojunction/heterojunction nanomaterials. Nanoscale 2011, 3, 2099–2117.

    Google Scholar 

  48. Min, Y.; Kwak, J.; Soon, A.; Jeong, U. Nonstoichiometric nucleation and growth of multicomponent nanocrystals in solution. Acc. Chem. Res. 2014, 47, 2887–2893.

    Google Scholar 

  49. Brochard-Wyart, F.; Di Meglio, J. M.; Quéré, D.; De Gennes, P. G. Spreading of nonvolatile liquids in a continuum picture. Langmuir 1991, 7, 335–338.

    Google Scholar 

  50. Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

    Google Scholar 

  51. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Google Scholar 

  52. Xia, Y. N.; Xia, X. H.; Peng, H. C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015, 137, 7947–7966.

    Google Scholar 

  53. Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

    Google Scholar 

  54. Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

    Google Scholar 

  55. Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; Xie, Z. X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 2015, 9, 961–968.

    Google Scholar 

  56. Antanovich, A. V.; Prudnikau, A. V.; Melnikau, D.; Rakovich, Y. P.; Chuvilin, A.; Woggon, U.; Achtstein, A. W.; Artemyev, M. V. Colloidal synthesis and optical properties of type-II CdSe-CdTe and inverted CdTe-CdSe core-wing heteronanoplatelets. Nanoscale 2015, 7, 8084–8092.

    Google Scholar 

  57. Yadav, S.; Singh, A.; Sapra, S. Long-lived emission in type-II CdS/ZnSe core/crown nanoplatelet heterostructures. J. Phys. Chem. C 2017, 121, 27241–27246.

    Google Scholar 

  58. Fei, F. C.; Wei, Z. X.; Wang, Q. J.; Lu, P. C.; Wang, S. B.; Qin, Y. Y.; Pan, D. F.; Zhao, B.; Wang, X. F.; Sun, J. et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911.

    Google Scholar 

  59. Liang, L. X.; Deng, Y.; Wang, Y.; Gao, H. L. Epitaxial formation of coreshell heterostructured Bi2Te3@Sb2Te3 hexagonal nanoplates. J. Nanopart. Res. 2014, 16, 2138.

    Google Scholar 

  60. Polovitsyn, A.; Dang, Z. Y.; Movilla, J. L.; Martín-García, B.; Khan, A. H.; Bertrand, G. H. V.; Brescia, R.; Moreels, I. Synthesis of air-stable CdSe/ZnS core-shell nanoplatelets with tunable emission wavelength. Chem. Mater. 2017, 29, 5671–5680.

    Google Scholar 

  61. Lin, Z. Y.; Yin, A. X.; Mao, J.; Xia, Y.; Kempf, N.; He, Q. Y.; Wang, Y. L.; Chen, C. Y.; Zhang, Y. L.; Ozolins, V. et al. Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2016, 2, e1600993.

    Google Scholar 

  62. Li, S. K.; Xin, C.; Liu, X. R.; Feng, Y. C.; Liu, Y. D.; Zheng, J. X.; Liu, F. S.; Huang, Q. Z.; Qiu, Y. M.; He, J. Q. et al. 2D hetero-nanosheets to enable ultralow thermal conductivity by all scale phonon scattering for highly thermoelectric performance. Nano Energy 2016, 30, 780–789.

    Google Scholar 

  63. Sun, D.; Schaak, R. E. Solution-mediated growth of two-dimensional SnSe@GeSe nanosheet heterostructures. Chem. Mater. 2017, 29, 817–822.

    Google Scholar 

  64. Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. N.; Jeong, U. Chemical transformations of nanostructured materials. Nano Today 2011, 6, 186–203.

    Google Scholar 

  65. Moon, G. D.; Ko, S.; Xia, Y.; Jeong, U. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 2010, 4, 2307–2319.

    Google Scholar 

  66. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

    Google Scholar 

  67. Camargo, P. H. C.; Lee, Y. H.; Jeong, U.; Zou, Z. Q.; Xia, Y. N. Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 2007, 23, 2985–2992.

    Google Scholar 

  68. Rivest, J. B.; Jain, P. K. Cation exchange on the nanoscale: An emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 2013, 42, 89–96.

    Google Scholar 

  69. Gupta, S.; Kershaw, S. V.; Rogach, A. L. 25th anniversary article: Ion exchange in colloidal nanocrystals. Adv. Mater. 2013, 25, 6923–6944.

    Google Scholar 

  70. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Google Scholar 

  71. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Google Scholar 

  72. De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

    Google Scholar 

  73. Wark, S. E.; Hsia, C. H.; Son, D. H. Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 2008, 130, 9550–9555.

    Google Scholar 

  74. Bouet, C.; Laufer, D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Patriarche, G.; Dubertret, B. Synthesis of zinc and lead chalcogenide core and core/shell nanoplatelets using sequential cation exchange reactions. Chem. Mater. 2014, 26, 3002–3008.

    Google Scholar 

  75. Zhang, H. T.; Savitzky, B. H.; Yang, J.; Newman, J. T.; Perez, K. A.; Hyun, B. R.; Kourkoutis, L. F.; Hanrath, T.; Wise, F. W. Colloidal synthesis of PbS and PbS/CdS nanosheets using acetate-free precursors. Chem. Mater. 2016, 28, 127–134.

    Google Scholar 

  76. Khan, S.; Jiang, Z. F.; Premathilka, S. M.; Antu, A.; Hu, J. J.; Voevodin, A. A.; Roland, P. J.; Ellingson, R. J.; Sun, L. F. Few-atom-thick colloidal PbS/CdS core/shell nanosheets. Chem. Mater. 2016, 28, 5342–5346.

    Google Scholar 

  77. Barman, D.; Ghosh, S.; Paul, S.; Dalal, B.; De, S. K. Cation exchangemediated synthesis of library of plasmomagnetic nanoheterostructures: Transformation of 2-dimensional-shaped Fe7S8 nanoplates to Cu-Fe-S-based ternary compound. Chem. Mater. 2018, 30, 5550–5560.

    Google Scholar 

  78. Lee, S.; Baek, S.; Park, J. P.; Park, J. H.; Hwang, D. Y.; Kwak, S. K.; Kim, S. W. Transformation from Cu2−xS nanodisks to Cu2−xS@CuInS2 heteronanodisks via cation exchange. Chem. Mater. 2016, 28, 3337–3344.

    Google Scholar 

  79. Park, J.; Park, J.; Lee, J.; Oh, A.; Baik, H.; Lee, K. Janus nanoparticle structural motif control via asymmetric cation exchange in edge-protected Cu1.81S@IrxSy hexagonal nanoplates. ACS Nano 2018, 12, 7996–8005.

    Google Scholar 

  80. Liu. Y.; Liu, M. X.; Yin, D. Q.; Qiao, L.; Fu, Z.; Swihart, M. T. Selective cation incorporation into copper sulfide based nanoheterostructures. ACS Nano 2018, 12, 7803–7811.

    Google Scholar 

  81. Nasilowski, M.; Nienhaus, L.; Bertram, S. N.; Bawendi, M. G. Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots. Chem. Commun. 2017, 53, 869–872.

    Google Scholar 

  82. Sagar, L. K.; Walravens, W.; Zhao, Q.; Vantomme, A.; Geiregat, P.; Hens, Z. PbS/CdS core/shell quantum dots by additive, layer-by-layer shell growth. Chem. Mater. 2016, 28, 6953–6959.

    Google Scholar 

  83. Sarma, D. D.; Santra, P. K.; Mukherjee, S.; Nag, A. X-ray photoelectron spectroscopy: A unique tool to determine the internal heterostructure of nanoparticles. Chem. Mater. 2013, 25, 1222–1232.

    Google Scholar 

  84. Sagar, L. K.; Walravens, W.; Maes, J.; Geiregat, P.; Hens, Z. HgSe/CdE (E = S, Se) core/shell nanocrystals by colloidal atomic layer deposition. J. Phys. Chem. C 2017, 121, 13816–13822.

    Google Scholar 

  85. Ithurria, S.; Talapin, D. V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 2012, 134, 18585–18590.

    Google Scholar 

  86. Slejko, E. A.; Sayevich, V.; Cai, B.; Gaponik, N.; Lughi, V.; Lesnyak, V.; Eychmüller, A. Precise engineering of nanocrystal shells via colloidal atomic layer deposition. Chem. Mater. 2017, 29, 8111–8118.

    Google Scholar 

  87. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Demortière, A.; Schaller, R. D.; Pelton, M.; Talapin, D. V. Low-threshold stimulated emission using colloidal quantum wells. Nano Lett. 2014, 14, 2772–2777.

    Google Scholar 

  88. Lorenzon, M.; Christodoulou, S.; Vaccaro, G.; Pedrini, J.; Meinardi, F.; Moreels, I.; Brovelli, S. Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes. Nat. Commun. 2015, 6, 6434.

    Google Scholar 

  89. Ma, X. D.; Diroll, B. T.; Cho, W.; Fedin, I.; Schaller, R. D.; Talapin, D. V.; Gray, S. K.; Wiederrecht, G. P.; Gosztola, D. J. Size-dependent biexciton quantum yields and carrier dynamics of quasi-two-dimensional core/shell nanoplatelets. ACS Nano 2017, 11, 9119–9127.

    Google Scholar 

  90. Yadav, S.; Singh, A.; Thulasidharan, L.; Sapra, S. Surface decides the photoluminescence of colloidal CdSe nanoplatelets based core/shell heterostructures. J. Phys. Chem. C 2018, 122, 820–829.

    Google Scholar 

  91. Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

    Google Scholar 

  92. Shendre, S.; Delikanli, S.; Li, M. J.; Dede, D.; Pan, Z. Y.; Ha, S. T.; Fu, Y. H.; Hernández-Martínez, P. L.; Yu, J. H.; Erdem, O. et al. Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd1−xZnxS colloidal core/crown@ alloyed-shell quantum wells. Nanoscale 2019, 11, 301–310.

    Google Scholar 

  93. Xie, R. G.; Kolb, U.; Li, J. X.; Basché, T.; Mews, A. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488.

    Google Scholar 

  94. Chatterjee, A.; Biswas, K. Solution-based synthesis of layered intergrowth compounds of the homologous PbmBi2nTe3n+m series as nanosheets. Angew. Chem., Int. Ed. 2015, 54, 5623–5627.

    Google Scholar 

  95. Banik, A.; Biswas, K. Synthetic nanosheets of natural van der Waals heterostructures. Angew. Chem., Int. Ed. 2017, 56, 14561–14566.

    Google Scholar 

  96. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Google Scholar 

  97. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Google Scholar 

  98. Achtstein, A. W.; Marquardt, O.; Scott, R.; Ibrahim, M.; Riedl, T.; Prudnikau, A. V.; Antanovich, A.; Owschimikow, N.; Lindner, J. K. N.; Artemyev, M. et al. Impact of shell growth on recombination dynamics and excitonphonon interaction in CdSe-CdS core-shell nanoplatelets. ACS Nano 2018, 12, 9476–9483.

    Google Scholar 

  99. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 2014, 9, 891–895.

    Google Scholar 

  100. Li, M. J.; Zhi, M.; Zhu, H.; Wu, W. Y.; Xu, Q. H.; Jhon, M. H.; Chan, Y. Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nat. Commun. 2015, 6, 8513.

    Google Scholar 

  101. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 9475–9485.

    Google Scholar 

  102. Kelestemur, Y.; Dede, D.; Gungor, K.; Usanmaz, C. F.; Erdem, O.; Demir, H. V. Alloyed heterostructures of CdSexS1−x nanoplatelets with highly tunable optical gain performance. Chem. Mater. 2017, 29, 4857–4865.

    Google Scholar 

  103. Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

    Google Scholar 

  104. Erdem, T.; Demir, H. V. Colloidal nanocrystals for quality lighting and displays: Milestones and recent developments. Nanophotonics 2016, 5, 74–95.

    Google Scholar 

  105. Fan, F. J.; Kanjanaboos, P.; Saravanapavanantham, M.; Beauregard, E.; Ingram, G.; Yassitepe, E.; Adachi, M. M.; Voznyy, O.; Johnston, A. K.; Walters, G. et al. Colloidal CdSe1−xSx nanoplatelets with narrow and continuously-tunable electroluminescence. Nano Lett. 2015, 15, 4611–4615.

    Google Scholar 

  106. Sharma, M.; Gungor, K.; Yeltik, A.; Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Erdem, T.; Delikanli, S.; McBride, J. R.; Demir, H. V. Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv. Mater. 2017, 29, 1700821.

    Google Scholar 

  107. Kormilina, T. K.; Cherevkov, S. A.; Fedorov, A. V.; Baranov, A. V. Cadmium chalcogenide nano-heteroplatelets: Creating advanced nanostructured materials by shell growth, substitution, and attachment. Small 2017, 13, 1702300.

    Google Scholar 

  108. Gao, Y.; Li, M. J.; Delikanli, S.; Zheng, H. Y.; Liu, B. Q.; Dang, C.; Sum, T. C.; Demir, H. V. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. Nanoscale 2018, 10, 9466–9475.

    Google Scholar 

  109. Kelestemur, Y.; Guzelturk, B.; Erdem, O.; Olutas, M.; Erdem, T.; Usanmaz, C. F.; Gungor, K.; Demir, H. V. CdSe/CdSe1−xTex core/crown heteronanoplatelets: Tuning the excitonic properties without changing the thickness. J. Phys. Chem. C 2017, 121, 4650–4658.

    Google Scholar 

  110. Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.; Dubertret, B. Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. J. Am. Chem. Soc. 2014, 136, 16430–16438.

    Google Scholar 

  111. Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet type-I heterostructures. ACS Nano 2016, 10, 3843–3851.

    Google Scholar 

  112. Delikanli, S.; Guzelturk, B.; Hernández-Martínez, P. L.; Erdem, T.; Kelestemur, Y.; Olutas, M.; Akgul, M. Z.; Demir, H. V. Continuously tunable emission in inverted type-I CdS/CdSe core/crown semiconductor nanoplatelets. Adv. Funct. Mater. 2015, 25, 4282–4289.

    Google Scholar 

  113. Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

    Google Scholar 

  114. Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

    Google Scholar 

  115. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular Auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

    Google Scholar 

  116. Kelestemur, Y.; Olutas, M.; Delikanli, S.; Guzelturk, B.; Akgul, M. Z.; Demir, H. V. Type-II colloidal quantum wells: CdSe/CdTe core/crown heteronanoplatelets. J. Phys. Chem. C 2015, 119, 2177–2185.

    Google Scholar 

  117. Zhang F. J.; Wang, S. J.; Wang, L.; Lin, Q. L.; Shen, H. B.; Cao, W. R.; Yang, C. C.; Wang, H. Z.; Yu, L.; Du, Z. L. et al. Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nanoscale 2016, 8, 12182–12188.

    Google Scholar 

  118. Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano 2014, 8, 4893–4901.

    Google Scholar 

  119. Chen, Z. Y.; Nadal, B.; Mahler, B.; Aubin, H.; Dubertret, B. Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 2014, 24, 295–302.

    Google Scholar 

  120. Dede, D.; Taghipour, N.; Quliyeva, U.; Sak, M.; Kelestemur, Y.; Gungor, K.; Demir, H. V. Highly stable multicrown heterostructures of type-II nanoplatelets for ultralow threshold optical gain. Chem. Mater. 2019, 31, 1818–1826.

    Google Scholar 

  121. He, J.; Tritt, T. M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997.

    Google Scholar 

  122. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Google Scholar 

  123. Sajid, M.; Hassan, I.; Rahman, A. An overview of cooling of thermoelectric devices. Renew. Sustain. Energy Rev. 2017, 78, 15–22.

    Google Scholar 

  124. Suarez, F.; Nozariasbmarz, A.; Vashaee, D.; Öztürk, M. C. Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci. 2016, 9, 2099–2113.

    Google Scholar 

  125. Kim, S. J.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, H. E.; Oh, M. W.; Lee, K. J.; Cho, B. J. Post ionized defect engineering of the screenprinted Bi2Te2.7Se0.3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017, 31, 258–263.

    Google Scholar 

  126. Yang, Y.; Wei, X. J.; Liu, J. Suitability of a thermoelectric power generator for implantable medical electronic devices. J. Phys. D Appl. Phys. 2007, 40, 5790–5800.

    Google Scholar 

  127. Leonov, V.; Vullers, R. J. M. Wearable electronics self-powered by using human body heat: The state of the art and the perspective. J. Renew. Sustain. Energy 2009, 1, 062701.

    Google Scholar 

  128. Guo, Y.; Dun, C. C.; Xu, J. W.; Li, P. Y.; Huang, W. X.; Mu, J. K.; Hou, C. Y.; Hewitt, C. A.; Zhang, Q. H.; Li, Y. G. et al. Wearable thermoelectric devices based on Au-decorated two-dimensional MoS2. ACS Appl. Mater. Interfaces 2018, 10, 33316–33321.

    Google Scholar 

  129. Yang, L.; Chen, Z. G.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797.

    Google Scholar 

  130. Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

    Google Scholar 

  131. Zhao, D. L.; Tan, G. A review of thermoelectric cooling: Materials, modeling and applications. Appl. Therm. Eng. 2014, 66, 15–24.

    Google Scholar 

  132. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

    Google Scholar 

  133. Ding, D. F.; Wang, D. W.; Zhao, M.; Lv, J. W.; Jiang, H.; Lu, C. G.; Tang, Z. Y. Interface engineering in solution-processed nanocrystal thin films for improved thermoelectric performance. Adv. Mater. 2017, 29, 1603444.

    Google Scholar 

  134. Tang, Y. L.; Gibbs, Z. M.; Agapito, L. A.; Li, G. D.; Kim, H. S.; Nardelli, M. B.; Curtarolo, S.; Snyder, G. J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223–1228.

    Google Scholar 

  135. Dolyniuk, J. A.; Owens-Baird, B.; Wang, J.; Zaikina, J. V.; Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R Rep. 2016, 108, 1–46.

    Google Scholar 

  136. Pei, Y. Z.; Shi, X. Y.; LaLonde, A.; Wang, H.; Chen, L. D.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69.

    Google Scholar 

  137. Zhao, L. D.; Tan, G. J.; Hao, S. Q.; He, J. Q.; Pei, Y. L.; Chi, H.; Wang, H.; Gong, S. K.; Xu, H. B.; Dravid, V. P. et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144.

    Google Scholar 

  138. Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

    Google Scholar 

  139. Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 1993, 47, 16631–16634.

    Google Scholar 

  140. Heremans, J. P.; Dresselhaus, M. S.; Bell, L. E.; Morelli, D. T. When thermoelectrics reached the nanoscale. Nat. Nanotechnol. 2013, 8, 471–473.

    Google Scholar 

  141. Medlin, D. L.; Snyder, G. J. Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2009, 14, 226–235.

    Google Scholar 

  142. Shapira, E.; Holtzman, A.; Marchak, D.; Selzer, Y. Very high thermopower of Bi Nanowires with embedded quantum point contacts. Nano Lett. 2012, 12, 808–812.

    Google Scholar 

  143. Zhang, Y. C.; Stucky, G. D. Heterostructured approaches to efficient thermoelectric materials. Chem. Mater. 2014, 26, 837–848.

    Google Scholar 

  144. Han, C.; Sun, Q.; Li, Z.; Dou, S. X. Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater. 2016, 6, 1600498.

    Google Scholar 

  145. Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232.

    Google Scholar 

  146. Zhao, L. D.; Lo, S. H.; Zhang, Y. S.; Sun, H.; Tan, G. J.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377.

    Google Scholar 

  147. Biswas, K.; He, J. Q.; Blum, I. D.; Wu, C. I.; Hogan, T. P.; Seidman, D. N.; Dravid, V. P.; Kanatzidis, M. G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418.

    Google Scholar 

  148. Ding, D. F.; Lu, C. G.; Tang, Z. Y. Bottom up chalcogenide thermoelectric materials from solution-processed nanostructures. Adv. Mater. Interfaces 2017, 4, 1700517.

    Google Scholar 

  149. Zhao, L. D.; Chang, C.; Tan, G. J.; Kanatzidis, M. G. SnSe: A remarkable new thermoelectric material. Energy Environ. Sci. 2016, 9, 3044–3060.

    Google Scholar 

  150. Zhang, Y.; Liu, Y.; Lim, K. H.; Xing, C. C.; Li, M. Y.; Zhang, T.; Tang, P. Y.; Arbiol, J.; Llorca, J.; Ng, K. M. et al. Tin diselenide molecular precursor for solution-processable thermoelectric materials. Angew. Chem., Int. Ed. 2018, 57, 17063–17068.

    Google Scholar 

  151. Yang, D. F.; Yao, W.; Chen, Q. F.; Peng, K. L.; Jiang, P. F.; Lu, X.; Uher, C.; Yang, T.; Wang, G. Y.; Zhou, X. Y. Cr2Ge2Te6: High thermoelectric performance from layered structure with high symmetry. Chem. Mater. 2016, 28, 1611–1615.

    Google Scholar 

  152. Roychowdhury, S.; Samanta, M.; Perumal, S.; Biswas, K. Germanium chalcogenide thermoelectrics: Electronic structure modulation and low lattice thermal conductivity. Chem. Mater. 2018, 30, 5799–5813.

    Google Scholar 

  153. Yin, X.; Liu, J. Y.; Chen, L.; Wu, L. M. High thermoelectric performance of In4Se3-based materials and the influencing factors. Acc. Chem. Res. 2018, 51, 240–247.

    Google Scholar 

  154. Zhang, Q. H.; Ai X.; Wang, L. J.; Chang, Y. X.; Luo, W.; Jiang, W.; Chen, L. D. Improved thermoelectric performance of silver nanoparticlesdispersed Bi2Te3 composites deriving from hierarchical two-phased heterostructure. Adv. Funct. Mater. 2015, 25, 966–976.

    Google Scholar 

  155. Dun, C. C.; Liu, Y.; Al-Qawasmeh, A.; Hewitt, C. A.; Guo, Y.; Xu, J. W.; Jiang, Q. K.; Wang, J.; Marcus, G.; Cadavid, D. et al. Topological doping effects in 2D chalcogenide thermoelectrics. 2D Mater. 2018, 5, 045008.

    Google Scholar 

  156. Son, J. S.; Choi, M. K.; Han, M. K.; Park, K.; Kim, J. Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. J. et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640–647.

    Google Scholar 

  157. Luo, Y. B.; Du, C. F.; Liang, Q. H.; Zheng, Y.; Zhu, B. B.; Hu, H. L.; Khor, K. A.; Xu, J. W.; Yan, Q. Y.; Kanatzidis, M. G. Enhancement of thermoelectric performance in CuSbSe2 nanoplate-based pellets by texture engineering and carrier concentration optimization. Small 2018, 14, 1803092.

    Google Scholar 

  158. Ahmed, S. N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001.

    Google Scholar 

  159. Li, K.; Peng, B. S.; Peng, T. Y. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527.

    Google Scholar 

  160. Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022.

    Google Scholar 

  161. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Google Scholar 

  162. Zhu, J. F.; Zäch, M. Nanostructured materials for photocatalytic hydrogen production. Curr. Opin. Colloid. Interface Sci. 2009, 14, 260–269.

    Google Scholar 

  163. Meshram, S. P.; Adhyapak, P. V.; Mulik, U. P.; Amalnerkar, D. P. Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem. Eng. J. 2012, 204–206, 158–168.

    Google Scholar 

  164. Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

    Google Scholar 

  165. Vesborg, P. C. K.; Seger, B.; Chorkendorff, I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 2015, 6, 951–957.

    Google Scholar 

  166. Wang, H. T.; Lu, Z. Y.; Xu, S. C.; Kong, D. S.; Cha, J. J.; Zheng, G. Y.; Hsu, P. C.; Yan, K.; Bradshaw, D.; Prinz, F. B. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 2013, 110, 19701–19706.

    Google Scholar 

  167. Leung, D. Y. C.; Fu, X. L.; Wang, C. F.; Ni, M.; Leung, M. K. H.; Wang, X. X.; Fu, X. Z. Hydrogen production over titania-based photocatalysts. ChemSusChem 2010, 3, 681–694.

    Google Scholar 

  168. Sakai, N.; Ebina, Y.; Takada, K.; Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc. 2004, 126, 5851–5858.

    Google Scholar 

  169. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

    Google Scholar 

  170. Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285.

    Google Scholar 

  171. Kumar, S. G.; Devi, L. G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 2011, 115, 13211–13241.

    Google Scholar 

  172. Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C 2011, 115, 9136–9145.

    Google Scholar 

  173. Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.

    Google Scholar 

  174. Park, H.; Choi, W.; Hoffmann, M. R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. J. Mater. Chem. 2008, 18, 2379–2385.

    Google Scholar 

  175. Wu, N. Q. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: A review. Nanoscale 2018, 10, 2679–2696.

    Google Scholar 

  176. Jaramillo, T. F.; Jørgensen. K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Google Scholar 

  177. Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Google Scholar 

  178. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Google Scholar 

  179. Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

    Google Scholar 

  180. Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

    Google Scholar 

  181. Wu, X.; Yu, Y. F.; Liu, Y.; Xu, Y.; Liu, C. B.; Zhang, B. Synthesis of hollow CdxZn1−xSe nanoframes through the selective cation exchange of inorganic-organic hybrid ZnSe-amine nanoflakes with cadmium ions. Angew. Chem., Int. Ed. 2012, 51, 3211–3215.

    Google Scholar 

  182. Xu, Y.; Zhao, W. W.; Xu, R.; Shi, Y. M.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803–9805.

    Google Scholar 

  183. Li, M.; Ruan, H. R.; Yuan, X. Q.; Chen, Y. S.; Wang, X. D.; Liu, Y. P.; Lu, Z. H.; Hai, J. F. Construction of 2D MoS2/PbS heterojunction nanocomposites with enhanced photoelectric property. Mater. Lett. 2018, 212, 82–85.

    Google Scholar 

  184. Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938–8946.

    Google Scholar 

  185. Si, M. W.; Liao, P. Y.; Qiu, G.; Duan, Y. Q.; Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der waals heterostructure. ACS Nano 2018, 12, 6700–6705.

    Google Scholar 

  186. Zhang, Z. Y.; Huang, J. D.; Zhang, M. Y.; Yuan, Q.; Dong, B. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity. Appl. Catal. B Environ. 2015, 163, 298–305.

    Google Scholar 

  187. Chen, J. Z.; Wu, X. J.; Yin, L. S.; Li, B.; Hong, X.; Fan, Z. X.; Chen, B.; Xue, C.; Zhang, H. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 1210–1214.

    Google Scholar 

  188. Li, M.; Zhang, Q. Y.; Ruan, H. R.; Wang, X. D.; Liu, Y. P.; Lu, Z. H.; Hai, J. F. An in-situ growth approach to 2D MoS2-2D PbS heterojunction composites with improved photocatalytic activity. J. Solid State Chem. 2019, 270, 98–103.

    Google Scholar 

  189. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Google Scholar 

  190. Yang, M. Q.; Xu, Y. J.; Lu, W. H.; Zeng, K. Y.; Zhu, H.; Xu, Q. H.; Ho, G. W. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.

    Google Scholar 

  191. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

    Google Scholar 

  192. Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

    Google Scholar 

  193. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Google Scholar 

  194. Yang, Y. Q.; Zhang, K.; Lin, H. L.; Li, X.; Chan, H. C.; Yang, L. C.; Gao, Q. S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 2017, 7, 2357–2366.

    Google Scholar 

  195. Fosdick, S. E.; Berglund, S. P.; Mullins, B.; Crooks, R. M. Evaluating electrocatalysts for the hydrogen evolution reaction using bipolar electrode arrays: Bi- and trimetallic combinations of Co, Fe, Ni, Mo, and W. ACS Catal. 2014, 4, 1332–1339.

    Google Scholar 

  196. Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y. P.; Lin, M. C.; Guan, M. Y.; Yang, J.; Chen, C. W. et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592.

    Google Scholar 

  197. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew. Chem., Int. Ed. 2012, 51, 6131–6135.

    Google Scholar 

  198. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metalorganic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

    Google Scholar 

  199. Gao, M. R.; Liang, J. X.; Zheng, Y. R.; Xu, Y. F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S. H. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation. Nat. Commun. 2015, 6, 5982.

    Google Scholar 

  200. Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.

    Google Scholar 

  201. Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

    Google Scholar 

  202. Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471–487.

    Google Scholar 

  203. Chen, J. N.; Yuan, X. L.; Lyu, F. L.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 1281–1286.

    Google Scholar 

  204. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Google Scholar 

  205. Zhang, J.; Wang, T.; Liu, P.; Liu, S. H.; Dong, R. H.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production. Energy Environ. Sci. 2016, 9, 2789–2793.

    Google Scholar 

  206. Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 2013, 4, 1227–1232.

    Google Scholar 

  207. Zhang, Z. Y.; Li, W. Y.; Yuen, M. F.; Ng, T. W.; Tang, Y. B.; Lee, C. S.; Chen, X. F.; Zhang, W. J. Hierarchical composite structure of few-layers MoS2 nanosheets supported by vertical graphene on carbon cloth for high-performance hydrogen evolution reaction. Nano Energy 2015, 18, 196–204.

    Google Scholar 

  208. Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2-NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

    Google Scholar 

  209. Das, P.; Fu, Q.; Bao, X. H.; Wu, Z. S. Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. J. Mater. Chem. A 2018, 6, 21747–21784.

    Google Scholar 

  210. Lee, J.; Wu, Y.; Peng, Z. B. Hetero-nanostructured materials for highpower lithium ion batteries. J. Colloid. Interface Sci. 2018, 529, 505–519.

    Google Scholar 

  211. Oh, S. M.; Patil, S. B.; Jin, X. Y.; Hwang, S. J. Recent applications of 2D inorganic nanosheets for emerging energy storage system. Chem.—Eur. J. 2018, 24, 4757–4773.

    Google Scholar 

  212. Cao, X. H.; Tan, C. L.; Zhang, X.; Zhao, W.; Zhang, H. Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion. Adv. Mater. 2016, 28, 6167–6196.

    Google Scholar 

  213. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Google Scholar 

  214. Liu, H.; Su, D. W.; Wang, G. X.; Qiao, S. Z. An ordered mesoporous WS2 anode material with superior electrochemical performance for lithium ion batteries. J. Mater. Chem. 2012, 22, 17437–17440.

    Google Scholar 

  215. Wang, H.; Wang, X. Y.; Wang, L.; Wang, J.; Jiang, D. L.; Li, G. P.; Zhang, Y.; Zhong, H. H.; Jiang, Y. Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery. J. Phys. Chem. C 2015, 119, 10197–10205.

    Google Scholar 

  216. Zhu, C. B.; Mu, X. K.; van Aken, P. A.; Maier, J.; Yu, Y. Fast Li storage in MoS2-graphene-carbon nanotube nanocomposites: Advantageous functional integration of 0D, 1D, and 2D nanostructures. Adv. Energy Mater. 2014, 5, 1401170.

    Google Scholar 

  217. Zhai, C. X.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4067–4074.

    Google Scholar 

  218. Lu, C. X.; Liu, W. W.; Li, H.; Tay, B. K. A binder-free CNT network-MoS2 composite as a high performance anode material in lithium ion batteries. Chem. Commun. 2014, 50, 3338–3340.

    Google Scholar 

  219. Xu, X. D.; Rout, C. S.; Yang, J.; Cao, R. G.; Oh, P.; Shin, H. S.; Cho, J. Freeze-dried WS2 composites with low content of graphene as high-rate lithium storage materials. J. Mater. Chem. A 2013, 1, 14548–14554.

    Google Scholar 

  220. Chang, K.; Chen, W. X. L-Cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 2011, 5, 4720–4728.

    Google Scholar 

  221. Chen, C.; Xie, X. Q.; Anasori, B.; Sarycheva, A.; Makaryan, T.; Zhao, M. Q.; Urbankowski, P.; Miao, L.; Jiang, J. J.; Gogotsi, Y. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 1846–1850.

    Google Scholar 

  222. Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

    Google Scholar 

  223. Chen, D. Y.; Ji, G.; Ding, B.; Ma, Y.; Qu, B. H.; Chen, W. X.; Lee, J. Y. In situ nitrogenated graphene-few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale 2013, 5, 7890–7896.

    Google Scholar 

  224. Liu, Y.; Wang, W.; Wang, Y. W.; Peng, X. S. Homogeneously assembling like-charged WS2 and GO nanosheets lamellar composite films by filtration for highly efficient lithium ion batteries. Nano Energy 2014, 7, 25–32.

    Google Scholar 

  225. Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192–4195.

    Google Scholar 

  226. Liu, Y.; Zhu, M. Q.; Chen, D. Sheet-like MoSe2/C composites with enhanced Li-ion storage properties. J. Mater. Chem. A 2015, 3, 11857–11862.

    Google Scholar 

  227. Ma, L.; Zhou, X. P.; Xu, L. M.; Xu, X. Y.; Zhang, L. L.; Chen, W. X. Ultrathin few-layered molybdenum selenide/graphene hybrid with superior electrochemical Li-storage performance. J. Power Sources 2015, 285, 274–280.

    Google Scholar 

  228. Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323–8333.

    Google Scholar 

  229. Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226–5230.

    Google Scholar 

  230. Chang, K.; Wang, Z.; Huang, G. H.; Li, H.; Chen, W. X.; Lee, J. Y. Fewlayer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J. Power Sources 2012, 201, 259–266.

    Google Scholar 

  231. Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

    Google Scholar 

  232. Du, Y. P.; Yin, Z. Y.; Zhu, J. X.; Huang, X.; Wu, X. J.; Zeng, Z. Y.; Yan, Q. Y.; Zhang, H. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 2012, 3, 1177.

    Google Scholar 

  233. Che, G. L.; Jirage, K. B.; Fisher, E. R.; Martin, C. R.; Yoneyama, H. Chemical-vapor deposition-based template synthesis of microtubular TiS2 battery electrodes. J. Electrochem. Soc. 1997, 114, 4296–4302.

    Google Scholar 

  234. Ali, I.; Ullah, Z.; Rehan, I.; Khalil, A.; Habib, M.; Masood, H. T.; Sohail, Y.; Waseem, M. Annealing disintegrates Cu2MoS4 nanosheets into MoS2 and Cu2S nanoheterostructures. J. Mater. Sci. Mater. Electron. 2017, 28, 15936–15941.

    Google Scholar 

  235. Seh, Z. W.; Yu, J. H.; Li, W. Y.; Hsu, P. C.; Wang, H. T.; Sun, Y. M.; Yao, H. B.; Zhang, Q. F.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

    Google Scholar 

  236. Giri, A.; Yang, H.; Thiyagarajan, K.; Jang, W.; Myoung, J. M.; Singh, R.; Soon, A.; Cho, K.; Jeong, U. One-step solution phase growth of transition metal dichalcogenide thin films directly on solid substrates. Adv. Mater. 2017, 29, 1700291.

    Google Scholar 

  237. Giri, A.; Park, G.; Yang, H.; Pal, M.; Kwak, J.; Jeong, U. Synthesis of 2D metal chalcogenide thin films through the process involving solutionphase deposition. Adv. Mater. 2018, 30, 1707577.

    Google Scholar 

  238. Liu, W. Y.; Lee, J. S.; Talapin, D. V. III-V nanocrystals capped with molecular metal chalcogenide ligands: High electron mobility and ambipolar photoresponse. J. Am. Chem. Soc. 2013, 135, 1349–1357.

    Google Scholar 

  239. Zhang, H.; Jang, J.; Liu, W. Y.; Talapin, D. V. Colloidal nanocrystals with inorganic halide, pseudohalide, and halometallate ligands. ACS Nano 2014, 8, 7359–7369.

    Google Scholar 

  240. Jang, J.; Dolzhnikov, D. S.; Liu, W. Y.; Nam, S.; Shim, M.; Talapin, D. V. Solution-processed transistors using colloidal nanocrystals with compositionmatched molecular “solders”: Approaching single crystal mobility. Nano Lett. 2015, 15, 6309–6317.

    Google Scholar 

  241. Kim, F.; Kwon, B.; Eom, Y.; Lee, J. E.; Park, S.; Jo, S.; Park, S. H.; Kim, B. S.; Im, H. J.; Lee, M. H. et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi2Te3-based inks. Nat. Energy 2018, 3, 301–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geon Dae Moon.

Additional information

Acknowledgements

This work was supported by Korea Institute of Materials Science (KIMS) internal R&D program (No. PNK6030) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B03027904).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Y., Im, E., Hwang, GT. et al. Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Res. 12, 1750–1769 (2019). https://doi.org/10.1007/s12274-019-2432-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2432-6

Keywords

Navigation