Skip to main content
Log in

Tumor microenvironment-responsive arsenic-loaded layered double hydroxides film with synergistic anticancer and bactericidal activity

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Malignant obstruction makes gallbladder cancer have a high mortality rate. Nickel–titanium alloy (nitinol) stents are commonly used as a local intervention to maximize patient survival time, but the stents lack antitumor and antibacterial capacity and are vulnerable to secondary obstruction. Arsenic-based drugs show good therapeutic promise against gallbladder cancer. To meet clinical needs, the layered double hydroxides (LDHs) film is constructed on the nitinol, whose arsenite loading amounts rose by 60% after simple heat treatment compared with the conventional anion-exchange strategy. In addition, calcination promotes the dissolution of nickel ions from the LDHs lattice, resulting in a powerful synergistic killing effect on tumor cells together with the released arsenic. More importantly, the calcined arsenic-loaded LDHs are sensitive to the acidic microenvironment of tumor tissues, which presents a much lower arsenic and nickel release amount in the normal tissues, guaranteeing its biosafety. Meanwhile, the vertically sharp LDHs nanosheets can synergize with arsenic to achieve effective physical cleavage and chemical killing of adherent and planktonic bacteria. In short, we attempt to use arsenic drugs for local interventions and reasonably avoid their toxic side effects, which provides a new design idea for nitinol stents applied in the treatment of gallbladder cancer.

Graphical abstract

摘要

恶性梗阻使得胆囊癌的死亡率很高。镍钛合金支架通常被用于局部介入治疗以最大限度地延长病人的生存时间, 但这种支架缺乏抗肿瘤和抗菌能力, 容易造成二次阻塞。砷类药物对胆囊癌显示出良好的治疗前景。为了满足临床需要, 在镍钛合金表面构建了层状双氢氧化物薄膜。与传统的阴离子交换策略相比, 经过简单的热处理后, LDHs对砷的负载量提升了60%。此外, 煅烧促进了镍离子从LDHs晶格释放, 与释放的砷一起对肿瘤细胞产生了强大的协同杀伤作用。更重要的是, 经过煅烧的含砷LDHs对肿瘤组织的酸性微环境敏感, 在正常组织中呈现出更低的砷和镍释放量, 保证了其生物安全性。同时, 垂直锋利的LDHs纳米片可以与砷协同作用, 实现对粘附和浮游细菌的有效物理切割和化学杀伤。总之, 这项工作尝试将砷类药物用于肿瘤局部介入治疗的同时合理地避免了砷的毒副作用, 为设计用于胆囊癌治疗的镍钛合金支架提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feo CF, Ginesu GC, Fancellu A, Perra T, Ninniri C, Deiana G, Scanu AM, Porcu A. Current management of incidental gallbladder cancer: a review. Int J Surg. 2022;98:106234. https://doi.org/10.1016/j.ijsu.2022.106234.

    Article  PubMed  Google Scholar 

  2. Kam AE, Masood A, Shroff RT. Current and emerging therapies for advanced biliary tract cancers. Lancet Gastroenterol Hepatol. 2021;6(11):956. https://doi.org/10.1016/S2468-1253(21)00171-0.

    Article  PubMed  Google Scholar 

  3. Zhang X, Liu X, Luo Z, Hu X, Wang Q, Hu S, Zhou L, Jiang S. Unexpected gallbladder cancer as the source of some unknown primary cancers. J Clin Oncol. 2021;39(15):e16177. https://doi.org/10.1200/JCO.2021.39.15_suppl.e16177.

    Article  Google Scholar 

  4. Schepis T, Boskoski I, Tringali A, Bove V, Costamagna G. Palliation in gallbladder cancer: the role of gastrointestinal endoscopy. Cancers. 2022;14(7):1686. https://doi.org/10.3390/cancers14071686.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel N, Jensen KK, Shaaban AM, Korngold E, Foster BR. Multimodality imaging of cholecystectomy complications. Radiographics. 2022;42(5):1303. https://doi.org/10.1148/rg.210106.

    Article  PubMed  Google Scholar 

  6. Sekine M, Fujiwara J, Mashima H. A novel method of triple stenting in patients with malignant hilar biliary obstruction: triple stenting abreast method. Endoscopy. 2020;52(08):E295. https://doi.org/10.1055/a-1108-1337.

    Article  PubMed  Google Scholar 

  7. Takeda T, Sasaki T, Mie T, Furukawa T, Kanata R, Kasuga A, Matsuyama M, Ozaka M, Sasahira N. The safety and efficacy of self-expandable metallic stent placement for malignant biliary obstruction with surgically altered anatomy. Scand J Gastroenterol. 2021;56(1):94. https://doi.org/10.1080/00365521.2020.1847317.

    Article  PubMed  Google Scholar 

  8. Kim HD, Kim JH, Yoo BM, Lee KJ, Kim YS, Hahm KB, Roe IH. 4649 Preliminary results of new covered biliary nitinol stent in patients with malignant obstruction of extrahepatic bile duct (ehd). Gastroint Endosc. 2000;51(4):AB193.

    Article  Google Scholar 

  9. Yoo SS, Jeong S, Lee DH. Endoscopic bilateral stenting of malignant hilar bile duct obstruction using novel partially covered self-expandable metal stents. Endoscopy. 2013;45:E328. https://doi.org/10.1055/s-0032-1326122.

    Article  PubMed  Google Scholar 

  10. Jin HRC, Shen WQ, Xu JJ, Cao XJ, Wang QY. Fine grain surface on biomechanics compatibility of Ti3Zr2Sn3Mo25Nb. Chin J Rare Met. 2022;46(9):1190. https://doi.org/10.13373/j.cnki.cjrm.XY22040032.

    Article  Google Scholar 

  11. Yang HL, Yang MZ, Wang JY, Ma CX, Zhou XW, Xing HX, Zhang EL, Ji SX. Optimization of mechanical and antibacterial properties of Ti-3wt%Cu alloy through cold rolling and annealing. Rare Met. 2022;41(2):610. https://doi.org/10.1007/s12598-021-01841-x.

    Article  CAS  Google Scholar 

  12. Kutny MA, Alonzo TA, Abla O, Rajpurkar M, Gerbing RB, Wang Y-C, Hirsch BA, Raimondi S, Kahwash S, Hardy KK, Hardy S, Meshinchi S, Gamis AS, Kolb EA, Feusner JH, Gregory J Jr. Assessment of arsenic trioxide and all-trans retinoic acid for the treatment of pediatric acute promyelocytic leukemia a report from the children’s oncology group AAML1331 trial. JAMA Oncol. 2022;8(1):79. https://doi.org/10.1001/jamaoncol.2021.5206.

    Article  PubMed  Google Scholar 

  13. Huang Y, Zhou B, Luo H, Mao J, Huang Y, Zhang K, Mei C, Yan Y, Jin H, Gao J, Su Z, Pang P, Li D, Shan H. ZnAs@SiO2 nanoparticles as a potential anti-tumor drug for targeting stemness and epithelial-mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics. 2019;9(15):4391. https://doi.org/10.7150/thno.32462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhai Y, Liu M, Yang T, Luo J, Wei C, Shen J, Song X, Ke H, Sun P, Guo M, Deng Y, Chen H. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Controll Release: Official J Control Release Soc. 2022;350:761. https://doi.org/10.1016/j.jconrel.2022.08.054.

    Article  CAS  Google Scholar 

  15. Jin Z, Yi X, Yang J, Zhou M, Wu P, Yan G. Liposome-coated arsenic-manganese complex for magnetic resonance imaging-guided synergistic therapy against carcinoma. Int J Nanomed. 2021;16:3775. https://doi.org/10.2147/ijn.s313962.

    Article  Google Scholar 

  16. Huang Y, Xu Z, Wei Y, Han S, Cai X, Chen D. Albumin-embellished arsenic trioxide-loaded polymeric nanoparticles enhance tumor accumulation and anticancer efficacy via transcytosis for hepatocellular carcinoma therapy. AAPS PharmSciTech. 2022;23(4):111. https://doi.org/10.1208/s12249-022-02254-4.

    Article  CAS  PubMed  Google Scholar 

  17. Liu C, Sun S, Feng Q, Wu G, Wu Y, Kong N, Yu Z, Yao J, Zhang X, Chen W, Tang Z, Xiao Y, Huang X, Lv A, Yao C, Cheng H, Wu A, Xie T, Tao W. Arsenene nanodots with selective killing effects and their low-dose combination with ss-elemene for cancer therapy. Adv Mater. 2021;33(37):2102054. https://doi.org/10.1002/adma.202102054.

    Article  CAS  Google Scholar 

  18. Shirin VKA, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release. 2021;330:398. https://doi.org/10.1016/j.jconrel.2020.12.041.

    Article  CAS  Google Scholar 

  19. Cao Y, Zheng D, Zhang F, Pan J, Lin C. Layered double hydroxide (LDH) for multi-functionalized corrosion protection of metals: a review. J Mater Sci Technol. 2022;102:232. https://doi.org/10.1016/j.jmst.2021.05.078.

    Article  CAS  Google Scholar 

  20. Laipan M, Yu J, Zhu R, Zhu J, Smith AT, He H, O’Hare D, Sun L. Functionalized layered double hydroxides for innovative applications. Mater Horiz. 2020;7(3):715. https://doi.org/10.1039/c9mh01494b.

    Article  CAS  Google Scholar 

  21. Sun YY, Li SQ, Wang CR, Qian YX, Zheng SY, Yuan T. Research progress of layered transition metal oxide cathode materials for sodium ion batteries. Chin J Rare Met. 2022;46(6):776. https://doi.org/10.13373/j.cnki.cjrm.XY22020014.

    Article  Google Scholar 

  22. Wang Y, Yuan Z, Zhang Z, Xin Y, Fujita T, Wei Y. In situ one-step fabrication of superhydrophobic layered double hydroxide on Al alloys for anti-corrosion. Appl Surf Sci. 2022;593:153400. https://doi.org/10.1016/j.apsusc.2022.153400.

    Article  CAS  Google Scholar 

  23. Zhang L, Jia Y, Yang J, Zhang L, Hou S, Niu X, Zhu J, Huang Y, Sun X, Xu ZP, Liu R. Efficient immunotherapy of drug-free layered double hydroxide nanoparticles via neutralizing excess acid and blocking tumor cell autophagy. ACS Nano. 2022;16(8):12036. https://doi.org/10.1021/acsnano.2c02183.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Zhao J, Hu X, Wang C, Jia Y, Zhu C, Xie S, Lee J, Li F, Ling D. A peritumorally injected immunomodulating adjuvant elicits robust and safe metalloimmunotherapy against solid tumors. Adv Mater. 2022;34(41):2206915. https://doi.org/10.1002/adma.202206915.

    Article  CAS  Google Scholar 

  25. Wang D, Xing S, Peng F, Zhang X, Tan J, Hao X, Qiao Y, Ge N, Liu X. Microenvironment-responsive electrocution of tumor and bacteria by implants modified with degenerate semiconductor film. Bioact Mater. 2023;20:472. https://doi.org/10.1016/j.bioactmat.2022.06.004.

    Article  CAS  PubMed  Google Scholar 

  26. Dong Z, Wang C, Gong Y, Zhang Y, Fan Q, Hao Y, Li Q, Wu Y, Zhong X, Yang K, Feng L, Liu Z. Chemical modulation of glucose metabolism with a fluorinated CaCO3 nanoregulator can potentiate radiotherapy by programming antitumor immunity. ACS Nano. 2022;16(9):13884. https://doi.org/10.1021/acsnano.2c02688.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Wang Y, Sun X, Zhou J, Chen X, Xi J, Fan L, Han J, Guo R. Supramolecular core-shell nanoassemblies with tumor microenvironment-triggered size and structure switch for improved photothermal therapy. Small. 2022;18(20):2200588. https://doi.org/10.1002/smll.202200588.

    Article  CAS  Google Scholar 

  28. Cao Z, Li D, Zhao L, Liu M, Ma P, Luo Y, Yang X. Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nat Commun. 2022;13(1):2038. https://doi.org/10.1038/s41467-022-29693-8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Rajivgandhi G, Maruthupandy M, Quero F, Li W-J. Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. Mater Sci Eng C-Mater Biolog Appl. 2019;102:829. https://doi.org/10.1016/j.msec.2019.05.008.

    Article  CAS  Google Scholar 

  30. Rameshthangam P, Chitra JP. Synergistic anticancer effect of green synthesized nickel nanoparticles and quercetin extracted from Ocimum sanctum leaf extract. J Mater Sci Technol. 2018;34(3):508. https://doi.org/10.1016/j.jmst.2017.01.004.

    Article  CAS  Google Scholar 

  31. Wang H, Zhang L, Miao Z, Zhang M, Liu H, He Q, Meng J, Wen L, Ke Z, Zha Z, Lin R, Liang C. PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy via ferroptosis and ATM deficiency-triggered chemosensitization. Mater Horiz. 2021;8(8):2216. https://doi.org/10.1039/d0mh01992e.

    Article  CAS  PubMed  Google Scholar 

  32. Yang JC, Ding L, Yu LD, Wang YM, Ge M, Jiang QZ, Chen Y. Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Sci Bulletin. 2021;66(5):464. https://doi.org/10.1016/j.scib.2020.10.021.

    Article  CAS  ADS  Google Scholar 

  33. Wang DH, Peng F, Li JH, Qiao YQ, Li QW, Liu XY. Butyrate-inserted Ni-Ti layered double hydroxide film for H2O2-mediated tumor and bacteria killing. Mater Today. 2017;20(5):238. https://doi.org/10.1016/j.mattod.2017.05.001.

    Article  CAS  Google Scholar 

  34. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 2020;10(2):240. https://doi.org/10.3390/biom10020240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kong L, Gao X, Zhu J, Cheng K, Tang M. Mechanisms involved in reproductive toxicity caused by nickel nanoparticle in female rats. Environ Toxicol. 2016;31(11):1674. https://doi.org/10.1002/tox.22288.

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol. 2002;42(1):35. https://doi.org/10.1016/s1040-8428(01)00214-1.

    Article  CAS  PubMed  Google Scholar 

  37. Rizvi A, Parveen S, Khan S, Naseem I. Nickel toxicology with reference to male molecular reproductive physiology. Reprod Biol. 2020;20(1):3. https://doi.org/10.1016/j.repbio.2019.11.005.

    Article  PubMed  Google Scholar 

  38. Sattar A, Xie S, Hafeez MA, Wang X, Hussain HI, Iqbal Z, Pan Y, Iqbal M, Shabbir MA, Yuan Z. Metabolism and toxicity of arsenicals in mammals. Environ Toxicol Pharmacol. 2016;48:214. https://doi.org/10.1016/j.etap.2016.10.020.

    Article  CAS  PubMed  Google Scholar 

  39. Fan DY, Yi Z, Feng X, Tian WZ, Xu DK, Valentino AMC, Wang Q, Sun HC. Antibacterial property of a gradient Cu-bearing titanium alloy by laser additive manufacturing. Rare Met. 2022;41(2):580. https://doi.org/10.1007/s12598-021-01826-w.

    Article  CAS  Google Scholar 

  40. Yi G, Gao S, Lu H, Khoo WZ, Liu S, Chng S, Yang YY, Ying JY, Zhang Y. Surface antimicrobial treatment by biocompatible, vertically aligned layered double hydroxide array. Adv Mater Interfaces. 2022;9(9):2101872. https://doi.org/10.1002/admi.202101872.

    Article  CAS  Google Scholar 

  41. Awassa J, Cornu D, Ruby C, El-Kirat-Chatel S. Direct contact, dissolution and generation of reactive oxygen species: how to optimize the antibacterial effects of layered double hydroxides. Coll Surf B-Biointerfaces. 2022;217:112623. https://doi.org/10.1016/j.colsurfb.2022.112623.

    Article  CAS  Google Scholar 

  42. Lu BY, Zhu GY, Yu CH, Chen GY, Zhang CL, Zeng X, Chen QM, Peng Q. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res. 2021;14(1):185. https://doi.org/10.1007/s12274-020-3064-6.

    Article  CAS  ADS  Google Scholar 

  43. Liu YL, Sun YH, Zhao Y, Li YL, Zhao FL, Yao XH, Hang RQ, Chu P. K. Selective inhibition effects on cancer cells and bacteria of Ni–Ti–O nanoporous layers grown on biomedical NiTi alloy by anodization. Rare Met. 2022;41(1):78. https://doi.org/10.1007/s12598-021-01707-2.

    Article  CAS  Google Scholar 

  44. Nemera DJ, Etefa HF, Kumar V, Dejene FB. Hybridization of nickel oxide nanoparticles with carbon dots and its application for antibacterial activities. Luminescence. 2022;37(6):965. https://doi.org/10.1002/bio.4241.

    Article  CAS  PubMed  Google Scholar 

  45. Albert A, Falk JE, Rubbo SD. Antibacterial action of arsenic. Nature. 1944;153:712. https://doi.org/10.1038/153712a0.

    Article  CAS  ADS  Google Scholar 

  46. Beniwal S, Sangwan R, Singh Y, Sharma J. Arsenic(III) mixed derivatives having oximes and morpholinedithiocarbamate along with their cytotoxic, antimicrobial, and antioxidant studies. J Biochem Mol Toxicol. 2020;34(11):e22581. https://doi.org/10.1002/jbt.22581.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 31971249 and 51901239) and the Science and Technology Commission of Shanghai Municipality (Nos.19JC1415500 and 20S31903300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nai-Jian Ge or Xuan-Yong Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, S., Wang, DH., Zhang, HF. et al. Tumor microenvironment-responsive arsenic-loaded layered double hydroxides film with synergistic anticancer and bactericidal activity. Rare Met. 43, 1207–1221 (2024). https://doi.org/10.1007/s12598-023-02466-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02466-y

Keywords

Navigation