Skip to main content

Advertisement

Log in

Optimization of mechanical and antibacterial properties of Ti-3wt%Cu alloy through cold rolling and annealing

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, a process of cold rolling with 70% thickness reduction and different annealing temperatures was selected to regulate the microstructure of Ti-3wt%Cu alloy. Microstructural evolution, mechanical properties and antibacterial properties of the Ti-3wt%Cu alloy under different conditions were systematically investigated in terms of X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), tensile and antibacterial test. The results indicated that cold rolling could dramatically increase the ultimate tensile stress (UTS) from 520 to 928 MPa, but reduce the fracture strain from 15.3% to 3.8%. With the annealing temperature increasing from 400 to 800 °C for 1 h, the UTS decreased from 744 to 506 MPa and the fracture strain increased from12.7% to 24.4%. Moreover, the antibacterial properties of the Ti-3wt%Cu alloy under different conditions showed excellent antibacterial rate (> 96.69%). The results also indicated that the excellent combination of strength and ductility of the Ti-3wt%Cu alloy with cold rolling and following annealing could be achieved in a trade-off by tuning the size and distribution of Ti2Cu phase, which could increase the applicability of the alloy in clinical practice. More importantly, the antibacterial properties maintained a good stability for the Ti-3wt%Cu alloy under different conditions. The excellent combination of mechanical properties and antibacterial properties could make the Ti-3wt%Cu alloy a good candidate for long-term orthopaedic implant application.

Graphical abstract

摘要

本文采用70%冷轧工艺和不同的退火温度对Ti-3wt%Cu合金的显微组织进行了调控。采用X射线衍射 (XRD)、扫描电镜 (SEM) 、透射电镜(TEM )、拉伸试验和抗菌试验, 系统地研究了Ti-3wt%Cu合金在不同条件下的组织演变、力学性能和抗菌性能。结果表明, 冷轧可使抗拉强度由520 MPa显著提高到928 MPa , 但断裂应变由15.3%降低到3.8%。随着退火温度从400 ℃提高到800 ℃, 材料的抗拉强度从744 MPa下降到506 MPa, 断裂应变从12.7%上升到24.4%。此外, Ti-3wt%Cu合金在不同条件下的抗菌性能表现出优异的抗菌 率 (>96.69% )。通过调整Ti2Cu相的尺寸和分布,可以在冷轧和退火后获得强度和塑性的良好结合, 从而提高该合金在临床上的适用性。更重要的是, 在不同条件下,Ti-3wt%Cu合金的抗菌性能保持了良好的稳定性。Ti-3wt%Cu合金具有良好的力学性能和抗菌性能, 是一种长期应用于骨科种植体的理想材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg. 2007;89(4):780.

    Article  Google Scholar 

  2. Kapadia BH, Berg RA, Daley JA, Fritz J, Bhave A, Mont MA. Periprosthetic joint infection. Lancet. 2016;387:386.

    Article  Google Scholar 

  3. Peel TN, Buising KL, Choong PF. Prosthetic joint infection: challenges of diagnosis and treatment. Anz J Surg. 2011;81(1–2):32.

    Article  Google Scholar 

  4. Hostetler CE, Kincaid RL, Mirando MA. The role of essential trace elements in embryonic and fetal development in livestock. Vet J. 2003;166(2):125.

    Article  CAS  Google Scholar 

  5. Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann BG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials. 2015;44:36.

    Article  CAS  Google Scholar 

  6. Sun D, Xu DK, Yang CG, Chen J, Shahzad MB, Sun ZQ, Zhao JL, Gu TY, Yang K, Wang GX. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Mater Sci Eng C. 2016;69:744.

    Article  CAS  Google Scholar 

  7. Vimbela G, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomed. 2017;12:3941.

    Article  CAS  Google Scholar 

  8. Zhuang YF, Zhang SY, Yang K, Ren L, Dai KR. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. J Biomed Mater Res B. 2019;108(2):484.

    Article  Google Scholar 

  9. Ren L, Yang K, Guo L, Chai HW. Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng C. 2012;32(5):1204.

    Article  CAS  Google Scholar 

  10. Nan L, Liu YQ, Lü MQ, Yang K. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci Mater Med. 2008;19(9):3057.

    Article  CAS  Google Scholar 

  11. Ng HP, Nandwana P, Devaraj A, Semblanet M, Nag S, Nakashima PNH, Meher S, Bettles CJ, Gibson MA, Fraser HL, Muddle BC, Banerjee R. Conjugated precipitation of twin-related α and Ti2Cu phases in a Ti-25V-3Cu alloy. Acta Mater. 2015;84:457.

    Article  CAS  Google Scholar 

  12. Zhuang YF, Ren L, Zhang SY, Wei X, Yang K, Dai KR. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater. 2021;119:472.

    Article  CAS  Google Scholar 

  13. Bao MM, Liu Y, Wang XY, Yang L, Li SY, Ren J, Qin GW, Zhang EL. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.

    Article  Google Scholar 

  14. Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti-Cu alloys. Dent Mater. 2003;19(3):174.

    Article  CAS  Google Scholar 

  15. Cremasco A, Messias AD, Esposito AR, Duek EADR, Caram R. Effects of alloying elements on the cytotoxic response of titanium alloys. Mater Sci Eng C. 2011;31(5):833.

    Article  CAS  Google Scholar 

  16. Wang XY, Dong H, Liu J, Qin GW, Chen DF, Zhang EL. In vivo antibacterial property of Ti-Cu sintered alloy implant. Mater Sci Eng C. 2019;100:38.

    Article  CAS  Google Scholar 

  17. Zhang EL, Ren J, Li SY, Yang L, Qin GW. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys. Biomed Mater. 2016;11(6):65001.

    Article  Google Scholar 

  18. Fowler L, Janson O, Engqvist H, Norgren S, Öhman-Mägi C. Antibacterial investigation of titanium-copper alloys using luminescent Staphylococcus epidermidis in a direct contact test. Mater Sci Eng C. 2018;97:707.

    Article  Google Scholar 

  19. Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medicalapplications. Electrochim Acta. 2010;55(3):759.

    Article  Google Scholar 

  20. Zhang EL, Fu S, Wang RX, Li HX, Liu Y, Ma ZQ, Liu GK, Zhu CS, Qin GW, Chen DF. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    Article  CAS  Google Scholar 

  21. Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res Part B Appl Biomater. 2009;91B(1):373.

    Article  CAS  Google Scholar 

  22. Zhang EL, Li FB, Wang HY, Liu J, Wang CM, Li MQ, Yang K. A new antibacterial titanium-copper sintered alloy: preparation and antibacterial property. Mater Sci Eng C. 2013;33(7):4280.

    Article  CAS  Google Scholar 

  23. Peng C, Zhang SY, Sun ZQ, Ren L, Yang K. Effect of annealing temperature on mechanical and antibacterial properties of Cu-bearing titanium alloy and its preliminary study of antibacterial mechanism. Mater Sci Eng C. 2018;93:495.

    Article  CAS  Google Scholar 

  24. Zhang EL, Wang XY, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti-Cu alloys for biomedical application. Mater Sci Eng C. 2016;69:1210.

    Article  CAS  Google Scholar 

  25. Bhaskaran TA, Krishnan RV, Ranganathan S. On the decomposition of β phase in some rapidly quenched phase titanium-eutectoid alloys. Metall Mater Trans A. 1995;26(6):1367.

    Article  Google Scholar 

  26. Sun QY, Zhu RH, Gu HC. Monotonic and cyclic behavior Ti-2.5Cu of alloy at room temperature (293K) and at 77K. Mater Lett. 2002;54(2-3):164.

    Article  CAS  Google Scholar 

  27. Shao S, Wang J, Beyerlein IJ, Misra A. Glide dislocation nucleation from dislocation nodes at semi-coherent 1 1 1 Cu-Ni interfaces. Acta Mater. 2015;98:206.

    Article  CAS  Google Scholar 

  28. Zhang ZM, Zheng GT, Li HX, Yang L, Wang XY, Qin GW, Zhang EL. Anti-bacterium influenced corrosion effect of antibacterial Ti-3Cu alloy in Staphylococcus aureus suspension for biomedical application. Mater Sci Eng C. 2019;94:376.

    Article  CAS  Google Scholar 

  29. Fowler L, Masia N, Cornish LA, Chown LH, Engqvist H, Norgren S, Öhman-Mägi C. Development of antibacterial Ti-Cux alloys for dental applications: effects of ageing for alloys with up to 10 wt% Cu. Materials. 2019;12(23):4017.

    Article  CAS  Google Scholar 

  30. Nan L, Yang K. Cu ions dissolution from Cu-bearing antibacterial stainless steel. J Mater Sci Technol. 2010;26(10):941.

    Article  CAS  Google Scholar 

  31. Maharubin S, Hu YB, Sooriyaarachchi D, Cong WL, Tan GZ. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys. Mater Sci Eng C. 2019;105:110059.

    Article  CAS  Google Scholar 

  32. Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1.

    Article  CAS  Google Scholar 

  33. Sobczyk-Guzenda A, Szymanski W, Jedrzejczak A, Batory D, Jakubowski W, Owczarek S. Bactericidal and photowetting effects of titanium dioxide coatings doped with iron and copper/fluorine deposited on stainless steel substrates. Surf Coat Technol. 2018;347:66.

    Article  CAS  Google Scholar 

  34. Wang JW, Zhang SY, Sun ZQ, Wang H, Ren L, Yang K. Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant. J Mater Sci Technol. 2019;35(10):2336.

    Article  Google Scholar 

  35. Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti-6Al-4V-xCu alloys. J Mater Sci Technol. 2014;30(7):699.

    Article  CAS  Google Scholar 

  36. Liu R, Tang YL, Zeng LL, Zhao Y, Ma Z, Sun ZQ, Xiang LB, Ren L, Yang K. In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application. Dent Mater. 2018;34(8):1112.

    Article  Google Scholar 

  37. Wu JH, Chen KK, Chao CY, Chang YH, Du JK. Effect of Ti2Cu precipitation on antibacterial property of Ti-5Cu alloy. Mater Sci Eng C. 2020;108:110433.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51404302 and 51801003) and the Natural Science Foundation of Hunan Province (No. 2020JJ4732).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Lin Yang or Er-Lin Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HL., Zhu, MZ., Wang, JY. et al. Optimization of mechanical and antibacterial properties of Ti-3wt%Cu alloy through cold rolling and annealing. Rare Met. 41, 610–620 (2022). https://doi.org/10.1007/s12598-021-01841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01841-x

Keywords

Navigation