Skip to main content
Log in

Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing antibiotics-independent antibacterial agents is of great importance since antibiotic therapy faces great challenges from drug resistance. Graphene oxide (GO) is a promising agent due to its natural antibacterial mechanisms, such as sharp edge-mediated cutting effect. However, the antibacterial activity of GO is limited by its negative charge and low photothermal effect. Herein, the amino-functionalized GO nanosheets (AGO) with unique three-in-one properties were synthesized. Three essential properties (positive charge, strong photothermal effect, and natural cutting effect) were integrated into AGO. The positive charge (30 mV) rendered AGO a strong interaction force with model pathogen Streptococcus mutans (330 nN). The natural cutting effect of 100 µg·mL−1 AGO caused 27% loss of bacterial viability after incubation for 30 min. Most importantly, upon the near-infrared irradiation for just 5 min, the three-in-one properties of AGO caused 98% viability loss. In conclusion, the short irradiation period and the tunable antibacterial activity confer the three-in-one AGO a great potential for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, M.; Qin, X. S.; Zeng, G. M. Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends Biotechnol. 2017, 35, 836–846.

    Article  CAS  Google Scholar 

  2. Shi, Z. Q.; Zhou, Y.; Fan, T. J.; Lin, Y. X.; Zhang, H.; Mei, L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020, 1, 32–47.

    Article  Google Scholar 

  3. Yao, Y.; Liao, W.; Yu, R. C.; Du, Y.; Zhang, T.; Peng, Q. Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine 2018, 13, 1623–1638.

    Article  CAS  Google Scholar 

  4. Ligorio, C.; Zhou, M.; Wychowaniec, J. K.; Zhu, X. Y.; Bartlam, C.; Miller, A. F.; Vijayaraghavan, A.; Hoyland, J. A.; Saiani, A. Graphene oxide containing self-assembling peptide hybrid hydrogels as a potential 3D injectable cell delivery platform for intervertebral disc repair applications. Acta Biomater. 2019, 92, 92–103.

    Article  CAS  Google Scholar 

  5. Chiu, N. F.; Chen, C. C.; Yang, C. D.; Kao, Y. S.; Wu, W. R. Enhanced plasmonic biosensors of hybrid gold nanoparticle-graphene oxide-based label-free immunoassay. Nanoscale Res. Lett. 2018, 13, 152.

    Article  Google Scholar 

  6. Zhou, Y. L.; Jiang, W. J.; Wu, H. W.; Liu, F.; Yin, H. S.; Lu, N.; Ai, S. Y. Amplified electrochemical immunoassay for 5-methylcytosine using a nanocomposite prepared from graphene oxide, magnetite nanoparticles and β-cyclodextrin. Microchim. Acta 2019, 186, 488.

    Article  Google Scholar 

  7. Shi, Z. Q.; Li, Q. Q.; Mei, L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020, 31, 1345–1356.

    Article  CAS  Google Scholar 

  8. Liu, J. Z.; Dong, J.; Zhang, T.; Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 2018, 286, 64–73.

    Article  CAS  Google Scholar 

  9. Hong, L.; Luo, S. H.; Yu, C. H.; Xie, Y.; Xia, M. Y.; Chen, G. Y.; Peng, Q. Functional nanomaterials and their potential applications in antibacterial therapy. Pharm. Nanotechnol. 2019, 7, 129–146.

    Article  CAS  Google Scholar 

  10. Xia, M. Y.; Xie, Y.; Yu, C. H.; Chen, G. Y.; Li, Y. H.; Zhang, T.; Peng, Q. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release 2019, 307, 16–31.

    Article  CAS  Google Scholar 

  11. Karahan, H. E.; Wiraja, C.; Xu, C. J.; Wei, J.; Wang, Y. L.; Wang, L.; Liu, F.; Chen, Y. Graphene materials in antimicrobial nanomedicine: Current status and future perspectives. Adv. Healthc. Mater. 2018, 7, 1701406.

    Article  Google Scholar 

  12. Yu, C. H.; Chen, G. Y.; Xia, M. Y.; Xie, Y.; Chi, Y. Q.; He, Z. Y.; Zhang, C. L.; Zhang, T.; Chen, Q. M.; Peng, Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf. B: Biointerfaces 2020, 191, 111009.

    Article  CAS  Google Scholar 

  13. Wang, S. P.; Ge, Y.; Zhou, X. D.; Xu, H. H.; Weir, M. D.; Zhang, K. K.; Wang, H. H.; Hannig, M.; Rupf, S.; Li, Q. et al. Effect of antibiofilm glass-ionomer cement on Streptococcus mutans biofilms. Int. J. Oral Sci. 2016, 8, 76–83.

    Article  CAS  Google Scholar 

  14. Zhu, G. Y.; Lu, B. Y.; Zhang, T. X.; Zhang, T.; Zhang, C. L.; Li, Y. Q.; Peng, Q. Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide) nanoparticles via nano-bacteria interactions. Nanomedicine 2018, 13, 1093–1106.

    Article  CAS  Google Scholar 

  15. Li, Y. H.; Chi, Y. Q.; Yu, C. H.; Xie, Y.; Xia, M. Y.; Zhang, C. L.; Han, X. L.; Peng, Q. Drug-free and non-crosslinked chitosan scaffolds with efficient antibacterial activity against both Gram-negative and Gram-positive bacteria. Carbohydr. Polym. 2020, 241, 116386.

    Article  CAS  Google Scholar 

  16. Wu, M. C.; Deokar, A. R.; Liao, J. H.; Shih, P. Y.; Ling, Y. C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano 2013, 7, 1281–1290.

    Article  CAS  Google Scholar 

  17. Robinson, J. T.; Tabakman, S. M.; Liang, Y Y.; Wang, H. L.; Sanchez Casalongue, H.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825–6831.

    Article  CAS  Google Scholar 

  18. Luo, J. W.; Deng, W. J.; Yang, F.; Wu, Z. Q.; Huang, M. T.; Gu, M. Gold nanoparticles decorated graphene oxide/nanocellulose paper for NIR laser-induced photothermal ablation of pathogenic bacteria. Carbohydr. Polym. 2018, 198, 206–214.

    Article  CAS  Google Scholar 

  19. Liu, S. M.; Cao, S. T.; Guo, J. Y.; Luo, L. Q.; Zhou, Y.; Lin, C. L.; Shi, J. Y.; Fan, C. H.; Lv, M.; Wang, L. H. Graphene oxide-silver nanocomposites modulate biofilm formation and extracellular polymeric substance (EPS) production. Nanoscale 2018, 10, 19603–19611.

    Article  CAS  Google Scholar 

  20. Wierzbicki, M.; Jaworski, S.; Sawosz, E.; Jung, A.; Gielerak, G.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Stobiński, L.; Małolepszy, A.; Chwalibog, A. Graphene oxide in a composite with silver nanoparticles reduces the fibroblast and endothelial cell cytotoxicity of an antibacterial nanoplatform. Nanoscale Res. Lett. 2019, 14, 320.

    Article  Google Scholar 

  21. Ashrafi, B.; Rashidipour, M.; Marzban, A.; Soroush, S.; Azadpour, M.; Delfani, S.; Ramak, P. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr. Polym. 2019, 212, 142–149.

    Article  CAS  Google Scholar 

  22. Song, Y. R.; Na, H. S.; Park, E.; Park, M. H.; Lee, H. A.; Chung, J. Streptococcus mutans activates the AIM2, NLRP3 and NLRC4 inflammasomes in human THP-1 macrophages. Int. J. Oral Sci. 2018, 10, 23.

    Article  Google Scholar 

  23. Wang, M. M.; Chen, S.; Zhang, D. D.; Yu, Y. L.; Wang, J. H. Immobilization of a Ce(IV)-substituted polyoxometalate on ethylene-diamine-functionalized graphene oxide for selective extraction of phosphoproteins. Microchim. Acta 2018, 185, 553.

    Article  Google Scholar 

  24. Zhang, T.; Zhu, G. Y.; Yu, C. H.; Xie, Y.; Xia, M. Y.; Lu, B. Y.; Fei, X. F.; Peng, Q. The UV absorption of graphene oxide is size-dependent: Possible calibration pitfalls. Microchim. Acta 2019, 186, 207.

    Article  Google Scholar 

  25. Zhang, T. X.; Zhu, G. Y.; Lu, B. Y.; Zhang, C. L.; Peng, Q. Concentration-dependent protein adsorption at the nano-bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine 2017, 12, 2757–2769.

    Article  CAS  Google Scholar 

  26. Peng, Q.; Liu, J. Y.; Zhang, T.; Zhang, T. X.; Zhang, C. L.; Mu, H. L. Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles. Biomacromolecules 2019, 20, 1789–1797.

    Article  CAS  Google Scholar 

  27. Liu, S. B.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R. R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364–12372.

    Article  CAS  Google Scholar 

  28. Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236.

    Article  CAS  Google Scholar 

  29. Singh, S. K.; Singh, M. K.; Kulkarni, P. P.; Sonkar, V. K.; Grácio, J. J. A.; Dash, D. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012, 6, 2731–2740.

    Article  CAS  Google Scholar 

  30. Shao, X. R.; Wei, X. Q.; Zhang, S.; Fu, N.; Lin, Y. F.; Cai, X. X.; Peng, Q. Effects of micro-environmental pH of liposome on chemical stability of loaded drug. Nanoscale Res. Lett. 2017, 12, 504.

    Article  Google Scholar 

  31. Wei, X. Q.; Hao, L. Y.; Shao, X. R.; Zhang, Q.; Jia, X. Q.; Zhang, Z. R.; Lin, Y. F.; Peng, Q. Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. ACS Appl. Mater. Interfaces 2015, 7, 13367–13374.

    Article  CAS  Google Scholar 

  32. Kim, T.; Zhang, Q. Z.; Li, J.; Zhang, L. F.; Jokerst, J. V. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano 2018, 12, 5615–5625.

    Article  CAS  Google Scholar 

  33. Li, X.; Qi, M. L.; Sun, X. L.; Weir, M. D.; Tay, F. R.; Oates, T. W.; Dong, B.; Zhou, Y. M.; Wang, L.; Xu, H. H. K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater. 2019, 94, 627–643.

    Article  CAS  Google Scholar 

  34. Yang, Y.; Xu, G. P.; Liang, J. D.; He, Y.; Xiong, L.; Li, H.; Bartlett, D.; Deng, Z. X.; Wang, Z. J.; Xiao, X. DNA Backbone Sulfur-Modification Expands Microbial Growth Range under Multiple Stresses by its anti-oxidation function. Sci. Rep. 2017, 7, 3516.

    Article  Google Scholar 

  35. Davidson, J. F.; Whyte, B.; Bissinger, P. H.; Schiestl, R. H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 5116–5121.

    Article  CAS  Google Scholar 

  36. Sleator, R. D.; Hill, C. Bacterial osmoadaptation: The role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 2002, 26, 49–71.

    Article  CAS  Google Scholar 

  37. Koch, A. L.; Doyle, R. J. The growth strategy of the Gram-positive rod. FEMS Microbiol. Lett. 1986, 1, 247–254.

    Article  CAS  Google Scholar 

  38. Qiu, J. J.; Liu, L.; Zhu, H. Q.; Liu, X. Y. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact. Mater. 2018, 3, 341–346.

    Article  Google Scholar 

  39. Mejías Carpio, I. E.; Santos, C. M.; Wei, X.; Rodrigues, D. F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012, 4, 4746–4756.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81973261 and U19A2005), the Foundation of West China Hospital of Stomatology (No. RD-02-201903), and the Research Funding for Talents Developing, West China Hospital of Stomatology, Sichuan University (No. RCDWJS2020-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Peng.

Electronic Supplementary Material

12274_2020_3064_MOESM1_ESM.pdf

Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, BY., Zhu, GY., Yu, CH. et al. Functionalized graphene oxide nanosheets with unique three-in-one properties for efficient and tunable antibacterial applications. Nano Res. 14, 185–190 (2021). https://doi.org/10.1007/s12274-020-3064-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3064-6

Keywords

Navigation