Skip to main content
Log in

Spatial construction of ultrasmall Pt-decorated 3D spinel oxide-modified N-doped graphene nanoarchitectures as high-efficiency methanol oxidation electrocatalysts

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Direct methanol fuel cell technology recently becomes the focus of both academic and engineering circles, which stimulates the exploitation and utilization of advanced electrode catalysts with high activity and long lifespan. Herein, we demonstrate a robust bottom-up approach to the spatial construction of three-dimensional (3D) spinel manganese-cobalt oxide-modified N-doped graphene nanoarchitectures decorated with ultrasmall Pt nanoparticles (Pt/MnCo2O4-NG) via a controllable self-assembly process. The incorporation of MnCo2O4 nanocrystals provides abundant hydroxyl sources to promote the oxidative removal of CO-like byproducts on Pt sites, while the existence of 3D porous N-doped graphene networks facilitates the transportation of both ions and electrons in the hybrid system, thus giving rise to remarkable synergetic coupling effects during the methanol oxidation process. Consequently, the optimized Pt/MnCo2O4-NG nanoarchitecture expresses exceptional electrocatalytic properties with a large electrochemically active surface area of 99.5 m2·g−1, a high mass activity of 1508.3 mA·mg−1, strong toxicity resistance and reliable long-term durability, which have obvious competitive advantages over those of conventional Pt/carbon black, Pt/carbon nanotube, Pt/graphene, and Pt/N-doped graphene catalysts with the same Pt usage.

Graphical abstract

摘要

直接甲醇燃料电池技术在近年来成为了学术界和工业界的关注热点,这也推动了高活性、长寿命的先进电极催化剂的开发与利用。在本文中,我们展示了一种“自下而上”的方法通过自组装过程实现了小尺寸铂修饰的三维尖晶石氧化物改性氮掺杂石墨烯(Pt/MnCo2O4-NG)纳米结构的空间构筑。钴酸锰纳米晶的引入提供了丰富的羟基物种,促进了铂活性位点上副产物的氧化去除,同时三维多孔氮掺杂石墨烯网络的存在促进了杂化体系中离子和电子的输运,从而在甲醇氧化过程中产生了显著的协同耦合效应。研究结果表明,经过组分优化后,Pt/MnCo2O4-NG纳米结构的电化学活性表面积可达 99.5 m2·g-1,甲醇氧化质量活性为 1508.3 mA·mg-1,并具有较强的抗毒性和可靠的长期稳定性,相比于传统的铂/炭黑、铂/碳纳米管、铂/石墨烯和铂/氮掺杂石墨烯催化剂具有明显的竞争优势。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu Q, Gao KR, Wang XD, Zheng HJ, Cao JY, Mi LR, Huo QH, Yang HP, Liu JH, He CX. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat Commun. 2022;13(1):3958. https://doi.org/10.1038/s41467-022-31660-2.

    Article  CAS  Google Scholar 

  2. Xu XH, Zhang YJ, Miao XY. Synthesis and electrocatalytic performance of 3D coral-like NiCo-P. Chin J Rare Met. 2022;46(11):1449. https://doi.org/10.13373/j.cnki.cjrm.XY22080001.

  3. Huang HJ, Xue Y, Xie YS, Yang Y, Yang L, He HY, Jiang QG, Ying GB. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorg Chem Front. 2022;9(6):1171. https://doi.org/10.1039/d1qi01528a.

    Article  CAS  Google Scholar 

  4. Guo YM, Zhang LJ, XiLi D, Kang J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin J Rare Met. 2021;45(10):1241. https://doi.org/10.13373/j.cnki.cjrm.XY20040016.

    Article  Google Scholar 

  5. Shen BF, Feng Y, Wang Y, Sun PY, Yang L, Jiang QG, He HY, Huang HJ. Holey MXene nanosheets intimately coupled with ultrathin Ni–Fe layered double hydroxides for boosted hydrogen and oxygen evolution reactions. Carbon. 2023;212:118141. https://doi.org/10.1016/j.carbon.2023.118141.

    Article  CAS  Google Scholar 

  6. Zhang J, Zhou NN, Du M, Li YH, Cui Y, Li XA, Zhu XB, Huang W. Cobalt single-atom-decorated nickel thiophosphate nanosheets for overall water splitting. J Mater Chem A. 2022;10(1):296. https://doi.org/10.1039/d1ta08599a.

    Article  CAS  Google Scholar 

  7. Hu Q, Qin YJ, Wang XD, Wang ZY, Huang XW, Zheng HJ, Gao KR, Yang HP, Zhang PX, Shao MH, He CX. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate–ammonia conversion. Energy Environ Sci. 2021;14(9):4989. https://doi.org/10.1039/d1ee01731d.

    Article  CAS  Google Scholar 

  8. Hu Q, Qin YJ, Wang XD, Zheng HJ, Gao KR, Yang HP, Zhang PX, Shao MH, He CX. Grain boundaries engineering of hollow copper nanoparticles enables highly efficient ammonia electrosynthesis from nitrate. CCS Chem. 2022;4(6):2053. https://doi.org/10.31635/ccschem.021.202101042.

    Article  CAS  Google Scholar 

  9. Jin X, Wang X, Liu YL, Kim MJ, Cao M, Xie HH, Liu ST, Wang XB, Huang W, Nanjundan AK, Yuliarto B, Li XY, Yamauchi Y. Nitrogen and sulfur co-doped hierarchically porous carbon nanotubes for fast potassium ion storage. Small. 2022;18(42):2203545. https://doi.org/10.1002/smll.202203545.

    Article  CAS  Google Scholar 

  10. Xu S, Niu M, Zhao GW, Ming SJ, Li XY, Zhu QL, Ding LX, Kim M, Alothman AA, Mushab MSS, Yamauchi Y. Size control and electronic manipulation of Ru catalyst over B, N co-doped carbon network for high-performance hydrogen evolution reaction. Nano Res. 2023;16:6212. https://doi.org/10.1007/s12274-022-5250-1.

    Article  CAS  Google Scholar 

  11. Ma C, He HY, Qin JL, Hao LL, Jia L, Yang L, Huang HJ. Combining MXene nanosheets with iron-based metal-organic frameworks for enhanced electrocatalytic hydrogen evolution reaction. Mater Today Chem. 2023;30:101531. https://doi.org/10.1016/j.mtchem.2023.101531.

    Article  CAS  Google Scholar 

  12. Zhang J, Li LT, Du M, Cui Y, Li YH, Yan W, Huang HJ, Li XA, Zhu XB. Single-atom phosphorus defects decorated CoP cocatalyst boosts photocatalytic hydrogen generation performance of Cd0.5Zn0.5S by directed separating the photogenerated carriers. Small. 2023;19(20):2300402. https://doi.org/10.1002/smll.202300402.

    Article  CAS  Google Scholar 

  13. Kim M, Firestein KL, Fernando JFS, Xu XT, Lim H, Golberg DV, Na J, Kim J, Nara H. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chem Sci. 2022;13(36):10836. https://doi.org/10.1039/d2sc02726g.

    Article  CAS  Google Scholar 

  14. Chen YZ, Zhou M, Huang YF, Ma YY, Yan LY, Zhou XW, Ma XZ, Zhao XL, Chen C, Bai J, Lin DH. Enhanced ethanol oxidation over Pd nanoparticles supported porous graphene-doped MXene using polystyrene particles as sacrificial templates. Rare Met. 2022;41(9):3170. https://doi.org/10.1007/s12598-022-02039-5.

    Article  CAS  Google Scholar 

  15. Ding QW, Luo Q, Lin L, Fu XP, Wang LS, Yue GH, Lin J, Xie QS, Peng DL. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation. Rare Met. 2022;41(8):2595. https://doi.org/10.1007/s12598-022-01997-0.

  16. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

  17. Zhang Q, Li YA, He HY, Huang HJ. Building 3D interconnected MoS2 nanosheet-graphene networks decorated with Rh nanoparticles for boosted methanol oxidation reaction. ACS Sustain Chem Eng. 2022;10(27):8940. https://doi.org/10.1021/acssuschemeng.2c02455.

    Article  CAS  Google Scholar 

  18. Xiao D, Jiang QG, Xu CY, Yang CZ, Yang L, He HY, Huang HJ. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. J Colloid Interface Sci. 2022;616:781. https://doi.org/10.1016/j.jcis.2022.02.111.

    Article  CAS  Google Scholar 

  19. Qin JL, Huang HJ, Zhang J, Zhu FY, Luo L, Zhang C, Yang L, Jiang QG, He HY. Stereoassembly of ultrasmall Rh-decorated zeolite imidazolate framework-MXene heterostructures for boosted methanol oxidation reaction. J Mater Chem A. 2023;11(6):2848. https://doi.org/10.1039/d2ta08709j.

    Article  CAS  Google Scholar 

  20. Liu S, Wang X, Yu HG, Wu YP, Li B, Lan YQ, Wu T, Zhang J, Li DS. Two new pseudo-isomeric nickel (II) metal-organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021;40(2):489. https://doi.org/10.1007/s12598-020-01596-x.

    Article  CAS  Google Scholar 

  21. Meng W, He HY, Yang L, Jiang QG, Yuliarto B, Yamauchi Y, Xu XT, Huang HJ. 1D–2D hybridization: nanoarchitectonics for grain boundary-rich platinum nanowires coupled with MXene nanosheets as efficient methanol oxidation electrocatalysts. Chem Eng J. 2022;450:137932. https://doi.org/10.1016/j.cej.2022.137932.

    Article  CAS  Google Scholar 

  22. Qin YC, Wang FQ, Wang XM, Wang MW, Zhang WL, An WK, Wang XP, Ren YL, Zheng X, Lv DC, Ahmad A. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021;40(9):2354. https://doi.org/10.1007/s12598-021-01780-7.

    Article  CAS  Google Scholar 

  23. Yang CZ, Jiang QG, Huang HJ, He HY, Yang L, Li WH. Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation. ACS Appl Mater Interfaces. 2020;12(21):23822. https://doi.org/10.1021/acsami.0c02806.

    Article  CAS  Google Scholar 

  24. Huang HJ, Wang X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A. 2014;2(18):6266. https://doi.org/10.1039/c3ta14754a.

    Article  CAS  Google Scholar 

  25. Gao ZQ, Li MM, Wang JY, Zhu JX, Zhao XM, Huang HJ, Zhang JF, Wu YP, Fu YS, Wang X. Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS2 nanosheets: highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions. Carbon. 2018;139:369. https://doi.org/10.1016/j.carbon.2018.07.006.

    Article  CAS  Google Scholar 

  26. Yang CZ, Huang HJ, He HY, Yang L, Jiang QG, Li WH. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coord Chem Rev. 2021;435:213806. https://doi.org/10.1016/j.ccr.2021.213806.

    Article  CAS  Google Scholar 

  27. Guo XJ, Zhang Q, Li YN, Chen Y, Yang L, He HY, Xu XT, Huang HJ. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met. 2022;41(6):2108. https://doi.org/10.1007/s12598-021-01882-2.

    Article  CAS  Google Scholar 

  28. Yang CZ, Jiang QG, Liu H, Yang L, He HY, Huang HJ, Li WH. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2021;9(27):15432. https://doi.org/10.1039/d1ta01784e.

    Article  CAS  Google Scholar 

  29. Dong AQ, Li H, Wu HM, Li KX, Shao YK, Li ZG, Sun SH, Wang WC, Hu WB. Weakening CO poisoning over size-and support-dependent Ptn/X-graphene catalyst (X= C, B, N, n= 1–6, 13). Rare Met. 2023;42(3):1138. https://doi.org/10.1007/s12598-022-02210-y.

    Article  CAS  Google Scholar 

  30. Cao SY, Ye F, Zhang NN, Guo YL, Guo Y, Wang L, Dai S, Zhan WC. Synergistic effect of bimetallic RuPt/TiO2 catalyst in methane combustion. Rare Met. 2023;42(1):165. https://doi.org/10.1007/s12598-022-02118-7.

    Article  CAS  Google Scholar 

  31. Huang HJ, Yan MM, Yang CZ, He HY, Jiang QG, Yang L, Lu ZY, Sun ZQ, Xu XT, Bando Y, Yamauchi Y. Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv Mater. 2019;31(48):1903415. https://doi.org/10.1002/adma.201903415.

    Article  CAS  Google Scholar 

  32. Huang H, Zhu J, Zhang W, Tiwary CS, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q. Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater. 2016;28(6):1737. https://doi.org/10.1021/acs.chemmater.5b04654.

    Article  CAS  Google Scholar 

  33. He HY, Chen YX, Yang CZ, Yang L, Jiang QG, Huang HJ. Constructing 3D interweaved MXene/graphitic carbon nitride nanosheets/graphene nanoarchitectures for promoted electrocatalytic hydrogen evolution. J Energy Chem. 2022;67:483. https://doi.org/10.1016/j.jechem.2021.10.0192095-4956.

    Article  CAS  Google Scholar 

  34. Yang CZ, He HY, Jiang QG, Liu XY, Shah SP, Huang HJ, Li WH. Pd nanocrystals grown on MXene and reduced graphene oxide co-constructed three-dimensional nanoarchitectures for efficient formic acid oxidation reaction. Int J Hydrogen Energy. 2021;46(1):589. https://doi.org/10.1016/j.ijhydene.2020.09.243.

    Article  CAS  Google Scholar 

  35. Shen BF, Huang HJ, Jiang Y, Xue Y, He HY. 3D interweaving MXene-graphene network-confined Ni-Fe layered double hydroxide nanosheets for enhanced hydrogen evolution. Electrochim Acta. 2022;407:139913. https://doi.org/10.1016/j.electacta.2022.139913.

    Article  CAS  Google Scholar 

  36. Huang HJ, Wei YJ, Yang Y, Yan MM, He HY, Jiang QG, Yang XF, Zhu JX. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energy Chem. 2021;57:601. https://doi.org/10.1016/j.jechem.2020.08.063.

    Article  CAS  Google Scholar 

  37. Huang HJ, Ma LL, Tiwary CS, Jiang QG, Yin KB, Zhou W, Ajayan PM. Worm-shape Pt nanocrystals grown on nitrogen-doped low-defect graphene sheets: highly efficient electrocatalysts for methanol oxidation reaction. Small. 2017;13(10):1603013. https://doi.org/10.1002/smll.201603013.

    Article  CAS  Google Scholar 

  38. Zhang X, Zhang JF, Huang HJ, Jiang QG, Wu YP. Platinum nanoparticles anchored on graphene oxide-dispersed pristine carbon nanotube supports: high-performance electrocatalysts toward methanol electrooxidation. Electrochim Acta. 2017;258:919. https://doi.org/10.1016/j.electacta.2017.11.142.

    Article  CAS  Google Scholar 

  39. Yan MM, Jiang QG, Zhang T, Wang JY, Yang L, Lu ZY, He HY, Fu YS, Wang X, Huang HJ. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2018;6(37):18165. https://doi.org/10.1039/c8ta05124k.

    Article  CAS  Google Scholar 

  40. Huang HJ, Guo XJ, Yan MM, Meng W, Xue Y, Xiao D, Jiang QG, Yang L, He HY. Well-dispersive Pt nanoparticles grown on 3D nitrogen- and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation. Mater Today Energy. 2021;21:100814. https://doi.org/10.1016/j.mtener.2021.100814.

    Article  CAS  Google Scholar 

  41. Huang HJ, Zhu JX, Li DB, Shen C, Li MM, Zhang X, Jiang QG, Zhang JF, Wu YP. Pt nanoparticles grown on 3D RuO2-modified graphene architectures for highly efficient methanol oxidation. J Mater Chem A. 2017;5(9):4560. https://doi.org/10.1039/c6ta10548c.

    Article  CAS  Google Scholar 

  42. Jiang ZY, Feng XB, Deng JL, He C, Douthwaite M, Yu YK, Liu J, Hao ZP, Zhao Z. Atomic-scale insights into the low-temperature oxidation of methanol over a single-atom Pt1-Co3O4 catalyst. Adv Funct Mater. 2019;29(31):1902041. https://doi.org/10.1002/adfm.201902041.

    Article  CAS  Google Scholar 

  43. Zhang TW, Li ZF, Wang LK, Sun P, Zhang ZX, Wang SW. Spinel MnCo2O4 nanoparticles supported on three-dimensional graphene with enhanced mass transfer as an efficient electrocatalyst for the oxygen reduction reaction. Chemsuschem. 2018;11(16):2730. https://doi.org/10.1002/cssc.201801070.

    Article  CAS  Google Scholar 

  44. Kang Y, Zou D, Zhang JY, Liang F, Hayashi K, Wang H, Xue DF, Chen KF, Adair KR, Sun XL. Dual–phase spinel MnCo2O4 nanocrystals with nitrogen-doped reduced graphene oxide as potential catalyst for hybrid Na–air batteries. Electrochim Acta. 2017;11(16):2730. https://doi.org/10.1016/j.electacta.2017.05.100.

    Article  CAS  Google Scholar 

  45. Fu GT, Liu ZY, Zhang JF, Wu JY, Xu L, Sun DM, Zhang JB, Tang YW, Chen P. Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Res. 2016;9:2110. https://doi.org/10.1007/s12274-016-1101-2.

    Article  CAS  Google Scholar 

  46. Ma TY, Zheng Y, Dai S, Jaroniec M, Qiao SZ. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J Mater Chem A. 2014;2(23):8676. https://doi.org/10.1039/c4ta01672f.

    Article  CAS  Google Scholar 

  47. Wang NH, Xu ZH, Luo TT, Yan ZX, Jin M, Shi L. Pt anchored on Mn(Co)CO3/MnCo2O4 heterostructure for complete oxidation of formaldehyde at room temperature. ChemistrySelect. 2020;5(34):10537. https://doi.org/10.1002/slct.202002870.

    Article  CAS  Google Scholar 

  48. Huang HJ, Shen BF, Yan MM, He HY, Yang L, Jiang QG, Ying GB. Coupled spinel manganese-cobalt oxide and MXene electrocatalysts towards efficient hydrogen evolution reaction. Fuel. 2022;328:125234. https://doi.org/10.1016/j.fuel.2022.125234.

    Article  CAS  Google Scholar 

  49. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater. 1999;11(3):771. https://doi.org/10.1021/cm981085u.

    Article  CAS  Google Scholar 

  50. Gong YJ, Yang SB, Liu Z, Ma LL, Vajtai R, Ajayan PM. Graphene-network-backboned architectures for high-performance lithium storage. Adv Mater. 2013;25(29):3979. https://doi.org/10.1002/adma.201301051.

    Article  CAS  Google Scholar 

  51. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc. 2012;134(22):9082. https://doi.org/10.1021/ja3030565.

    Article  CAS  Google Scholar 

  52. Maturost S, Themsirimongkon S, Waenkaew P, Promsawan N, Jakmunee J, Saipanya S. The effect of CuO on a Pt-Based catalyst for oxidation in a low-temperature fuel cell. Int J Hydrogen Energy. 2021;46(8):5999. https://doi.org/10.1016/j.ijhydene.2020.08.154.

    Article  CAS  Google Scholar 

  53. Daşdelen Z, Yıldız Y, Eriş S, Sen F. Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl Catal B. 2017;219:511. https://doi.org/10.1016/j.apcatb.2021.120392.

    Article  CAS  Google Scholar 

  54. Liang YY, Wang HL, Zhou JG, Li YG, Wang J, Regier T, Dai HJ. Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc. 2012;134(7):3517. https://doi.org/10.1021/ja210924t.

    Article  CAS  Google Scholar 

  55. Fu W, Wang XL, Yang XX, He XQ. MnCo2O4 anchored on Nitrogen-doped carbon nanomaterials as an efficient electrocatalyst for oxygen reduction. ChemistrySelect. 2018;3(16):4228. https://doi.org/10.1002/slct.201703082.

    Article  CAS  Google Scholar 

  56. Guo XJ, Xiong J, Wang Q, Zhang J, He HY, Huang HJ. Ultrafine Rh nanocrystals grown onto a boron and nitrogen codoped carbon support with a horn-shaped structure for highly efficient methanol oxidation. Dalton Trans. 2022;51(44):16982. https://doi.org/10.1039/d2dt02010f.

    Article  CAS  Google Scholar 

  57. Ge XM, Liu YY, Goh FWT, Hor TSA, Zong Y, Xiao P, Zhang Z, Lim SH, Li B, Wang X, Liu ZL. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl Mater Interfaces. 2014;6(15):12684. https://doi.org/10.1021/am502675c.

    Article  CAS  Google Scholar 

  58. Lu Y, Fan DQ, Chen ZP, Xiao WP, Cao CC, Yang XF. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci Bull. 2020;65(6):460. https://doi.org/10.1016/j.scib.2019.12.020.

    Article  CAS  Google Scholar 

  59. Huang HJ, Yang SB, Vajtai R, Wang X, Ajayan PM. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv Mater. 2014;26(30):5160. https://doi.org/10.1002/adma.201401877.

    Article  CAS  Google Scholar 

  60. Yang CZ, Jiang QG, Li WH, He HY, Yang L, Lu ZY, Huang HJ. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation. Chem Mater. 2019;31(22):9277. https://doi.org/10.1021/acs.chemmater.9b02115.

    Article  CAS  Google Scholar 

  61. Guo SJ, Dong SJ, Wang EK. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker. Adv Mater. 2010;22(11):1269. https://doi.org/10.1002/adma.200903379.

    Article  CAS  Google Scholar 

  62. Chu HB, Shen YH, Lin LA, Qin XJ, Feng G, Lin ZY, Wang JY, Liu HC, Li Y. Ionic-liquid-assisted preparation of Carbon nanotube-supported uniform noble metal nanoparticles and their enhanced catalytic performance. Adv Funct Mater. 2010;20(21):3747. https://doi.org/10.1002/adfm.201001240.

    Article  CAS  Google Scholar 

  63. Yuan X, Min YX, Wu JD, Xu L, Yue WB. Optimized electrocatalytic performance of PtZn intermetallic nanoparticles for methanol oxidation by designing catalyst support and fine-tuning surface composition. Electrochim Acta. 2021;394:139106. https://doi.org/10.1016/j.electacta.2021.139106.

    Article  CAS  Google Scholar 

  64. Huang HJ, Ye GL, Yang SB, Fei HL, Tiwary CS, Gong YJ, Vajtai R, Tour JM, Wang X, Ajayan PM. Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. J Mater Chem A. 2015;3(39):19696. https://doi.org/10.1039/c5ta05372b.

    Article  CAS  Google Scholar 

  65. Wang L, Nemoto Y, Yamauchi Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc. 2011;133(25):9674. https://doi.org/10.1021/ja202655j.

    Article  CAS  Google Scholar 

  66. Guo SJ, Dong SJ, Wang EK. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano. 2010;4(1):547. https://doi.org/10.1021/nn9014483.

    Article  CAS  Google Scholar 

  67. Hong W, Wang J, Wang EK. Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small. 2014;10(16):3262. https://doi.org/10.1002/smll.201400059.

    Article  CAS  Google Scholar 

  68. Guo SJ, Zhang S, Sun XL, Sun SH. Synthesis of ultrathin FePtPd nanowires and their use as catalysts for methanol oxidation reaction. J Am Chem Soc. 2011;133(39):15354. https://doi.org/10.1021/ja207308b.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22209037 and 51802077) and the Fundamental Research Funds for the Central Universities (No. B220202042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Yan He or Hua-Jie Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1365 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yan, MM., Du, WF. et al. Spatial construction of ultrasmall Pt-decorated 3D spinel oxide-modified N-doped graphene nanoarchitectures as high-efficiency methanol oxidation electrocatalysts. Rare Met. 43, 186–197 (2024). https://doi.org/10.1007/s12598-023-02418-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02418-6

Keywords

Navigation