Skip to main content
Log in

A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Devising an electrocatalyst with brilliant efficiency and satisfactory durability for hydrogen production is of considerable demand, especially for large-scale application. Herein, we adopt a multi-step consequential induced strategy to construct a bifunctional electrocatalyst for the overall water splitting. Graphene oxide (GO) was used as a carbon matrix and in situ oxygen source, which was supported by the octahedral PtNi alloy to form the PtxNiy-GO precursor. When calcinating in Ar atmosphere, the oxygen in GO induced the surface segregation of Ni from the PtNi octahedron to form a core-shell structure of Ptx@Niy. Then, the surface-enriched Ni continuously induced the reformation of C in reduced graphene oxide (rGO) to enhance the degree of graphitization. This multi-step induction formed a nanocatalyst Ptx@Niy-rGO which has very high catalytic efficiency and stability. By optimizing the feeding ratio of PtNi (Pt:Ni = 1:2), the electrolytic overall water splitting at 10 mA·cm−2 can be driven by an electrolytic voltage of as low as 1.485 V, and hydrogen evolution reaction (HER) only needs an overpotential of 37 mV in 1.0 M KOH aqueous solution. Additionally, the catalyst exhibited consistent existence form in both HER and oxygen evolution reaction (OER), which was verified by switching the anode and cathode of the cell in the electrolysis of water. This work provides a new idea for the synthesis and evaluation of the bifunctional catalysts for water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salcedo-Abraira, P.; Vilela, S. M. F.; Babaryk, A. A.; Cabrero-Antonino, M.; Gregorio, P.; Salles, F.; Navalón, S.; García, H.; Horcajada, P. Nickel phosphonate mof as efficient water splitting photocatalyst. Nano Res. 2021, 14, 450–457.

    Article  CAS  Google Scholar 

  2. Sun, K. A.; Zhao, L.; Zeng, L. Y.; Liu, S. J.; Zhu, H. Y.; Li, Y. P.; Chen, Z.; Zhuang, Z. W.; Li, Z. L.; Liu, Z. et al. Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Res. 2020, 13, 3068–3074.

    Article  Google Scholar 

  3. Huang, L. A.; He, Z. S.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Photodeposition fabrication of hierarchical layered Co-doped ni oxyhydroxide (NixCo1−xOOH) catalysts with enhanced electrocatalytic performance for oxygen evolution reaction. Nano Res. 2020, 13, 246–254.

    Article  CAS  Google Scholar 

  4. Liang, J.; Wang, C. X.; Zhao, P. Y.; Wang, Y. R.; Ma, L. B.; Zhu, G. Y.; Hu, Y.; Lu, Z. P.; Xu, Z. R.; Ma, Y. et al. Interface engineering of anchored ultrathin TiO2/MoS2 heterolayers for highly-efficient electrochemical hydrogen production. ACS Appl. Mater. Interfaces 2018, 10, 6084–6089.

    Article  CAS  Google Scholar 

  5. Zhang, P.; Lu, X. F.; Nai, J. W.; Zang, S. Q.; Lou, X. W. Construction of hierarchical Co-Fe oxyphosphide microtubes for electrocatalytic overall water splitting. Adv. Sci. 2019, 6, 1900576.

    Article  Google Scholar 

  6. Ledendecker, M.; Clavel, G.; Antonietti, M.; Shalom, M. Highly porous materials as tunable electrocatalysts for the hydrogen and oxygen evolution reaction. Adv. Funct. Mater. 2015, 25, 393–399.

    Article  CAS  Google Scholar 

  7. Chen, Y.; Rao, Y.; Wang, R. Z.; Yu, Y. N.; Li, Q. L.; Bao, S. J.; Xu, M. W.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407–2412.

    Article  CAS  Google Scholar 

  8. Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.

    Article  CAS  Google Scholar 

  9. Chi, J. Q.; Chai, Y. M.; Shang, X.; Dong, B.; Liu, C. G.; Zhang, W. J.; Jin, Z. Heterointerface engineering of trilayer-shelled ultrathin MoS2/MoP/N-doped carbon hollow nanobubbles for efficient hydrogen evolution. J. Mater. Chem. A 2018, 6, 24783–24792.

    Article  CAS  Google Scholar 

  10. Luo, F.; Guo, L.; Xie, Y. H.; Xu, J. X.; Qu, K. G.; Yang, Z. H. Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Appl. Catal. B: Environ. 2020, 279, 119394.

    Article  CAS  Google Scholar 

  11. Lee, M. H.; Youn, D. H.; Lee, J. S. Nanostructured molybdenum phosphide/N-doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction. Appl. Catal. A: Gen. 2020, 594, 117451.

    Article  CAS  Google Scholar 

  12. Ruqia, B.; Choi, S. I. Pt and Pt-Ni(OH)2 electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nanoscaled electrocatalysts. ChemSusChem 2018, 11, 2643–2653.

    Article  CAS  Google Scholar 

  13. Watzele, S.; Fichtner, J.; Garlyyev, B.; Schwämmlein, J. N.; Bandarenka, A. S. On the dominating mechanism of the hydrogen evolution reaction at polycrystalline Pt electrodes in acidic media. ACS Catal. 2018, 8, 9456–9462.

    Article  CAS  Google Scholar 

  14. Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 53, 14016–14021.

    Article  CAS  Google Scholar 

  15. Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

    Article  CAS  Google Scholar 

  16. Li, D.; Chen, X. F.; Lv, Y. Z.; Zhang, G. Y.; Huang, Y.; Liu, W.; Li, Y.; Chen, R. S.; Nuckolls, C.; Ni, H. W. An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl. Catal. B: Environ. 2020, 269, 118824.

    Article  CAS  Google Scholar 

  17. Lv, X. S.; Wei, W.; Wang, H.; Huang, B. B.; Dai, Y. Multifunctional electrocatalyst PtM with low Pt loading and high activity towards hydrogen and oxygen electrode reactions: A computational study. Appl. Catal. B: Environ. 2019, 255, 117743.

    Article  CAS  Google Scholar 

  18. Xiao, B. W.; Wang, K.; Xu G. L.; Song, J. H.; Chen, Z. H.; Amine, K.; Reed, D.; Sui, M. L.; Sprenkle, V.; Ren, Y. et al. Revealing the atomic origin of heterogeneous Li-ion diffusion by probing Na. Adv. Mater. 2019, 31, 1805889.

    Article  Google Scholar 

  19. Xie, H. P.; Lan, C.; Chen, B.; Wang, F. H.; Liu, T. Noble-metal-free catalyst with enhanced hydrogen evolution reaction activity based on granulated Co-doped Ni-Mo phosphide nanorod arrays. Nano Res. 2020, 13, 3321–3329.

    Article  CAS  Google Scholar 

  20. Chi, J. Q.; Xie, J. Y.; Zhang, W. W.; Dong, B.; Qin, J. F.; Zhang, X. Y.; Lin, J. H.; Chai, Y. M.; Liu, C. G. N-doped sandwich-structured Mo2C@C@Pt interface with ultralow Pt loading for pH-universal hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 4047–4056.

    Article  CAS  Google Scholar 

  21. Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.

    Article  CAS  Google Scholar 

  22. Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/Wo3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293.

    Article  CAS  Google Scholar 

  23. Štrbac, S.; Smiljanić, M.; Wakelin, T.; Potočnik, J.; Rakočević, Z. Hydrogen evolution reaction on bimetallic Ir/Pt(poly) electrodes in alkaline solution. Electrochim. Acta 2019, 306, 18–27.

    Article  Google Scholar 

  24. Theerthagiri, J.; Cardoso, E. S. F.; Fortunato, G. V.; Casagrande, G. A.; Senthilkumar, B.; Madhavan, J.; Maia, G. Highly electroactive Ni pyrophosphate/Pt catalyst toward hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 4969–4982.

    Article  CAS  Google Scholar 

  25. Smiljanić, M.; Rakočević, Z.; Štrbac, S. Electrocatalysis of hydrogen evolution reaction on tri-metallic Rh@Pd/Pt(poly) electrode. Int. J. Hydrogen Energy 2018, 43, 2763–2771.

    Article  Google Scholar 

  26. Kelly, T. G.; Lee, K. X.; Chen, J. G. Pt-modified molybdenum carbide for the hydrogen evolution reaction: From model surfaces to powder electrocatalysts. J. Power Sources 2014, 271, 76–81.

    Article  CAS  Google Scholar 

  27. Lu, W. L.; Li, W. D.; Xiang, G. L.; Wang, L. Y. Enhanced electrocatalytic activity of trace Pt in ternary CuCoPt alloy nanoparticles for hydrogen evolution. Inorg. Chem. 2019, 58, 6529–6533.

    Article  CAS  Google Scholar 

  28. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  CAS  Google Scholar 

  29. Li, M. F.; Duanmu, K.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

    Article  CAS  Google Scholar 

  30. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  31. Alinezhad, A.; Gloag, L.; Benedetti, T. M.; Cheong, S.; Webster, R. F.; Roelsgaard, M.; Iversen, B. B.; Schuhmann, W.; Gooding, J. J.; Tilley, R. D. Direct growth of highly strained Pt islands on branched Ni nanoparticles for improved hydrogen evolution reaction activity. J. Am. Chem. Soc. 2019, 141, 16202–16207.

    Article  CAS  Google Scholar 

  32. Sun, S. C.; Zhang, Y. C.; Shen, G. Q.; Wang, Y. T.; Liu, X. L.; Duan, Z. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Photoinduced composite of Pt decorated Ni(OH)2 as strongly synergetic cocatalyst to boost H2O activation for photocatalytic overall water splitting. Appl. Catal. B: Environ. 2019, 243, 253–261.

    Article  CAS  Google Scholar 

  33. Zhao, Z. P.; Liu, H. T.; Gao, W. P.; Xue, W.; Liu, Z. Y.; Huang, J.; Pan, X. Q.; Huang, Y. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2018, 140, 9046–9050.

    Article  CAS  Google Scholar 

  34. Kühl, S.; Gocyla, M.; Heyen, H.; Selve, S.; Heggen, M.; Dunin-Borkowski, R. E.; Strasser, P. Concave curvature facets benefit oxygen electroreduction catalysis on octahedral shaped PtNi nanocatalysts. J. Mater. Chem. A 2019, 7, 1149–1159.

    Article  Google Scholar 

  35. Munoz, M.; Ponce, S.; Zhang, G. R.; Etzold, B. J. M. Size-controlled PtNi nanoparticles as highly efficient catalyst for hydrodechlorination reactions. Appl. Catal. B: Environ. 2016, 192, 1–7.

    Article  CAS  Google Scholar 

  36. Li, J. F.; Liu, L.; Ai, Y. J.; Hu, Z. A.; Xie, L. P.; Bao, H. J.; Wu, J. J.; Tian, H. M.; Guo, R. X.; Ren, S. C. et al. Facile and large-scale fabrication of sub-3 nm PtNi nanoparticles supported on porous carbon sheet: A bifunctional material for the hydrogen evolution reaction and hydrogenation. Chem.—Eur. J. 2019, 25, 7191–7200.

    Article  CAS  Google Scholar 

  37. Ma, L. B.; Hu, Y.; Zhu, G. Y.; Chen, R. P.; Chen, T.; Lu, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem. Mater. 2016, 28, 5733–5742.

    Article  CAS  Google Scholar 

  38. Askari, M. B.; Salarizadeh, P.; Seifi, M.; Rozati, S. M.; Beheshti-Marnani, A.; Saeidfirozeh, H. MoCoFeS hybridized with reduced graphene oxide as a new electrocatalyst for hydrogen evolution reaction. Chem. Phys. Lett. 2018, 711, 32–36.

    Article  CAS  Google Scholar 

  39. Yoo, M. J.; Park, H. B. Effect of hydrogen peroxide on properties of graphene oxide in hummers method. Carbon 2019, 141, 515–522.

    Article  CAS  Google Scholar 

  40. Dahmani, C. E.; Cadeville, M. C.; Sanchez, J. M.; Morán-López, J. L. Ni-Pt phase diagram: Experiment and theory. Phys. Rev. Lett. 1985, 55, 1208–1211.

    Article  CAS  Google Scholar 

  41. Li, S. F.; Li, M. X.; Ni, Y. H. Grass-like Ni/Cu nanosheet arrays grown on copper foam as efficient and non-precious catalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 265, 118392.

    Google Scholar 

  42. Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Ni-Mo-O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.

    Article  CAS  Google Scholar 

  43. Yang, J. T.; Ning, G. Q.; Yu, L.; Wang, Y.; Luan, C. L.; Fan, A. X.; Zhang, X.; Liu, Y. J.; Dong, Y.; Dai, X. P. Morphology controllable synthesis of PtNi concave nanocubes enclosed by high-index facets supported on porous graphene for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2019, 7, 17790–17796.

    Article  CAS  Google Scholar 

  44. Yu, K. M.; Ning, G. Q.; Yang, J. T.; Wang, Y.; Zhang, X.; Qin, Y. C.; Luan, C. L.; Yu, L.; Jiang, Y.; Luan, X. B. et al. Restructured PtNi on ultrathin nickel hydroxide for enhanced performance in hydrogen evolution and methanol oxidation. J. Catal. 2019, 375, 267–278.

    Article  CAS  Google Scholar 

  45. Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metalbased carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

    Article  Google Scholar 

  46. Baghchesara, M. A.; Azimi, H. R.; Shiravizadeh, A. G.; Teridi, M. A. M.; Yousefi, R. Improving the intrinsic properties of rGO sheets by S-doping and the effects of rGO improvements on the photocatalytic performance of Cu3Se2/rGo nanocomposites. Appl. Surf. Sci. 2019, 466, 401–410.

    Article  CAS  Google Scholar 

  47. Zhang, J. H.; Ai, Y. J.; Wu, J. J.; Zhang, D. L.; Wang, Y.; Feng, Z. M.; Sun, H. B.; Liang, Q. L.; Sun, T.; Yang, Y. Nickel-catalyzed synthesis of 3D edge-curled graphene for high-performance lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1904645.

    Article  CAS  Google Scholar 

  48. Hong, X. H.; Yu, W. D.; Chung, D. D. L. Electric permittivity of reduced graphite oxide. Carbon 2017, 111, 182–190.

    Article  CAS  Google Scholar 

  49. Ren, X.; Wei, C.; Sun, Y. M.; Liu, X. Z.; Meng, F. Q.; Meng, X. X.; Sun, S. N.; Xi, S. B.; Du, Y. H.; Bi, Z. F. et al. Constructing an adaptive heterojunction as a highly active catalyst for the oxygen evolution reaction. Adv. Mater. 2020, 32, 2001292.

    Article  CAS  Google Scholar 

  50. Wang, B. L.; Zhao, K. N.; Yu, Z.; Sun, C. L.; Wang, Z.; Feng, N. N.; Mai, L. Q.; Wang, Y. G.; Xia, Y. Y. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 2020, 13, 2200–2208.

    Article  CAS  Google Scholar 

  51. Steimecke, M.; Seiffarth, G.; Schneemann, C.; Oehler, F.; Förster, S.; Bron, M. Higher-valent nickel oxides with improved oxygen evolution activity and stability in alkaline media prepared by high-temperature treatment of Ni(OH)2. ACS Catal. 2020, 10, 3595–3603.

    Article  CAS  Google Scholar 

  52. Zhou, T. L.; Wang, C. H.; Shi, Y. M.; Liang, Y.; Yu, Y. F.; Zhang, B. Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. J. Mater. Chem. A 2020, 8, 1631–1635.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21872020), 1226 Engineering Health Major Project (Nos. BWS17J028 and AWS16J018), Fundamental Research Funds for the Central Universities (No. N180705004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Yang or Hongbin Sun.

Electronic supplementary material

12274_2021_3582_MOESM1_ESM.pdf

A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Chang, J., Cheng, Y. et al. A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res. 15, 965–971 (2022). https://doi.org/10.1007/s12274-021-3582-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3582-x

Keywords

Navigation