Skip to main content
Log in

Weakening CO poisoning over size- and support-dependent Ptn/X-graphene catalyst (X = C, B, N, n = 1–6, 13)

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

CO poisoning is one of the obstacles for platinum catalysts toward the electro-catalysis process for proton exchange membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC). Herein, we aim to weaken the CO poisoning on Pt by varying the cluster sizes and supports via doping graphene with B and N based on DFT + D3 calculations. Energetically, the most favorable Ptn/X-graphene (X = C, B, N; n = 1–6, 13) structures are obtained, and the calculated binding energies between Ptn and X-graphene are size- and support-dependent on a sequence: Ptn/B-g > Ptn/N-g > Ptn/C-g. The low-coordinated and protruded Pt atoms are identified as the active sites. The medium-sized clusters (n = 4–6) display CO poisoning-free properties with an excellent CO oxidation performance, resulting from the moderate locations of d-band center and electronic transfer via the interface. Furthermore, E-R mechanism is revealed to dominate the reaction route with a rate-limiting step of the second CO2 desorption. The corresponding activation energy barriers are 0.53, 0.61 and 0.56 eV for Ptn/B-g (n = 4, 5, 6), respectively. This work provides insights into the theoretical design of CO poisoning-free catalyst Ptn/X-g in the applications of DMFC/PEMFC.

Graphical abstract

摘要

一氧化碳中毒是铂基催化剂应用于电催化过程的主要障碍之一。本文基于DFT+D3 计算,通过B 和N 掺杂石墨 烯并改变团簇尺寸以减弱Pt 催化剂的CO 中毒现象。计算得到了能量上最有利的Ptn/X-石墨烯(X = C, B, N; n = 1‒6, 13)结构,且Ptn 和X-石墨烯之间的结合能依赖于团簇尺寸与载体,顺序为:Ptn/B-g > Ptn/N-g > Ptn/C-g。低 配位及突出的原子作为主要活性位点参与反应。由于d 带中心的位置和界面引起的电子转移,中等大小团簇(n = 4‒6)能有效抑制CO 中毒,具有优异的CO 氧化性能。此外揭示了以第二次CO2 解吸为速控步的E-R 机制主导 的反应路线。Ptn/B-g (n = 4,5,6)对应的活化能垒分别为0.53、0.61 和0.56 eV。这项工作为抗CO 中毒的Ptn/Xg 催化剂在燃料电池中的应用与设计提供了理论指导。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev. 2016;57:850. https://doi.org/10.1016/j.rser.2015.12.112.

    Article  CAS  Google Scholar 

  2. Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources. 2007;172(1):145. https://doi.org/10.1016/j.jpowsour.2007.07.048.

    Article  CAS  Google Scholar 

  3. Brouzgou A, Song S, Tsiakaras P. Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B. 2012;127:371. https://doi.org/10.1016/j.apcatb.2012.08.031.

    Article  CAS  Google Scholar 

  4. Liang Z, Zhao T. New DMFC anode structure consisting of platinum nanowires deposited into a Nafion membrane. J Phys Chem C. 2007;111(22):8128. https://doi.org/10.1021/jp0711747.

    Article  CAS  Google Scholar 

  5. Wen FC, Li S, Ga RG, Chen Y, Du XH, Tan H, Song YJ, Song M, Sun LM. Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell. Rare Met. 2022;41(8):2655. https://doi.org/10.1007/s12598-022-01964-9.

    Article  CAS  Google Scholar 

  6. Zhang Y, Yuan XL, Lyu FL, Wang XC, Jiang XJ, Cao MH, Zhang Q. Facile one-step synthesis of PdPb nanochains for high-performance electrocatalytic ethanol oxidation. Rare Met. 2020;39(7):792. https://doi.org/10.1007/s12598-020-01442-0.

    Article  CAS  Google Scholar 

  7. Zhang Y, Liu X, Liu T, Ma X, Feng Y, Xu B, Cai W, Li Y, Su D, Shao Q. Rhombohedral Pd-Sb nanoplate with Pd-terminated surface: an efficient bifunctional fuel cell catalyst. Adv Mater. 2022;34(31):2202333. https://doi.org/10.1002/adma.202202333.

    Article  CAS  Google Scholar 

  8. Ortega P, Rocha L, Cortés J, Ramirez M, Buono C, Ponce MA, Simões A. Towards carbon monoxide sensors based on europium doped cerium dioxide. Appl Surf Sci. 2019;464:692. https://doi.org/10.1016/j.apsusc.2018.09.142.

    Article  CAS  Google Scholar 

  9. Kwon Y, Lai SC, Rodriguez P, Koper MT. Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J Am Chem Soc. 2011;133(18):6914. https://doi.org/10.1021/ja200976j.

    Article  CAS  Google Scholar 

  10. Matsumura Y, Tanaka K, Tode N, Yazawa T, Haruta M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica. J Mol Catal A: Chem. 2000;152(1–2):157. https://doi.org/10.1016/S1381-1169(99)00282-4.

    Article  CAS  Google Scholar 

  11. Shen WJ, Matsumura Y. Low-temperature methanol decomposition to carbon monoxide and hydrogen catalysed over cationic palladium species in Pd/CeO2. Phys Chem Chem Phys. 2000;2(7):1519. https://doi.org/10.1039/B000599L.

    Article  Google Scholar 

  12. Rehg TJ, Liu DJ, Williams JC, Kaiser M. Electro-catalytic oxidation (ECO) device to remove CO from reformate for fuel cell application, Google Patents, 2001.

  13. Campos-Delgado J, Romo-Herrera JM, Jia X, Cullen DA, Muramatsu H, Kim YA, Hayashi T, Ren Z, Smith DJ, Okuno Y. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Lett. 2008;8(9):2773. https://doi.org/10.1021/nl801316d.

    Article  CAS  Google Scholar 

  14. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc. 2012;134(22):9082. https://doi.org/10.1021/ja3030565.

    Article  CAS  Google Scholar 

  15. Qing PL, Zeng K, Lan ZQ, Huang XT, Liu HZ, Guo J. Enhanced dydrogen storage properties of Mg-Al alloy catalyzed with reduced graphene oxide supported with LaClO. Chin J Rare Met. 2020;44(5):499. https://doi.org/10.13373/j.cnki.cjrm.XY20030007.

    Article  Google Scholar 

  16. Zhu C, Li H, Fu S, Du D, Lin Y. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem Soc Rev. 2016;45(3):517. https://doi.org/10.1039/C5CS00670H.

    Article  CAS  Google Scholar 

  17. Li Y, Zhou Z, Yu G, Chen W, Chen Z. CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J Phys Chem C. 2010;114(14):6250. https://doi.org/10.1021/jp911535v.

    Article  CAS  Google Scholar 

  18. Choi CH, Chung MW, Kwon HC, Park SH, Woo SI. B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J Mater Chem A. 2013;1(11):3694. https://doi.org/10.1039/c3ta01648j.

    Article  CAS  Google Scholar 

  19. Qu K, Zheng Y, Dai S, Qiao SZ. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy. 2016;19:373. https://doi.org/10.1016/j.nanoen.2015.11.027.

    Article  CAS  Google Scholar 

  20. Chen ZL, Wang D, Wang XY, Yang JH. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 2021;40(6):1561. https://doi.org/10.1007/s12598-020-01636-6.

    Article  CAS  Google Scholar 

  21. Jiao C, Sun HB, Zhang L, Zhao SQ, Pang GY, Zhao CR, Lu SG. A high-performance lithium anode based on N-doped composite graphene. Rare Met. 2019. https://doi.org/10.1007/s12598-020-01636-6.

    Article  Google Scholar 

  22. Jia K, Ci H, Zhang J, Sun Z, Ma Z, Zhu Y, Liu S, Liu J, Sun L, Liu X, Sun J, Yin W, Peng H, Lin L, Liu Z. Superclean growth of graphene using a cold-wall chemical vapor deposition approach. Angew Chem Int Ed. 2020;59(39):17214. https://doi.org/10.1002/anie.202005406.

    Article  CAS  Google Scholar 

  23. Xu J, Shui J, Wang J, Wang M, Liu HK, Dou SX, Jeon IY, Seo JM, Baek JB, Dai L. Sulfur–graphene nanostructured cathodes via ball-milling for high-performance lithium–sulfur batteries. ACS Nano. 2014;8(10):10920. https://doi.org/10.1021/nn5047585.

    Article  CAS  Google Scholar 

  24. Xia L, Li D, Long J, Huang F, Yang L, Guo Y, Jia Z, Xiao J, Liu H. N-doped graphene confined Pt nanoparticles for efficient semi-hydrogenation of phenylacetylene. Carbon. 2019;145:47. https://doi.org/10.1016/j.carbon.2019.01.014.

    Article  CAS  Google Scholar 

  25. Dou S, Shen A, Ma Z, Wu J, Tao L, Wang S. N-, P-and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. J Electroanal Chem. 2015;753:21. https://doi.org/10.1016/j.jelechem.2015.05.013.

    Article  CAS  Google Scholar 

  26. Zhao Y, Yang L, Chen S, Wang X, Ma Y, Wu Q, Jiang Y, Qian W, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J Am Chem Soc. 2013;135(4):1201. https://doi.org/10.1021/ja310566z.

    Article  CAS  Google Scholar 

  27. Yang G, Fan X, Shi S, Huang H, Zheng W. Stability of Ptn cluster on free/defective graphene: a first-principles study. Appl Surf Sci. 2017;392:936. https://doi.org/10.1016/j.apsusc.2016.09.129.

    Article  CAS  Google Scholar 

  28. Okamoto Y. Density-functional calculations of graphene interfaces with Pt (111) and Pt (111)/RuML surfaces. Chem Phys Lett. 2005;407(4–6):354. https://doi.org/10.1016/j.cplett.2005.03.123.

    Article  CAS  Google Scholar 

  29. Tang Y, Yang Z, Dai X. A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys Chem Chem Phys. 2012;14(48):16566. https://doi.org/10.1039/c2cp41441d.

    Article  CAS  Google Scholar 

  30. Lopez N, Nørskov JK. Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc. 2002;124(38):11262. https://doi.org/10.1021/ja026998a.

    Article  CAS  Google Scholar 

  31. Sebetci A, Güvenç ZB. Energetics and structures of small clusters: PtN, N= 2–21. Surf Sci. 2003;525(1–3):66. https://doi.org/10.1016/s0039-6028(02)02502-5.

    Article  CAS  Google Scholar 

  32. Yang SH, Drabold DA, Adams JB, Ordejón P, Glassford K. Density functional studies of small platinum clusters. J Phys Condens Matter. 1997;9(5):L39. https://doi.org/10.1088/0953-8984/9/5/002.

    Article  CAS  Google Scholar 

  33. Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T. Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci. 2011;108(3):937. https://doi.org/10.1073/pnas.1006652108.

    Article  Google Scholar 

  34. Skoplyak O, Barteau MA, Chen JG. Reforming of oxygenates for H2 production: correlating reactivity of ethylene glycol and ethanol on Pt (111) and Ni/Pt (111) with surface d-band center. J Phys Chem B. 2006;110(4):1686. https://doi.org/10.1021/jp0548927.

    Article  CAS  Google Scholar 

  35. Watwe RM, Cortright RD, Nørskov JK, Dumesic JA. Theoretical studies of stability and reactivity of C2 hydrocarbon species on Pt clusters, Pt (111), and Pt (211). J Phys Chem B. 2000;104(10):2299. https://doi.org/10.1021/jp993202u.

    Article  CAS  Google Scholar 

  36. Kim G, Jhi SH. Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano. 2011;5(2):805. https://doi.org/10.1021/nn1017395.

    Article  CAS  Google Scholar 

  37. Doornkamp C, Ponec V. The universal character of the Mars and Van Krevelen mechanism. J Mol Catal A: Chem. 2000;162(1–2):19. https://doi.org/10.1016/s1381-1169(00)00319-8.

    Article  CAS  Google Scholar 

  38. Carlotto S, Natile MM, Glisenti A, Paul JF, Blanck D, Vittadini A. Energetics of CO oxidation on lanthanide-free perovskite systems: the case of Co-doped SrTiO3. Phys Chem Chem Phys. 2016;18(48):33282. https://doi.org/10.1039/c6cp03994d.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21975136) and the Open Funds from National Engineering Lab for Mobile Source Emission Control Technology (No. NELMS2020A12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li, Wei-Chao Wang or Wei-Bo Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 26079 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, AQ., Li, H., Wu, HM. et al. Weakening CO poisoning over size- and support-dependent Ptn/X-graphene catalyst (X = C, B, N, n = 1–6, 13). Rare Met. 42, 1138–1145 (2023). https://doi.org/10.1007/s12598-022-02210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02210-y

Navigation