Skip to main content
Log in

Metal nanozymes with multiple catalytic activities: regulating strategies and biological applications

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nanozymes with high enzyme-like catalytic activity have been recognized as promising alternatives for nature enzymes and exhibit great potentials in biodetection, disease diagnosis and treatment. Metal nanozyme is an important member of the nanozyme family. When metal nanozymes are controllably regulated by compositions, sizes, morphologies, crystal defects, surface states or stimulated by diversified external fields, they will acquire unique geometric and electronic structures and exhibit various physical/chemical properties in catalytic behaviors. Although significant progress has been made in metal nanozymes, there is still large space for further improving the catalytic efficiency, developing the synthetic process for large-scale production, facilitating the clinical transformation and exploring the untapped applications. Directing at these issues, rational design of novel nanozymes for better applications and deeper understanding of catalytic mechanisms are urgently required. Accordingly, this review focuses on the recent advances on regulating strategies, catalytic mechanisms and relevant biological applications of metal nanozymes with multiple enzyme-like performance. Furthermore, future perspectives are outlooked to inspire more attention and efforts on this interesting multi-disciplinary field.

Graphical abstract

摘要

纳米酶具有优异的类酶催化活性, 有望成为天然酶的良好替代品, 并在生物检测、疾病诊断和治疗方面蕴含着巨 大应用潜力。金属纳米酶是纳米酶家族的重要成员, 对其组成、尺寸、形貌、晶体缺陷、表面状态等进行可控调 节或使其经受外场激发、环境改变时, 可使金属纳米酶获得独特的几何构型与电子结构, 并在催化行为中表现出 不同的物理/化学性质。尽管金属纳米酶研究已经取得显著进展, 但在进一步提升催化效率、开发大规模生产合成 工艺、促进临床转化和拓宽应用范围等方面仍有较大探索空间。面对上述问题, 新型纳米酶的合理设计与催化机 制的深入理解已成为应用提升的迫切需求。本文对具备多类活性的金属纳米酶调控策略、催化机制及相关生物学 应用最新进展进行了综述, 并对其未来研究热点进行了展望, 期望引发对这一有趣、多学科交叉领域的更多关注。.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oparin AI. The origin of life and the origin of enzymes. Adv Enzymol Relat Areas Mol Biol. 1965;27:347. https://doi.org/10.1002/9780470122723.ch7.

    Article  CAS  Google Scholar 

  2. Walsh C. Enabling the chemistry of life. Nature. 2001;409(6817):226. https://doi.org/10.1038/35051697.

    Article  CAS  Google Scholar 

  3. Sun LJ, Su HW, Liu QQ, Hu J, Wang LL, Tang H. A review on photocatalytic systems capable of synchronously utilizing photogenerated electrons and holes. Rare Met. 2022;41(7):2387. https://doi.org/10.1007/s12598-022-01966-7.

    Article  CAS  Google Scholar 

  4. Jiao MZ, Chen XY, Hu KX, Qian DY, Zhao XH, Ding EJ. Recent developments of nanomaterials-based conductive type methane sensors. Rare Met. 2021;40(6):1515. https://doi.org/10.1007/s12598-020-01679-9.

    Article  CAS  Google Scholar 

  5. Wei H, Wang EK. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060. https://doi.org/10.1039/c3cs35486e.

    Article  CAS  Google Scholar 

  6. Liu QW, Zhang AM, Wang RH, Zhang Q, Cui DX. A review on metal-and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano Micro Lett. 2021;13:154. https://doi.org/10.1007/s40820-021-00674-8.

    Article  CAS  Google Scholar 

  7. Wu JJX, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(II). Chem Soc Rev. 2019;48(4):1004. https://doi.org/10.1039/c8cs00457a.

    Article  CAS  Google Scholar 

  8. Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357. https://doi.org/10.1021/acs.chemrev.8b00672.

    Article  CAS  Google Scholar 

  9. Jiang DW, Ni DL, Rosenkrans ZT, Huang P, Yan XY, Cai WB. Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev. 2019;48(14):3683. https://doi.org/10.1039/c8cs00718g.

    Article  CAS  Google Scholar 

  10. Liang MM, Yan XY. Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res. 2019;52(8):2190. https://doi.org/10.1021/acs.accounts.9b00140.

    Article  CAS  Google Scholar 

  11. Bhattacharjee R, Tanaka S, Moriam S, Masud MK, Lin JJ, Alshehri SM, Ahamad T, Salunkhe RR, Nguyen NT, Yamauchi Y, Hossain MSA, Shiddiky MJA. Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J Mater Chem B. 2018;6:4783. https://doi.org/10.1039/c8tb01132j.

    Article  CAS  Google Scholar 

  12. Masud MK, Yadav S, Islam MN, Nguyen NT, Salomon C, Kline R, Alamri HR, Alothman ZA, Yamauchi Y, Hossain MSA, Shiddiky MJA. Gold-loaded nanoporous ferric oxide nanocubes with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of autoantibody. Anal Chem. 2017;89(20):11005. https://doi.org/10.1021/acs.analchem.7b02880.

    Article  CAS  Google Scholar 

  13. Boriachek K, Masud MK, Palma C, Palma C, Phan HP, Yamauchi Y, Hossain MSA, Nguyen NT, Salomon C, Shiddiky MJA. Avoiding pre-isolation step in exosome analysis: direct isolation and sensitive detection of exosomes using gold-loaded nanoporous ferric oxide nanozymes. Anal Chem. 2019;91(6):3827. https://doi.org/10.1021/acs.analchem.8b03619.

    Article  CAS  Google Scholar 

  14. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  Google Scholar 

  15. He WW, Zhou YT, Wamer WG, Hu XN, Wu XC, Zheng Z, Boudreau MD, Yin JJ. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34(3):765. https://doi.org/10.1016/j.biomaterials.2012.10.010.

    Article  CAS  Google Scholar 

  16. Li JN, Liu WQ, Wu XC, Gao XF. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37. https://doi.org/10.1016/j.biomaterials.2015.01.012.

    Article  CAS  Google Scholar 

  17. Li W, Chen B, Zhang HX, Sun YH, Wang J, Zhang JL, Fu Y. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions. Biosens Bioelectron. 2015;66:251. https://doi.org/10.1016/j.bios.2014.11.032.

    Article  CAS  Google Scholar 

  18. Liu Y, Wu HH, Li M, Yin JJ, Nie ZH. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale. 2014;6(20):11904. https://doi.org/10.1039/c4nr03848g.

    Article  CAS  Google Scholar 

  19. He WW, Han XN, Jia HM, Cai JH, Zhou YT, Zheng Z. AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep. 2017;7:40103. https://doi.org/10.1038/srep40103.

    Article  CAS  Google Scholar 

  20. Wu GW, Shen YM, Shi XQ, Deng HH, Zheng XQ, Peng HP, Liu AL, Xia XH, Chen W. Bimetallic Bi/Pt peroxidase mimic and its bioanalytical applications. Anal Chim Acta. 2017;971:88. https://doi.org/10.1016/j.aca.2017.03.028.

    Article  CAS  Google Scholar 

  21. He WW, Liu Y, Yuan JS, Yin JJ, Wu XC, Hu XN, Zhang K, Liu JB, Chen CY, Ji YL, Guo YT. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials. 2011;32(4):1139. https://doi.org/10.1016/j.biomaterials.2010.09.040.

    Article  CAS  Google Scholar 

  22. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46(16):2736. https://doi.org/10.1039/b922024k.

    Article  CAS  Google Scholar 

  23. Jiao X, Song HJ, Zhao HH, Bai W, Zhang LC, Lv Y. Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Analy Methods. 2012;4(10):3261. https://doi.org/10.1039/c2ay25511a.

    Article  CAS  Google Scholar 

  24. Jia HM, Yang DF, Han XN, Cai JH, Liu HY, He WW. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016;8(11):5938. https://doi.org/10.1039/c6nr00860g.

    Article  CAS  Google Scholar 

  25. Dong JL, Song LN, Yin JJ, He WW, Wu YH, Gu N, Zhang Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Inter. 2014;6(3):1959. https://doi.org/10.1021/am405009f.

    Article  CAS  Google Scholar 

  26. Cao FF, Zhang L, Wang H, You YW, Wang Y, Gao N, Ren JS, Qu XG. Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew Chem Int Edit. 2019;58(45):16236. https://doi.org/10.1002/anie.201908289.

    Article  CAS  Google Scholar 

  27. Zhao K, Gu W, Zheng SS, Zhang CL, Xian YZ. SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta. 2015;141:47. https://doi.org/10.1016/j.talanta.2015.03.055.

    Article  CAS  Google Scholar 

  28. Luo Y, Wu DH, Li ZH, Li XY, Wu YH, Feng SP, Menon C, Chen HY, Chu PK. Plasma functionalized MoSe2 for efficient nonenzymatic sensing of hydrogen peroxide in ultra-wide pH range. SmartMat. 2021;3(3):491. https://doi.org/10.1002/smm2.1089.

    Article  CAS  Google Scholar 

  29. Meng XQ, Li DD, Chen L, He HL, Wang Q, Hong CY, He JY, Gao XF, Yang YL, Jiang B, Nie GH, Yan XY, Gao LZ, Fan KL. High-performance self-cascade pyrite nanozymes for apoptosis-ferroptosis synergistic tumor therapy. ACS Nano. 2021;15(3):5735. https://doi.org/10.1021/acsnano.1c01248.

    Article  CAS  Google Scholar 

  30. Ali SS, Hardt JI, Quick KL, Kim-Han JS, Erlanger BF, Huang TT, Epstein CJ, Dugan LL. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radical Bio Med. 2004;37(8):1191. https://doi.org/10.1016/j.freeradbiomed.2004.07.002.

    Article  CAS  Google Scholar 

  31. Yin JJ, Lao F, Fu PP, Wamer WG, Zhao YL, Wang PC, Qiu Y, Sun BY, Xing GM, Dong JQ, Liang XJ, Chen CY. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials. 2009;30(4):611. https://doi.org/10.1016/j.biomaterials.2008.09.061.

    Article  CAS  Google Scholar 

  32. Shi WB, Wang QL, Long YJ, Cheng ZL, Chen SH, Zheng HZ, Huang YM. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun. 2011;47(23):6695. https://doi.org/10.1039/C1CC11943E.

    Article  CAS  Google Scholar 

  33. Zhang JY, Lu XM, Tang DD, Wu SH, Hou XD, Liu JW, Wu P. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl Mater Interfaces. 2018;10(47):40808. https://doi.org/10.1021/acsami.8b15318.

    Article  CAS  Google Scholar 

  34. Zhao J, Gong JW, Wei JN, Yang Q, Li GJ, Tong YP, He WW. Metal organic framework loaded fluorescent nitrogen-doped carbon nanozyme with light regulating redox ability for detection of ferric ion and glutathione. J Colloid Interf Sci. 2022;618:11. https://doi.org/10.1016/j.jcis.2022.03.028.

    Article  CAS  Google Scholar 

  35. Song YJ, Qu KG, Zhao C, Ren JS, Qu XG. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206. https://doi.org/10.1002/adma.200903783.

    Article  CAS  Google Scholar 

  36. Sun AQ, Mu L, Hu XG. Graphene oxide quantum dots as novel nanozymes for alcohol intoxication. ACS Appl Mater Interfaces. 2017;9(14):12241. https://doi.org/10.1021/acsami.7b00306.

    Article  CAS  Google Scholar 

  37. Chong Y, Ge CC, Fang G, Tian X, Ma XC, Wen T, Wamer WG, Chen CY, Chai ZF, Yin JJ. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano. 2016;10(9):8690. https://doi.org/10.1021/acsnano.6b04061.

    Article  CAS  Google Scholar 

  38. Feng DW, Gu ZY, Li JR, Jiang HL, Wei ZW. Zhou HC Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Edit. 2012;51(41):10307. https://doi.org/10.1002/ange.201204475.

    Article  CAS  Google Scholar 

  39. Wang ZZ, Wu JJX, Zheng JJ, Shen XM, Yan L, Wei H, Gao XF, Zhao YL. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat Commun. 2021;12(1):6866. https://doi.org/10.1038/s41467-021-27194-8.

    Article  CAS  Google Scholar 

  40. Xiong YH, Chen SH, Ye FG, Su LJ, Zhang C, Shen SF, Zhao SL. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun. 2015;51(22):4635. https://doi.org/10.1039/c4cc10346g.

    Article  CAS  Google Scholar 

  41. Li MH, Chen JX, Wu WW, Fang YX, Dong SJ. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J Am Chem Soc. 2020;142(36):15569. https://doi.org/10.1021/jacs.0c07273.

    Article  CAS  Google Scholar 

  42. Zhang L, Zhang Y, Wang ZZ, Cao FF, Sang YJ, Dong K, Pu F, Ren JS, Qu XG. Constructing metal–organic framework nanodots as bio-inspired artificial superoxide dismutase for alleviating endotoxemia. Mater Horiz. 2019;6(8):1682. https://doi.org/10.1039/c9mh00339h.

    Article  CAS  Google Scholar 

  43. Wang HQ. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2021;15:2834. https://doi.org/10.1007/s12274-021-3984-9.

    Article  CAS  Google Scholar 

  44. Liang J, Liu Q, Alshehri AA, Sun XP. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy. 2022;1:e9120010. https://doi.org/10.26599/nre.2022.9120010.

    Article  Google Scholar 

  45. Wang FQ, Zhang WL, Wan HB, Li CX, An WK, Sheng X, Liang XY, Wang XP, Ren YL, Zheng X, Lv DC, Qin YC. Recent progress in advanced core-shell metal-based catalysts for electrochemical carbon dioxide reduction. Chinese Chem Lett. 2022;33(5):2259. https://doi.org/10.1016/j.cclet.2021.08.074.

    Article  CAS  Google Scholar 

  46. Qin YC, Zhang WL, Wang FQ, Li JJ, Ye JY, Sheng X, Li CX, Liang XY, Liu P, Wang XP, Zheng X, Ren Y, Xu CL, Zhang ZC. Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C–C bond cleavage of ethylene glycol electrooxidation. Angew Chem Int Edit. 2022;61(16):e202200899. https://doi.org/10.1002/anie.202200899.

    Article  CAS  Google Scholar 

  47. Lu TY, Li TF, Shi DS, Sun JL, Pang H, Xu L, Yang J, Tang YW. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat. 2021;2(4):591. https://doi.org/10.1002/smm2.1063.

    Article  CAS  Google Scholar 

  48. Comotti M, Pina CD, Matarrese R, Rossi M. The catalytic activity of “naked” gold particles. Angew Chem Int Edit. 2004;43(43):5812. https://doi.org/10.1002/ange.200460446.

    Article  CAS  Google Scholar 

  49. Chen JX, Ma Q, Li MH, Chao DY, Huang L, Wu WW, Fang YX, Dong SJ. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat Commun. 2021;12(1):3375. https://doi.org/10.1038/s41467-021-23737-1.

    Article  CAS  Google Scholar 

  50. Jv Y, Li BX, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46(42):8017. https://doi.org/10.1039/c0cc02698k.

    Article  CAS  Google Scholar 

  51. Tao Y, Ju EG, Ren JS, Qu XG. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv Mater. 2015;27(6):1097. https://doi.org/10.1002/adma.201405105.

    Article  CAS  Google Scholar 

  52. He WW, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials. 2012;33(30):7547. https://doi.org/10.1016/j.biomaterials.2012.06.076.

    Article  CAS  Google Scholar 

  53. Song HW, Li ZB, Peng YX, Li X, Xu XC, Pan JM, Niu XH. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst. 2019;144(7):2416. https://doi.org/10.1039/c9an00105k.

    Article  CAS  Google Scholar 

  54. Gao ZQ, Lv SZ, Xu MD, Tang DP. High-index hk0 faceted platinum concave nanocubes with enhanced peroxidase-like activity for an ultrasensitive colorimetric immunoassay of the human prostate-specific antigen. Analyst. 2017;142(6):911. https://doi.org/10.1039/c6an02722a.

    Article  CAS  Google Scholar 

  55. He SB, Chen FQ, Xiu LF, Peng HP, Deng HH, Liu AL, Chen W, Hong GL. Highly sensitive colorimetric sensor for detection of iodine ions using carboxylated chitosan-coated palladium nanozyme. Anal Bioanal Chem. 2020;412(2):499. https://doi.org/10.1007/s00216-019-02270-7.

    Article  CAS  Google Scholar 

  56. Wen T, He WW, Chong Y, Liu Y, Yin JJ, Wu XC. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications. Phys Chem Chem Phys. 2015;17(38):24937. https://doi.org/10.1039/c5cp04046a.

    Article  CAS  Google Scholar 

  57. Fang G, Li WF, Shen XM, Perez AJM, Chong Y, Gao XF, Chai AF, Chen CY, Ge CC, Zhou RH. Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nat Commun. 2018;9(1):129. https://doi.org/10.1038/s41467-017-02502-3.

    Article  CAS  Google Scholar 

  58. Miao ZH, Jiang SS, Ding ML, Sun SY, Ma Y, Younis MR, He G, Wang JG, Lin J, Cao Z, Huang P, Zha ZB. Ultrasmall rhodium nanozyme with RONS scavenging and photothermal activities for anti-inflammation and antitumor theranostics of colon diseases. Nano Lett. 2020;20(5):3079. https://doi.org/10.1021/acs.nanolett.9b05035.

    Article  CAS  Google Scholar 

  59. Li W, Song YL, Liang XY, Zhou Y, Xu M, Lu Q, Wang XX, Li N. Mutual-reinforcing sonodynamic therapy against Rheumatoid Arthritis based on sparfloxacin sonosensitizer doped concave-cubic rhodium nanozyme. Biomaterials. 2021;276:121063. https://doi.org/10.1016/j.biomaterials.2021.121063.

    Article  CAS  Google Scholar 

  60. Yim G, Kim CY, Kang S, Min DH, Kang K, Jang H. Intrinsic peroxidase-mimicking Ir nanoplates for nanozymatic anticancer and antibacterial treatment. ACS Appl Mater Interfaces. 2020;12(37):41062. https://doi.org/10.1021/acsami.0c10981.

    Article  CAS  Google Scholar 

  61. Zhang DY, Younis MR, Liu HK, Lei S, Wan YL, Qu JL, Lin J, Huang P. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/nitrogen species scavengers for acute kidney injury management. Biomaterials. 2021;271:120706. https://doi.org/10.1016/j.biomaterials.2021.120706.

    Article  CAS  Google Scholar 

  62. Wang QQ, Hong GH, Liu Y, Hao J, Liu SQ. Dual enzyme-like activity of iridium nanoparticles and their applications for the detection of glucose and glutathione. RSC Adv. 2020;10(42):25209. https://doi.org/10.1039/d0ra05342b.

    Article  CAS  Google Scholar 

  63. Cao GJ, Jiang XM, Zhang H, Croley TR, Yin JJ. Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Adv. 2017;7(82):52210. https://doi.org/10.1039/c7ra10370k.

    Article  CAS  Google Scholar 

  64. He SB, Yang L, Balasubramanian P, Li SJ, Peng HP, Kuang Y, Deng HH, Chen W. Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O2. J Mater Chem A. 2020;8(47):25226. https://doi.org/10.1039/d0ta09247a.

    Article  CAS  Google Scholar 

  65. Zhang C, Bu WB, Ni DL, Zhang SJ, Li Q, Yao ZW, Zhang JW, Yao HL, Wang Z, Shi JL. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Edit. 2016;55(6):2101. https://doi.org/10.1002/ange.201510031.

    Article  CAS  Google Scholar 

  66. Gao F, Li XL, Zhang TB, Ghosal A, Zhang GF, Fan HM, Zhao LY. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. J Control Release. 2020;324:598. https://doi.org/10.1016/j.jconrel.2020.06.003.

    Article  CAS  Google Scholar 

  67. Liu CY, Cai YY, Wang J, Liu X, Ren H, Yan L, Zhang YJ, Yang SQ, Guo J, Liu AH. Facile preparation of homogeneous copper nanoclusters exhibiting excellent tetraenzyme mimetic activities for colorimetric glutathione sensing and fluorimetric ascorbic acid sensing. ACS Appl Mater Inter. 2020;12(38):42521. https://doi.org/10.1021/acsami.0c11983.

    Article  CAS  Google Scholar 

  68. Liu C, Yan YY, Zhang XW, Mao YY, Ren XQ, Hu CY, He WW, Yin JJ. Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale. 2020;12(5):3068. https://doi.org/10.1039/C9NR10135G.

    Article  CAS  Google Scholar 

  69. He WW, Cai JH, Zhang H, Zhang LX, Zhang XW, Li J, Yin JJ. Formation of PtCuCo trimetallic nanostructures with enhanced catalytic and enzyme-like activities for biodetection. ACS Appl Nano Mater. 2017;1(1):222. https://doi.org/10.1021/acsanm.7b00109.

    Article  CAS  Google Scholar 

  70. Fan H, Li YY, Liu JB, Gao XS, Zhang H, Ji YL, Nie GJ, Wu XC. Plasmon-enhanced oxidase-like activity and cellular effect of Pd-coated gold nanorods. ACS Appl Mater Inter. 2019;11(49):45416. https://doi.org/10.1021/acsami.9b16286.

    Article  CAS  Google Scholar 

  71. Lu C, Tang LH, Gao F, Li YZ, Liu JW, Zheng JK. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7. Biosens Bioelectron. 2021;187:113327. https://doi.org/10.1016/j.bios.2021.113327.

    Article  CAS  Google Scholar 

  72. Liu HL, Li YH, Sun S, Liu SH, Mu XY, Yuan X, Chen K, Wang H, Varga K, Mi WB, Yang J, Zhang XD. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun. 2021;12(1):114. https://doi.org/10.1038/s41467-020-20275-0.

    Article  CAS  Google Scholar 

  73. Yang WP, Yang X, Zhu LJ, Chu HS, Li XY, Xu WT. Nanozymes: activity origin, catalytic mechanism, and biological application. Coordin Chem Rev. 2021;448:214170. https://doi.org/10.1016/j.ccr.2021.214170.

    Article  CAS  Google Scholar 

  74. Ai YJ, Hu ZN, Liang XP, Sun HB, Xin HB, Liang QL. Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater. 2021;32(14):2110432. https://doi.org/10.1002/adfm.202110432.

    Article  CAS  Google Scholar 

  75. Wang ZR, Zhang RF, Yan XF, Fan KL. Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today. 2020;41:81. https://doi.org/10.1016/j.mattod.2020.08.020.

    Article  CAS  Google Scholar 

  76. He WW, Wu XC, Liu JB, Hu XN, Zhang K, Hou S, Zhou WY, Xie SS. Design of AgM bimetallic alloy nanostructures (M=Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater. 2010;22(9):2988. https://doi.org/10.1021/cm100393v.

    Article  CAS  Google Scholar 

  77. Mao YY, Jia FM, Jing TY, Li TT, Jia HM, He WW. Enhanced multiple enzymelike activity of PtPdCu trimetallic nanostructures for detection of Fe2+ and evaluation of antioxidant capability. ACS Sustain Chem Eng. 2020;9(1):569. https://doi.org/10.1021/acssuschemeng.0c08230.

    Article  CAS  Google Scholar 

  78. Gao ZQ, Ye HH, Tang D, Tao Y, Sanaz H, Adrienne M, Tang DP. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett. 2017;17(9):5572. https://doi.org/10.1021/acs.nanolett.7b02385.

    Article  CAS  Google Scholar 

  79. Wu JJX, Qin K, Yuan D, Tan J, Qin L, Zhang XJ, Wei H. Rational design of Au@Pt multibranched nanostructures as bifunctional nanozymes. ACS Appl Mater Inter. 2018;10:12954. https://doi.org/10.1021/acsami.7b17945.

    Article  CAS  Google Scholar 

  80. Luo WJ, Zhu CF, Su S, He Y, Huang Q, Fan CH. Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano. 2010;4(12):7451. https://doi.org/10.1021/nn102592h.

    Article  CAS  Google Scholar 

  81. Ma M, Zhang Y, Gu N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloid Surf A Physicochem Eng Asp. 2011;373(1–3):6. https://doi.org/10.1016/j.colsurfa.2010.08.007.

    Article  CAS  Google Scholar 

  82. Ge CC, Fang G, Shen X, Gao XF, Chai ZF, Chen CY, Yin JJ. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016;10(11):10436. https://doi.org/10.1021/acsnano.6b06297.

    Article  CAS  Google Scholar 

  83. Lou-Franco J, Das B, Elliott C, Elliott C, Cao C. Gold nanozymes: from concept to biomedical applications. Nano Micro Lett. 2020;13(1):10. https://doi.org/10.1007/s40820-020-00532-z.

    Article  CAS  Google Scholar 

  84. Xie C, Yan DF, Chen W, Chen R, Zang SQ, Wang YY, Yao XD, Wang SY. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today. 2019;31:47. https://doi.org/10.1016/j.mattod.2019.05.021.

    Article  CAS  Google Scholar 

  85. Wu Y, Xu WQ, Jiao L, Tang YJ, Chen YF, Gu WL, Zhu CZ. Defect engineering in nanozymes. Mater Today. 2022;52:327. https://doi.org/10.1016/j.mattod.2021.10.032.

    Article  CAS  Google Scholar 

  86. Xi Z, Cheng X, Gao ZQ, Wang MJ, Cai T, Muzzio M, Davidson E, Chen O, Jun Y, Sun SH, Xu Y, Xia XH. Strain effect in palladium nanostructures as nanozymes. Nano Lett. 2020;20(1):272. https://doi.org/10.1021/acs.nanolett.9b03782.

    Article  CAS  Google Scholar 

  87. Xia XH, Zhang JT, Lu N, Ghale K, Xu Y, McKenzie E, Liu JB, Ye HH. Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano. 2015;9(10):9994. https://doi.org/10.1021/acsnano.5b03525.

    Article  CAS  Google Scholar 

  88. Xue SY, Chen GY, Li F, Zhao YH, Zeng QW, Peng JH, Shi FL, Zhang WC, Wang YZ, Wu JB, Che RC. Understanding of strain-induced electronic structure changes in metal electrocatalysts: using Pd@Pt core-shell nanocrystals as an ideal platform. Small. 2021;17(30):2100559. https://doi.org/10.1002/smll.202100559.

    Article  CAS  Google Scholar 

  89. Masud MK, Kim J, BillahM M, Wood K, Shiddiky M, Tru M. Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α- or γ-iron oxide? J Mater Chem B. 2019;7(35):5412. https://doi.org/10.1039/c9tb00989b.

    Article  CAS  Google Scholar 

  90. Liu BW, Liu JW. Surface modification of nanozymes. Nano Res. 2017;10(4):1125. https://doi.org/10.1007/s12274-017-1426-5.

    Article  CAS  Google Scholar 

  91. Lin YH, Li ZH, Chen ZW, Ren JS, Qu XG. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials. 2013;34:2600. https://doi.org/10.1016/j.biomaterials.2013.01.007.

    Article  CAS  Google Scholar 

  92. Cai R, Gao XS, Zhang CQ, Hu ZJ, Ji YL, Liu JB, Wu XC. Improving peroxidase activity of gold nanorod nanozymes by dragging substrates to the catalysis sites via cysteine modification. Nanotechnology. 2021;32(48):485702. https://doi.org/10.1088/1361-6528/ac1e53.

    Article  CAS  Google Scholar 

  93. Wang S, Chen W, Liu AL. Comparison of the peroxidase-like activity of unmodified, aminomodified, and citrate-capped gold nanoparticles. Chem Phys Chem. 2012;13:1199. https://doi.org/10.1002/cphc.201100906.

    Article  CAS  Google Scholar 

  94. Liu CP, Wu TH, Lin YL, Liu CY, Wang SB, Lin SY. Tailoring enzyme-like activities of gold nanoclusters by polymeric tertiary amines for protecting neurons against oxidative stress. Small. 2016;12:4127. https://doi.org/10.1002/smll.201503919.

    Article  CAS  Google Scholar 

  95. Geng HQ, Li ZJ, Liu Q, Yang Q, Jia HM, Chen Q, Zhou AG, He WW. Boosting the peroxidase-like activity of Pt nanozymes by a synergistic effect of Ti3C2 nanosheets for dual mechanism detection. Dalton Trans. 2022;51:11693. https://doi.org/10.1039/d2dt01696f.

    Article  CAS  Google Scholar 

  96. Liu Y, Xiang YP, Zhen YL, Xiang YP, Zhen YL, Guo Y. Halide ion-induced switching of gold nanozyme activity based on Au-X interactions. Langmuir. 2017;33:6372. https://doi.org/10.1021/acs.langmuir.7b00798.

    Article  CAS  Google Scholar 

  97. Lin YH, Zhao AD, Tao Y, Ren JS, Qu XG. Ionic liquid as an efficient modulator on artificial enzyme system: toward the realization of high-temperature catalytic reactions. J Am Chem Soc. 2013;135:4207. https://doi.org/10.1021/ja400280f.

    Article  CAS  Google Scholar 

  98. Liu Y, Zheng YL, Ding D, Guo R. Switching peroxidasemimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir. 2017;33:13811. https://doi.org/10.1021/acs.langmuir.7b03430.

  99. Wang Y, Zhang P, Liu L, Xue F, Liu MC, Li L, Fu WS. Regulating peroxidase-like activity of Pd nanocubes through surface inactivation and its application for sulfide detection. New J Chem. 2019;43(1):371. https://doi.org/10.1039/c8nj05138k.

    Article  CAS  Google Scholar 

  100. Dong JL, Song LN, Yin JJ, He WW, Wu YH, Gu N, Zhang Y. Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Inter. 2014;6:1959. https://doi.org/10.1021/am405009f.

    Article  CAS  Google Scholar 

  101. Su H, Liu DD, Zhao M, Hu WL, Xue SS, Cao Q, Le XY, Ji NL, Mao ZW. Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Inter. 2015;7(15):8233. https://doi.org/10.1021/acsami.5b01271.

    Article  CAS  Google Scholar 

  102. Chen TM, Tian XM, Huang L, Xiao J, Yang GW. Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications. Nanoscale. 2017;9:15673. https://doi.org/10.1039/c7nr05629j.

    Article  CAS  Google Scholar 

  103. Gharib M, Kornowski A, Noei H, Parak WG. Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity. ACS Mater Let. 2019;1(3):310. https://doi.org/10.1021/acsmaterialslett.9b00164.

    Article  CAS  Google Scholar 

  104. Xi JQ, Zhang JJ, Qian XD, An LF, Fan L. Using a visible light-triggered pH switch to activate nanozymes for antibacterial treatment. RSC Adv. 2020;10:909. https://doi.org/10.1039/c9ra09343e.

    Article  CAS  Google Scholar 

  105. Zhao N, Yang FE, Zhao CY, Lv SW, Wang J, Liu MJ, Wang S. Construction of pH-dependent nanozymes with oxygen vacancies as the high-efficient reactive oxygen species scavenger for oral-administrated anti-inflammatory therapy. Adv Healthc Mater. 2021;10(23):2101618. https://doi.org/10.1002/adhm.202101618.

    Article  CAS  Google Scholar 

  106. Ye HH, Mohar J, Wang QX, Catalano M, Kim MJ, Xia XH. Peroxidase-like properties of ruthenium nanoframes. Sci Bull. 2016;61(22):1739. https://doi.org/10.1007/s11434-016-1193-9.

    Article  CAS  Google Scholar 

  107. Liu Y, Wu HH, Li M, Yin JJ, Nie ZH. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale. 2014;6:11904. https://doi.org/10.1039/C4NR03848G.

    Article  CAS  Google Scholar 

  108. Lin YH, Ren JS, Qu XG. Nano-gold as artificial enzymes: hidden talents. Adv Mater. 2014;26:4200. https://doi.org/10.1002/adma.201400238.

    Article  CAS  Google Scholar 

  109. Li JN, Liu WQ, Wu XC, Gao XF. Mechanism of pH switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37. https://doi.org/10.1016/j.biomaterials.2015.01.012.

    Article  CAS  Google Scholar 

  110. Xu C, Bing W, Wang FM, Faming W, Ren JS, Qu XG. Versatile dual photoresponsive system for precise control of chemical reactions. ACS Nano. 2017;11:7770. https://doi.org/10.1021/acsnano.7b01450.

    Article  CAS  Google Scholar 

  111. Wahab MA, Hossain SMA, Masud MK, Park H, Ashok A, Mustapić M, Kim MJ, Patel D, Shahbazi M, Hossain MSA, Yamauchi Y, Kaneti YV. Nanoarchitectured superparamagnetic iron oxide-doped mesoporous carbon nanozymes for glucose sensing. Sens Actuat B Chem. 2022;366:131980. https://doi.org/10.1016/j.snb.2022.131980.

    Article  CAS  Google Scholar 

  112. Tanaka S, Masud MK, Kaneti YV, Shiddiky MJA, Fatehmulla A, Aldhafiri AM, Farooq WA, Bando Y, Hossain MSA, Yamauchi Y. Enhanced peroxidase mimetic activity of porous iron oxide nanoflakes. Chem Nano Mat. 2019;5(4):506. https://doi.org/10.1002/cnma.201800487.

    Article  CAS  Google Scholar 

  113. Chen Y, Tian Q, Wang HY, Ma RN, Han RT, Wang Y, Ge HB, Ren YJ, Yang R, Yang H, Chen YJ, Duan XZ, Zhang LB, Gao J, Gao LZ, Yan XY, Qin Y. A manganese-based metal-organic framework as a cold-adapted nanozyme. Adv Mater. 2022. https://doi.org/10.1002/cnma.201800487.

    Article  Google Scholar 

  114. Zhang Y, Villarreal E, Li GG, Wang W, Wang H. Plasmonic nanozymes: engineered gold nanoparticles exhibit tunable plasmon-enhanced peroxidase-mimicking activity. J Phys Chem Lett. 2020;11(21):9321. https://doi.org/10.1021/acs.jpclett.0c02640.

    Article  CAS  Google Scholar 

  115. Zhong XY, Wang XW, Cheng L, Tang YA, Zhan GT, Gong F, Zhang R, Hu J, Liu Z, Yang XL. GSH-depleted PtCu3 nanocages for chemodynamic-enhanced sonodynamic cancer therapy. Adv Funct Mater. 2019;30(4):1907954. https://doi.org/10.1002/adfm.201907954.

    Article  CAS  Google Scholar 

  116. Li SR, Zhang YH, Wang Q, Lin AQ, Wei H. Nanozyme-enabled analytical chemistry. Analy Chem. 2022;94(1):312. https://doi.org/10.1021/acs.analchem.1c04492.

    Article  CAS  Google Scholar 

  117. Unnikrishnan B, Lien CW, Huang CC. Nanozyme based detection of heavy metal ions and its challenges: a minireview. J Anal Test. 2019;3(3):206. https://doi.org/10.1007/s41664-019-00110-2.

    Article  Google Scholar 

  118. Wang HH, Zhao J, Liu C, Tong YP, He WW. Pt nanoparticles confined by zirconium metal-organic frameworks with enhanced enzyme-like activity for glucose detection. ACS Omega. 2021;6(7):4807. https://doi.org/10.1021/acsomega.0c05747.

    Article  CAS  Google Scholar 

  119. Xi Z, Wei KC, Wang QX, Kim MJ, Sun SH, Fung V, Xia XH. Nickel-platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J Am Chem Soc. 2021;143(7):2660. https://doi.org/10.1021/jacs.0c12605.

    Article  CAS  Google Scholar 

  120. Wang Q, Jiang J, Gao LZ. Catalytic antimicrobial therapy using nanozymes. Wires Nanomed Nanobi. 2022;14(2):1769. https://doi.org/10.1002/wnan.1769.

    Article  CAS  Google Scholar 

  121. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12):122. https://doi.org/10.1038/nm1145.

    Article  CAS  Google Scholar 

  122. Chambers HF, Deleo FR. Waves of resistance: staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009;7(9):629. https://doi.org/10.1038/nrmicro2200.

    Article  CAS  Google Scholar 

  123. Ferri M, Ranucci E, Romagnoli P, Giaccone V. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci. 2017;57(13):2857. https://doi.org/10.1080/10408398.2015.1077192.

    Article  CAS  Google Scholar 

  124. Li L, Cao LJ, Xiang X, Wu XZ, Ma L, Fan C, Cao SJ, Cheng C, Deng DW, Qiu L. ROS-catalytic transition-metal-based enzymatic nanoagents for tumor and bacterial eradication. Adv Funct Mater. 2021;32(1):2107530. https://doi.org/10.1002/adfm.202107530.

    Article  CAS  Google Scholar 

  125. Gao F, Shao TY, Yu YP, Xiong YJ, Yang LH. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat Commun. 2021;12(1):745. https://doi.org/10.1038/s41467-021-20965-3.

    Article  CAS  Google Scholar 

  126. Ge CC, Wu RF, Chong Y, Fang G, Jiang XM, Pan Y, Chen CY, Yin JJ. Synthesis of Pt hollow nanodendrites with enhanced peroxidase-like activity against bacterial infections: implication for wound healing. Adv Funct Mater. 2018;28(28):1801484. https://doi.org/10.1002/adfm.201801484.

    Article  CAS  Google Scholar 

  127. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram L, Jemal A, Bray F. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2021;71(3):209. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  128. Lewandowska H, Wójciuk K, Karczmarczyk U. Metal nanozymes: new horizons in cellular homeostasis regulation. Appl Sci Basel. 2021;11(19):9019. https://doi.org/10.3390/app11199019.

    Article  CAS  Google Scholar 

  129. Yang BW, Chen Y, Shi JL. Nanozymes in catalytic cancer theranostics. Prog Biochem Biophys. 2018;45(2):237. https://doi.org/10.16476/j.pibb.2017.0466.

    Article  Google Scholar 

  130. Jana D, Wang D, Bindra AK, Guo Y, Liu JW, Zhao YL. Ultrasmall alloy nanozyme for ultrasound- and near-infrared light-promoted tumor ablation. ACS Nano. 2021;15(4):7774. https://doi.org/10.1021/acsnano.1c01830.

    Article  CAS  Google Scholar 

  131. Gu WX, Hua ZY, Li Z, Cai ZH, Wang WD, Guo KJ, Yuan F, Gao FL, Chen HL. Palladium cubes with Pt shell deposition for localized surface plasmon resonance enhanced photodynamic and photothermal therapy of hypoxic tumors. Biomater Sci-uk. 2021;10(1):216. https://doi.org/10.1039/D1BM01406D.

    Article  Google Scholar 

  132. An Z, Yan JC, Zhang Y, Pei RJ. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases. J Mater Chem B. 2020;8(38):8748. https://doi.org/10.1039/D0TB01380C.

    Article  CAS  Google Scholar 

  133. Chen K, Sun S, Wang JY, Zhang XD. Catalytic nanozymes for central nervous system disease. Coord Chem Rev. 2021;432:213751. https://doi.org/10.1016/j.ccr.2020.213751.

    Article  CAS  Google Scholar 

  134. Li A, Tyson J, Patel S, Patel M, KataKam S, Mao XB, He WW. Emerging nanotechnology for treatment of Alzheimer’s and Parkinson’s disease. Front Bioeng Biotech. 2021;9:672594. https://doi.org/10.3389/fbioe.2021.672594.

    Article  Google Scholar 

  135. Mu XY, Wang JY, Li YH, Xu FJ, Long W, Ouyang LF, Liu HL, Jing YQ, Wang JY, Dai HT, Liu Q, Sun YM, Liu CL, Zhang XD. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano. 2019;13(2):1870. https://doi.org/10.1021/acsnano.8b08045.

    Article  CAS  Google Scholar 

  136. Liu YQ, Mao YY, Xu EQ, Jia HM, Zhang S, Dawson VL, Dawson TM, Li YM, Zheng Z, He WW, Mao XB. Nanozyme scavenging ROS for prevention of pathologic α-synuclein transmission in Parkinson’s disease. Nano Today. 2021;36:101027. https://doi.org/10.1016/j.nantod.2020.101027.

    Article  CAS  Google Scholar 

  137. Jia Z, Yuan XY, Wei JA, Guo X, Gong YC, Li J, Zhou H, Zhang L, Liu J. A functionalized octahedral palladium nanozyme as a radical scavenger for ameliorating Alzheimer’s disease. ACS Appl Nano Mater. 2021;13(42):49602. https://doi.org/10.1021/acsami.1c06687.

    Article  CAS  Google Scholar 

  138. Younis NK, Ghoubaira JA, Bassil EP, Tantawi HN, Eid AH. Metal nanoparticles: promising tools for the management of cardiovascular diseases. Nanomedicine. 2021;36:102433. https://doi.org/10.1016/j.nano.2021.102433.

    Article  CAS  Google Scholar 

  139. Li HY, Yan J, Meng DJ, Cai R, Gao XS, Ji YL, Wang LM, Chen CY, Wu XC. Gold nanorod-based nanoplatform catalyzes constant NO generation and protects from cardiovascular injury. ACS Nano. 2020;14(10):12854. https://doi.org/10.1021/acsnano.0c03629.

    Article  CAS  Google Scholar 

  140. Zhu Y, Zhao TJ, Liu M, Wang SY, Liu SL, Yang YR, Yang YQ, Nan YY, Huang Q, Ai KL. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today. 2022;42:101358. https://doi.org/10.1016/j.nantod.2021.101358.

    Article  CAS  Google Scholar 

  141. Ming J, Zhu TB, Li JC, Ye ZC, Shi CR, Guo ZD, Wang JJ, Chen XL, Zheng NF. A novel cascade nanoreactor integrating two-dimensional Pd-Ru nanozyme, uricase and red blood cell membrane for highly efficient hyperuricemia treatment. Small. 2021;17(46):2103645. https://doi.org/10.1002/smll.202103645.

    Article  CAS  Google Scholar 

  142. Kim S, Kim M, Jung S, Kwon K, Park JY, Kim S, Kwon I, Tae G. Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect. J Control Release. 2019;309:181. https://doi.org/10.1016/j.jconrel.2019.07.038.

    Article  CAS  Google Scholar 

  143. Ma YY, Tian ZM, Zhai WF, Qu YQ. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022;15:10328. https://doi.org/10.1007/s12274-022-4666-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 62274141) and the Program for Zhongyuan Leading Talents of Science and Technology Innovation in Henan Province (No. 204200510016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei He.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Mao, YY., Liu, Q. et al. Metal nanozymes with multiple catalytic activities: regulating strategies and biological applications. Rare Met. 42, 2928–2948 (2023). https://doi.org/10.1007/s12598-023-02309-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02309-w

Keywords

Navigation