Skip to main content
Log in

Peroxidase-like properties of Ruthenium nanoframes

  • Article
  • Materials Science
  • Published:
Science Bulletin

Abstract

This work reports the inherent peroxidase-like properties of Ruthenium (Ru) nanoframes. After templating with Palladium (Pd) seeds, Ru nanoframes with an octahedral shape, average edge length of 6.2 nm, and thickness of 1.8 nm were synthesized in high purity (>95 %) and good uniformity. Using the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 as a model catalytic reaction, the Ru frames were demonstrated to be approximately three times more active than natural peroxidases in catalyzing the formation of colored products. As compared to their natural counterparts, Ru frames have a stronger binding affinity to TMB as well as a weaker binding affinity to hydrogen peroxide during the catalysis. The Ru frames as peroxidase mimics proved to be chemically and thermally stable. This work represents the first demonstration of Ru nanostructure-based peroxidase mimics and is therefore expected to inspire future research on bio-applications of Ru nanomaterials.

摘要

本研究报道了钌纳米框架的过氧化物酶属性。选用钯纳米晶种为模板,可以制备得到具有八面体形貌的钌纳米框架,其平均边长为6.2纳米,厚度为1.8纳米,产物产率高(>95 %)并且形貌均匀。以过氧化氢氧化3,3′,5,5′-四甲基联苯胺分子(TMB)反应为催化模型,钌纳米框架的过氧化物酶活性比天然过氧化物酶高出接近3倍。和天然过氧化物酶相比,钌纳米框架在催化反应的过程中对3,3′,5,5′-四甲基联苯胺的结合力较强,但是对过氧化氢的结合力较弱。同时,钌纳米框架在催化反应中展示出较好的化学和热力学稳定性能。本研究首次提出了一种基于钌纳米晶的过氧化物模拟酶, 为钌纳米结构在生物应用方向的发展提供新的思路和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  PubMed  Google Scholar 

  2. Kotov NA (2010) Inorganic nanoparticles as protein mimics. Science 330:188–189

    Article  CAS  PubMed  Google Scholar 

  3. Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47:1097–1105

    Article  CAS  PubMed  Google Scholar 

  4. Breslow R (1995) Biomimetic chemistry and artificial enzymes: catalysis by design. Acc Chem Res 28:146–153

    Article  CAS  Google Scholar 

  5. Li W, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997

    Article  Google Scholar 

  6. Xianyu Y, Wang Z, Jiang X (2014) A plasmonic nanosensor for immunoassay via enzyme-triggered click chemistry. ACS Nano 8:12741–12747

    Article  CAS  PubMed  Google Scholar 

  7. Cheng H, Zhang L, He J et al (2016) Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal Chem 88:5489–5497

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Hua Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60

    Article  CAS  Google Scholar 

  9. Gao L, Zhuang J, Nie L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhang X, Gong S, Zhang Y et al (2010) Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem 20:5110–5116

    Article  CAS  Google Scholar 

  11. Liu X, Wang Q, Zhao H et al (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137:4552–4558

    Article  ADS  CAS  PubMed  Google Scholar 

  12. André R, Natálio F, Humanes M et al (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509

    Article  Google Scholar 

  13. Xiao X, Luan Q, Yao X et al (2009) Single-crystal CeO2 nanocubes used for the direct electron transfer and electrocatalysis of horseradish peroxidase. Biosens Bioelectron 24:2447–2451

    Article  CAS  PubMed  Google Scholar 

  14. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80:2250–2254

    Article  CAS  PubMed  Google Scholar 

  15. Su H, Liu DD, Zhao MM et al (2015) Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl Mater Inter 7:8233–8242

    Article  CAS  Google Scholar 

  16. Gao Z, Hou L, Xu M et al (2014) Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci Rep 4:3966

    ADS  PubMed  PubMed Central  Google Scholar 

  17. He W, Wu X, Liu J et al (2010) Design of AgM bimetallic alloy nanostructures (M = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22:2988–2994

    Article  CAS  Google Scholar 

  18. Jv Y, Li B, Cao R (2010) Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019

    Article  Google Scholar 

  19. Fan J, Yin J, Ning B et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32:1611–1618

    Article  CAS  PubMed  Google Scholar 

  20. Xia X, Zhang J, Lu N et al (2015) Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic. ACS Nano 9:9994–10004

    Article  CAS  PubMed  Google Scholar 

  21. Manea F, Houillon FB, Pasquato L et al (2004) Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed 43:6165–6169

    Article  CAS  Google Scholar 

  22. Shi W, Wang Q, Long Y et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47:6695–6697

    Article  CAS  Google Scholar 

  23. Wang X, Qu K, Xu B et al (2011) Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res 4:908–920

    Article  CAS  Google Scholar 

  24. Song Y, Qu K, Zhao C et al (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210

    Article  CAS  PubMed  Google Scholar 

  25. Cui R, Huang H, Yin Z et al (2008) Horseradish peroxidase-functionalized gold nanoparticle label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor. Biosens Bioelectron 23:1666–1673

    Article  CAS  PubMed  Google Scholar 

  26. Lei CX, Hu SQ, Shen GL et al (2003) Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 59:981–988

    Article  CAS  PubMed  Google Scholar 

  27. Love JC, Estroff LA, Kriebel JK et al (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  CAS  PubMed  Google Scholar 

  28. Balcerzak M, Kaczmarczyk M (2001) Rapid derivative spectrophotometric method for the determination of platinum in Pt-Ru/C catalyst using iodide media. Anal Sci 17:1321–1324

    Article  CAS  PubMed  Google Scholar 

  29. Ye H, Wang Q, Catalano M et al (2016) Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett 16:2812–2817

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Porter DJT, Bright JH (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. J Biol Chem 258:9913–9924

    Google Scholar 

  31. Xia X, Figueroa-Cosme L, Tao J et al (2014) Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. J Am Chem Soc 136:10878–10881

    Article  CAS  PubMed  Google Scholar 

  32. Karaseva EI, Losev YP, Metelitsa DI (2002) Peroxidase-catalyzed Oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of 2,4-dinitrosoresorcinol and polydisulfide derivatives of resorcinol and 2,4-dinitrosoresorcinol. Russ J Bioorg Chem 28:128

    Article  CAS  Google Scholar 

  33. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  34. Josephy PD, Eling TE, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257:3669–3675

    CAS  PubMed  Google Scholar 

  35. Cai Q, Lu S, Liao F et al (2014) Catalytic degradation of dye molecules and in situ SERS monitoring by peroxidase-like Au/CuS composite. Nanoscale 6:8117–8123

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Frey A, Meckelein B, Externest D et al (2000) A stable and highly sensitive 3,5,3′,5′-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays. J Immunol Methods 233:47–56

    Article  CAS  PubMed  Google Scholar 

  37. Hagen J (2006) Industrial catalysis: a practical approach. Wiley-VCH, Weinheim

    Google Scholar 

  38. Pan C, Pelzer K, Philippot K (2001) Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. J Am Chem Soc 123:7584–7593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by startup funds from Michigan Technological University, and the Michigan Translational Research & Commercialization Fund (MTRAC), Grant Case-48161 of the 21st Century Jobs Trust Fund received through the Michigan Strategic Fund from the State of Michigan. The MTRAC program is funded by the Michigan Strategic Fund with program oversight by the Michigan Economic Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Mohar, J., Wang, Q. et al. Peroxidase-like properties of Ruthenium nanoframes. Sci. Bull. 61, 1739–1745 (2016). https://doi.org/10.1007/s11434-016-1193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-016-1193-9

Keywords

Navigation