Skip to main content
Log in

Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Developing safer and more efficient hydrogen storage technology is a pivotal step to realizing the hydrogen economy. Owing to the lightweight, high hydrogen storage density and abundant reserves, MgH2 has been widely studied as one of the most promising solid-state hydrogen storage materials. However, defects such as stable thermodynamics, sluggish kinetics and rapid capacity decay have seriously hindered its practical application. This article reviews recent advances in catalyst doping and nanostructures for improved kinetic performance of MgH2/Mg systems for hydrogen release/absorption, the tuning of their thermodynamic stability properties by alloying and reactant destabilization, and the dual thermodynamic and kinetic optimization of the MgH2/Mg system achieved by nanoconfinement with in situ catalysis and ball milling with in situ aerosol spraying, aiming to open new perspectives for the scale-up of MgH2 for hydrogen storage applications.

Graphic Abstract

摘要

开发安全、高效的储氢技术是实现氢经济的关键步骤。由于重量轻、储氢密度高和储量丰富,MgH2作为最有前途的固态储氢材料之一已被广泛研究。然而,稳定的热力学、迟缓的动力学和快速的容量衰减等缺陷严重阻碍了其在实际中的应用。这篇文章综述了催化剂掺杂和结构纳米化在MgH2/Mg体系放/吸氢动力学性能改进方面的最新进展,合金化和反应物失稳对其热力学稳定性能的调整。以及通过纳米限域催化和高能球磨结合气溶胶喷雾对MgH2/Mg体系放/吸氢热力学和动力学的双重优化,旨在为MgH2的规模化储氢应用开拓新的视角。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Poizot P, Dolhem F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energ Environ Sci. 2011;4(6):2003. https://doi.org/10.1039/c0ee00731e.

    Article  CAS  Google Scholar 

  2. Lang C, Jia Y, Yao X. Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Mater. 2020;26:290. https://doi.org/10.1016/j.ensm.2020.01.010.

    Article  Google Scholar 

  3. Sun Y, Shen C, Lai Q, Liu W, Wang DW, Aguey-Zinsou KF. Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 2018;10:168. https://doi.org/10.1016/j.ensm.2017.01.010.

    Article  Google Scholar 

  4. Nejat P, Jomehzadeh F, Taheri MM, Gohari M, Majid MA. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sust Energ Rev. 2015;43:843. https://doi.org/10.1016/j.rser.2014.11.066.

    Article  CAS  Google Scholar 

  5. Yüksel YE. Elementary science teacher candidates’ views on hydrogen as future energy carrier. Int J Hydrogen Energy. 2019;44(20):9817. https://doi.org/10.1016/j.ijhydene.2018.12.009.

    Article  CAS  Google Scholar 

  6. Zuttel A, Remhof A, Borgschulte A, Friedrichs O. Hydrogen: the future energy carrier. Philos Trans A Math Phys Eng Sci. 1923;2010(368):3329. https://doi.org/10.1098/rsta.2010.0113.

    Article  CAS  Google Scholar 

  7. Hou Q, Yang X, Zhang J. Review on hydrogen storage performance of MgH2: development and trends. ChemistrySelect. 2021;6(7):1589. https://doi.org/10.1002/slct.202004476.

    Article  CAS  Google Scholar 

  8. Ball M, Wietschel M. The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy. 2009;34(2):615. https://doi.org/10.1016/j.ijhydene.2008.11.014.

    Article  CAS  Google Scholar 

  9. Klebanoff LE, Keller JO. 5 Years of hydrogen storage research in the US DOE metal hydride center of excellence (MHCoE). Int J Hydrogen Energy. 2013;38(11):4533. https://doi.org/10.1016/j.ijhydene.2013.01.051.

    Article  CAS  Google Scholar 

  10. Mohtadi R, Orimo SI. The renaissance of hydrides as energy materials. Nat Rev Mater. 2016;2(3):1. https://doi.org/10.1038/natrevmats.2016.91.

    Article  Google Scholar 

  11. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Convers Manage. 2018;165:602. https://doi.org/10.1016/j.enconman.2018.03.088.

    Article  CAS  Google Scholar 

  12. Jain IP, Jain P, Jain A. Novel hydrogen storage materials: a review of lightweight complex hydrides. J Alloys Compd. 2010;503(2):303. https://doi.org/10.1016/j.jallcom.2010.04.250.

    Article  CAS  Google Scholar 

  13. Pukazhselvan D, Kumar V, Singh SK. High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy. 2012;1(4):566. https://doi.org/10.1016/j.nanoen.2012.05.004.

    Article  CAS  Google Scholar 

  14. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353. https://doi.org/10.1038/35104634.

    Article  CAS  Google Scholar 

  15. Lai Q, Paskevicius M, Sheppard DA, Buckley CE, Thornton AW, Hill MR, Aguey-Zinsou KF. Hydrogen storage materials for mobile and stationary applications: current state of the art. Chemsuschem. 2015;8(17):2789. https://doi.org/10.1002/cssc.201500231.

    Article  CAS  Google Scholar 

  16. Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Gabis IE. Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd. 2011;509:S517. https://doi.org/10.1016/j.jallcom.2010.11.115.

    Article  CAS  Google Scholar 

  17. Path to hydrogen competitiveness: a cost perspective. Hydrogen Council. https://hydrogencouncil.com/en/path-to-hydrogen-competitiveness-a-cost-perspective/. Jan. 20th, 2020.

  18. Shin J, Hwang WS, Choi H. Can hydrogen fuel vehicles be a sustainable alternative on vehicle market?: comparison of electric and hydrogen fuel cell vehicles. Technol Forecast Soc. 2019;143:239. https://doi.org/10.1016/j.techfore.2019.02.001.

    Article  Google Scholar 

  19. Du Z, Liu C, Zhai J, Guo X, Xiong Y, Su W, He G. A review of hydrogen purification technologies for fuel cell vehicles. Catalysts. 2021;11(3):393. https://doi.org/10.3390/catal11030393.

    Article  CAS  Google Scholar 

  20. Hames Y, Kaya K, Baltacioglu E, Turksoy A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int J Hydrogen Energy. 2018;43(23):10810. https://doi.org/10.1016/j.ijhydene.2017.12.150.

    Article  CAS  Google Scholar 

  21. Khan U, Yamamoto T, Sato H. Consumer preferences for hydrogen fuel cell vehicles in Japan. Transp Res D Transp Environ. 2020;87:102542. https://doi.org/10.1016/j.trd.2020.102542.

    Article  Google Scholar 

  22. Buttner W, Rivkin C, Burgess R, Hartmann K, Bloomfield I, Bubar M, Moretto P. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles. Int J Hydrogen Energy. 2017;42(11):7664. https://doi.org/10.1016/j.ijhydene.2016.06.053.

    Article  CAS  Google Scholar 

  23. Gonzalez-Cortes S, Slocombe DR, Xiao T, Aldawsari A, Yao B, Kuznetsov VL, Edwards PP. Wax: a benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition. Sci Rep. 2016. https://doi.org/10.1038/srep35315.

    Article  Google Scholar 

  24. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Yuan ZF, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 2021;40(11):3195. https://doi.org/10.1007/s12598-021-01764-7.

    Article  CAS  Google Scholar 

  25. Li Q, Luo Q, Gu QF. Insights into the composition exploration of novel hydrogen storage alloys: evaluation of the Mg–Ni–Nd–H phase diagram. J Mater Chem A. 2017;5(8):3848. https://doi.org/10.1039/c6ta10090b.

    Article  CAS  Google Scholar 

  26. Shao H, Xin G, Zheng J, Li X, Akiba E. Nanotechnology in Mg-based materials for hydrogen storage. Nano Energy. 2012;1(4):590. https://doi.org/10.1016/j.nanoen.2012.05.005.

    Article  CAS  Google Scholar 

  27. Bo L, Jianding L, Huaiyu S, Liqing H. Mg-based hydrogen absorbing materials for thermal energy storage—a review. Appl Sci. 2018;8(8):1375. https://doi.org/10.3390/app8081375.

    Article  CAS  Google Scholar 

  28. Li Q, Lu Y, Luo Q, Yang X, Yang Y, Tan J, Pan F. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials. J Magnes Alloy. 2021;9(6):1922. https://doi.org/10.1016/j.jma.2021.10.002.

    Article  CAS  Google Scholar 

  29. Shao H, He L, Lin H, Li HW. Progress and trends in magnesium-based materials for energy-storage research: a review. Energy Technol-Ger. 2017;6(3):445. https://doi.org/10.1002/ente.201700401.

    Article  Google Scholar 

  30. Cheng F, Tao Z, Liang J, Chen J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem Commun (Camb). 2012;48(59):7334. https://doi.org/10.1039/c2cc30740e.

    Article  CAS  Google Scholar 

  31. Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy. 2019;44(29):15072. https://doi.org/10.1016/j.ijhydene.2019.04.068.

    Article  CAS  Google Scholar 

  32. Kadri A, Jia Y, Chen Z, Yao X. Effect of titanium based complex catalyst and carbon nanotubes on hydrogen storage performance of magnesium. Sci China Chem. 2013;56(4):451. https://doi.org/10.1007/s11426-013-4856-2.

    Article  CAS  Google Scholar 

  33. Li J, Li B, Shao H, Li W, Lin H. Catalysis and downsizing in Mg-based hydrogen storage materials. Catalysts. 2018;8(2):89. https://doi.org/10.3390/catal8020089.

    Article  CAS  Google Scholar 

  34. Zavalii IY, Berezovets VV, Denys RV. Nanocomposites based on magnesium for hydrogen storage: achievements and prospects (a survey). Mater Sci. 2019;54(5):611. https://doi.org/10.1007/s11003-019-00226-x.

    Article  CAS  Google Scholar 

  35. Shang Y, Pistidda C, Gizer G, Klassen T, Dornheim M. Mg-based materials for hydrogen storage. J Magnes Alloy. 2021;9(6):1837. https://doi.org/10.1016/j.jma.2021.06.007.

    Article  CAS  Google Scholar 

  36. Wu Z, Zhang ZX, Yang FS, Feng PH, Wang YQ. Hydrogen storage properties and mechanisms of magnesium based alloys with mesoporous surface. Int J Hydrogen Energy. 2016;41(4):2771. https://doi.org/10.1016/j.ijhydene.2015.12.139.

    Article  CAS  Google Scholar 

  37. Tian M, Shang C. Mg-based composites for enhanced hydrogen storage performance. Int J Hydrogen Energy. 2019;44(1):338. https://doi.org/10.1016/j.ijhydene.2018.02.119.

    Article  CAS  Google Scholar 

  38. Yang X, Hou Q, Yu L, Zhang J. Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton T. 2021;50(5):1797. https://doi.org/10.1039/d0dt03627g.

    Article  CAS  Google Scholar 

  39. Wang Y, Wang Y. Recent advances in additive-enhanced magnesium hydride for hydrogen storage. Prog Nat Sci: Mater Int. 2017;27(1):41. https://doi.org/10.1016/j.pnsc.2016.12.016.

    Article  CAS  Google Scholar 

  40. Zhang J, Yan S, Xia G, Zhou X, Lu X, Yu L, Peng P. Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride. J Magnes Alloy. 2021;9(2):647. https://doi.org/10.1016/j.jma.2020.02.029.

    Article  CAS  Google Scholar 

  41. Cui J, Liu J, Wang H, Ouyang L, Sun D, Zhu M, Yao X. Mg–TM (TM: Ti, Nb, V Co, Mo or Ni) core–shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J Mater Chem A. 2014;2(25):9645. https://doi.org/10.1039/c4ta00221k.

    Article  CAS  Google Scholar 

  42. Barkhordarian G, Klassen T, Bormann R. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J Phys Chem B. 2006;110(22):11020. https://doi.org/10.1021/jp0541563.

    Article  CAS  Google Scholar 

  43. Jia Y, Cheng L, Pan N, Zou J, Lu G, Yao X. Catalytic de/hydrogenation in Mg by co-doped Ni and VOx on active carbon: extremely fast kinetics at low temperatures and high hydrogen capacity. Adv Energy Mater. 2011;1(3):387. https://doi.org/10.1002/aenm.201000025.

    Article  CAS  Google Scholar 

  44. Zhang J, He L, Yao Y, Zhou XJ, Zhou DW. Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2. Renew Energ. 2020;154(9):1229. https://doi.org/10.1016/j.renene.2020.03.089.

    Article  CAS  Google Scholar 

  45. Sun Z, Zhang L, Yan N, Zheng J, Bian T, Yang Z, Su S. Realizing hydrogen de/absorption under low temperature for MgH2 by doping Mn-based catalysts. Nanomaterials. 2020;10(9):1745. https://doi.org/10.3390/nano10091745.

    Article  CAS  Google Scholar 

  46. Lu ZY, Yu HJ, Lu X, Song MC, Wu FY, Zheng JG, Zhang LT. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 2021;40(11):3195. https://doi.org/10.1007/s12598-021-01764-7.

    Article  CAS  Google Scholar 

  47. Xiong N, Zhang G, Sun X, Zeng R. Metal-metal cooperation in dinucleating complexes involving late transition metals directed towards organic catalysis. Chin J Chem. 2020;38(2):185. https://doi.org/10.1002/cjoc.201900371.

    Article  CAS  Google Scholar 

  48. Wang A, Liu XY, Mou CY, Zhang T. Understanding the synergistic effects of gold bimetallic catalysts. J Catal. 2013;308:258. https://doi.org/10.1016/j.jcat.2013.08.023.

    Article  CAS  Google Scholar 

  49. Hou Q, Zhang J, Zheng Z, Yang X, Ding Z. Ni3Fe/BC nanocatalysts based on biomass charcoal self-reduction achieves excellent hydrogen storage performance of MgH2. Dalton T. 2022;51(39):14960. https://doi.org/10.1039/d2dt02425j.

    Article  CAS  Google Scholar 

  50. Sun G, Li Y, Zhao X, Wu J, Wang L, Mi Y. First-principles investigation of the effects of Ni and Y co-doped on destabilized MgH2. RSC Adv. 2016;6(28):23110. https://doi.org/10.1039/c5ra23996f.

    Article  CAS  Google Scholar 

  51. Zhang J, Sun L, Mao C, Long C, Chen J. Effects and mechanisms of Ni and Ti single-/co-doping on microstructures and dehydrogenation properties of MgH2. Mater Rev. 2015; 29(22):91. CNKI:SUN:CLDB.0.2015-22-022

  52. Lototskyy M, Goh J, Davids MW, Linkov V, Khotseng L, Ntsendwana B, Yartys VA. Nanostructured hydrogen storage materials prepared by high-energy reactive ball milling of magnesium and ferrovanadium. Int J Hydrogen Energy. 2019;44(13):6687. https://doi.org/10.1016/j.ijhydene.2019.01.135.

    Article  CAS  Google Scholar 

  53. Yan N, Lu X, Lu Z, Yu H, Wu F, Zheng J, Zhang L. Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles. J Magnes Alloy. 2021;10(12):3542. https://doi.org/10.1016/j.jma.2021.03.014.

    Article  CAS  Google Scholar 

  54. Zhang L, Sun Z, Cai Z, Yan N, Lu X, Zhu X, Chen L. Enhanced hydrogen storage properties of MgH2 by the synergetic catalysis of Zr0.4Ti0.6Co nanosheets and carbon nanotubes. Appl Surf Sci. 2020;504:144465. https://doi.org/10.1016/j.apsusc.2019.144465.

    Article  CAS  Google Scholar 

  55. El-Eskandarany MS, Shaban E, Al-Matrouk H, Behbehani M, Alkandary A, Aldakheel F, Ahmed SA. Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10 wt% ZrNi5 powders. Mater Today Energy. 2017;3:60. https://doi.org/10.1016/j.mtener.2016.12.002.

    Article  Google Scholar 

  56. Yang X, Ji L, Yan N, Sun Z, Lu X, Zhang L, Chen L. Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage. Dalton T. 2019;48(33):12699. https://doi.org/10.1039/c9dt02084e.

    Article  CAS  Google Scholar 

  57. Singh S, Bhatnagar A, Shukla V, Vishwakarma AK, Soni PK, Verma SK, Srivastava ON. Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2. Int J Hydrogen Energy. 2020;45(1):774. https://doi.org/10.1016/j.ijhydene.2019.10.204.

    Article  CAS  Google Scholar 

  58. Zhou C, Bowman RC Jr, Fang ZZ, Lu J, Xu L, Sun P, Liu Y. Amorphous TiCu-based additives for improving hydrogen storage properties of magnesium hydride. ACS Appl Mater Interfaces. 2019;11(42):38868. https://doi.org/10.1021/acsami.9b16076.

    Article  CAS  Google Scholar 

  59. Xu C, Lin HJ, Wang Y, Zhang P, Meng Y, Zhang Y, Zhu Y. Catalytic effect of in situ formed nano-Mg2Ni and Mg2Cu on the hydrogen storage properties of Mg-Y hydride composites. J Alloys Compd. 2019;782:242. https://doi.org/10.1016/j.jallcom.2018.12.223.

    Article  CAS  Google Scholar 

  60. Gattia DM, Jangir M, Jain IP. Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications. J Alloys Compd. 2019;801:188. https://doi.org/10.1016/j.jallcom.2019.06.067.

    Article  CAS  Google Scholar 

  61. Liu P, Chen H, Yu H, Liu X, Jiang R, Li X, Zhou S. Oxygen vacancy in magnesium/cerium composite from ball milling for hydrogen storage improvement. Int J Hydrogen Energy. 2019;44(26):13606. https://doi.org/10.1016/j.ijhydene.2019.03.258.

    Article  CAS  Google Scholar 

  62. Oelerich W, Klassen T, Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd. 2001;315(1–2):237. https://doi.org/10.1016/s09258388(00)01284-6.

    Article  CAS  Google Scholar 

  63. Hardian R, Pistidda C, Chaudhary AL, Capurso G, Gizer G, Cao H, Dornheim M. Waste Mg-Al based alloys for hydrogen storage. Int J Hydrogen Energy. 2018;43(34):16738. https://doi.org/10.1016/j.ijhydene.2017.12.014.

    Article  CAS  Google Scholar 

  64. Barkhor Da Rian G, Klassen T, Bormann R. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloys Compd. 2004;364(1):242. https://doi.org/10.1016/s09258388(03)00530-9.

    Article  CAS  Google Scholar 

  65. Rafi-ud-din QuX, Li P, Lin Z, Mashkoor A, Iqbal MZ, Rafique MY, Farooq MH. Enhanced hydrogen storage performance for MgH2-NaAlH4 system-the effects of stoichiometry and Nb2O5 nanoparticles on cycling behaviour. RSC Adv. 2012;2(11):4891. https://doi.org/10.1039/c2ra20518a.

    Article  CAS  Google Scholar 

  66. Hanada N, Ichikawa T, Hino S, Fujii H. Remarkable improvement of hydrogen sorption kinetics in magnesium catalyzed with Nb2O5. J Alloys Compd. 2006;420(1–2):46. https://doi.org/10.1016/j.jallcom.2005.08.084.

    Article  CAS  Google Scholar 

  67. Barkhordarian G, Klassen T, Bormann R. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr Mater. 2003;49(3):213. https://doi.org/10.1016/s13596462(03)00259-8.

    Article  CAS  Google Scholar 

  68. Friedrichs O, Agueyzinsou F, Fernandez J, Sanchezlopez J, Justo A, Klassen T, Fernandez A. MgH2 with Nb2O5 as additive, for hydrogen storage: chemical, structural and kinetic behavior with heating. Acta Mater. 2006;54(1):105. https://doi.org/10.1016/j.actamat.2005.08.024.

    Article  CAS  Google Scholar 

  69. Cheng Y, Zhang W, Liu J, Cheng K, Zhao Z. Effect of the nanometric LiFePO4 on the hydrogen storage properties of MgH2. Int J Hydrogen Energy. 2017;42(1):356. https://doi.org/10.1016/j.ijhydene.2016.10.084.

    Article  CAS  Google Scholar 

  70. Chen M, Pu Y, Li Z, Huang G, Liu X, Lu Y, Shui J. Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2. Nano Res. 2020;13(8):2063. https://doi.org/10.1007/s12274-020-2808-7.

    Article  CAS  Google Scholar 

  71. Idris NH, Mustafa NS, Ismail M. MnFe2O4 nanopowder synthesised via a simple hydrothermal method for promoting hydrogen sorption from MgH2. Int J Hydrogen Energy. 2017;42(33):21114. https://doi.org/10.1016/j.ijhydene.2017.07.006.

    Article  CAS  Google Scholar 

  72. Mustafa NS, Sulaiman NN, Ismail M. Effect of SrFe12O19 nanopowder on the hydrogen sorption properties of MgH2. RSC Adv. 2016;6(111):110004. https://doi.org/10.1039/c6ra22291a.

    Article  CAS  Google Scholar 

  73. Ma Z, Liu J, Zhu Y, Zhao Y, Lin H, Zhang Y, Li L. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. J Alloys Compd. 2020;822:153553. https://doi.org/10.1016/j.jallcom.2019.153553.

    Article  CAS  Google Scholar 

  74. Wang P, Tian Z, Wang Z, Xia C, Yang T, Ou X. Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst. Int J Hydrogen Energy. 2021;46(53):27107. https://doi.org/10.1016/j.ijhydene.2021.05.172.

    Article  CAS  Google Scholar 

  75. Liu XS, Liu HZ, Qiu N, Zhang YB, Zhao GY, Xu L, Guo J. Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials. Rare Met. 2020;40(4):1003. https://doi.org/10.1007/s12598-020-01425-1.

    Article  CAS  Google Scholar 

  76. Wang L, Hu Y, Lin J, Leng H, Sun C, Wu C, Pan F. The hydrogen storage performance and catalytic mechanism of the MgH2-MoS2 composite. J Magnes Alloy. 2022. https://doi.org/10.1016/j.jma.2022.06.001.

    Article  Google Scholar 

  77. Wang P, Wang Z, Tian Z, Xia C, Yang T, Liang C, Li Q. Enhanced hydrogen absorption and desorption properties of MgH2 with NiS2: the catalytic effect of in-situ formed MgS and Mg2NiH4 phases. Renew Energ. 2020;160:409. https://doi.org/10.1016/j.renene.2020.07.014.

    Article  CAS  Google Scholar 

  78. Peng D, Zhang Y, Han S. Fabrication of multiple-phase magnesium-based hydrides with enhanced hydrogen storage properties by activating NiS@C and Mg powder. ACS Sustain Chem Eng. 2021;9(2):998. https://doi.org/10.1021/acssuschemeng.0c08507.

    Article  CAS  Google Scholar 

  79. Ivanov E, Konstanchuk I, Bokhonov B, Boldyrev V. Hydrogen interaction with mechanically alloyed magnesium–salt composite materials. J Alloys Compd. 2003;359(1–2):320. https://doi.org/10.1016/s09258388(03)00297-4.

    Article  CAS  Google Scholar 

  80. Ismail M. Effect of adding different percentages of HfCl4 on the hydrogen storage properties of MgH2. Int J Hydrogen Energy. 2021;46(12):8621. https://doi.org/10.1016/j.ijhydene.2020.12.068.

    Article  CAS  Google Scholar 

  81. Mustafa NS, Juahir N, Yap FAH, Ismail M. Enhanced hydrogen storage properties of MgH2 by the addition of PdCl2 catalyst. 2016. https://doi.org/10.1016/j.mtener.2020.100613.

  82. Lin HJ, Matsuda J, Li HW, Zhu M, Akiba E. Enhanced hydrogen desorption property of MgH2 with the addition of cerium fluorides. J Alloys Compd. 2015;645:S392. https://doi.org/10.1016/j.jallcom.2014.12.102.

    Article  CAS  Google Scholar 

  83. Pavel RA, Cuevas F, Latroche M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J Mater Chem A. 2019;7(40):23064. https://doi.org/10.1039/c9ta05440e.

    Article  CAS  Google Scholar 

  84. Pavel RA, Fermín C, Michel L. Optimization of TiH2 content for fast and efficient hydrogen cycling of MgH2-TiH2 nanocomposites. Int J Hydrogen Energy. 2018;43(34):16774. https://doi.org/10.1016/j.ijhydene.2018.04.169.

    Article  CAS  Google Scholar 

  85. Patell N, Ca Lizzi M, Migliori A, Morandi V, Pasquini L. Hydrogen desorption below 150 °C in MgH2–TiH2 composite nanoparticles: equilibrium and kinetic properties. J Phys Chem C. 2017;1211(21):11166. https://doi.org/10.1021/acs.jpcc.7b03169.

    Article  CAS  Google Scholar 

  86. Ponthieu M, Cuevas F, Fernández J, Laversenne L, Porcher F, Latroche M. Structural properties and reversible deuterium loading of MgD2–TiD2 nanocomposites. J Phys Chem C. 2013;117(37):18851. https://doi.org/10.1021/jp405803x.

    Article  CAS  Google Scholar 

  87. Nyallang Nyamsi S, Lototskyy MV, Yartys VA, Capurso G, Davids MW, Pasupathi S. 200 NL H2 hydrogen storage tank using MgH2–TiH2–C nanocomposite as H storage material. Int J Hydrogen Energy. 2021;46(36):19046. https://doi.org/10.1016/j.ijhydene.2021.03.055.

    Article  CAS  Google Scholar 

  88. Shao H, Felderhoff M, Schüth F. Hydrogen storage properties of nanostructured MgH2/TiH2 composite prepared by ball milling under high hydrogen pressure. Int J Hydrogen Energy. 2011;36(17):10828. https://doi.org/10.1016/j.ijhydene.2011.05.180.

    Article  CAS  Google Scholar 

  89. Anastasopol A, Pfeiffer TV, Middelkoop J, Lafont U, Canales-Perez RJ, Schmidt-Ott A, Eijt SW. Reduced enthalpy of metal hydride formation for Mg-Ti nanocomposites produced by spark discharge generation. J Am Chem Soc. 2013;135(21):7891. https://doi.org/10.1021/ja3123416.

    Article  CAS  Google Scholar 

  90. Liu T, Chen C, Wang H, Wu Y. Enhanced hydrogen storage properties of Mg–Ti–V nanocomposite at moderate temperatures. J Phys Chem C. 2014;118(39):22419. https://doi.org/10.1021/jp5061073.

    Article  CAS  Google Scholar 

  91. Baran A, Polanski M. Magnesium-based materials for hydrogen storage-a scope review. Materials. 2020;13(18):3993. https://doi.org/10.3390/ma13183993.

    Article  CAS  Google Scholar 

  92. Yeboah ML, Li X, Zhou S. Facile Fabrication of biochar from palm kernel shell waste and its novel application to magnesium-based materials for hydrogen storage. Materials. 2020;13(3):625. https://doi.org/10.3390/ma13030625.

    Article  CAS  Google Scholar 

  93. Cho H, Hyeon S, Park H, Kim J, Cho ES. Ultrathin magnesium nanosheet for improved hydrogen storage with fishbone shaped one-dimensional carbon matrix. ACS Appl Energy Mater. 2020;3(9):8143. https://doi.org/10.1021/acsaem.0c01259.

    Article  CAS  Google Scholar 

  94. Sun Z, Lu X, Nyahuma FM, Yan N, Xiao J, Su S, Zhang L. Enhancing hydrogen storage properties of MgH2 by transition metals and carbon materials: a brief review. Front Chem. 2020;8:552. https://doi.org/10.3389/fchem.2020.00552.

    Article  CAS  Google Scholar 

  95. Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X. Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrogen Energy. 2011;36(8):4967. https://doi.org/10.1016/j.ijhydene.2010.12.052.

    Article  CAS  Google Scholar 

  96. Zhang Q, Huang Y, Ma T, Li K, Ye F, Wang X, Wang Y. Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage. J Alloys Compd. 2020;825:153953. https://doi.org/10.1016/j.jallcom.2020.153953.

    Article  CAS  Google Scholar 

  97. Zhao Y, Zhu Y, Liu J, Ma Z, Zhang J, Liu Y, Li L. Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C. J Alloys Compd. 2021;862:158004. https://doi.org/10.1016/j.jallcom.2020.158004.

    Article  CAS  Google Scholar 

  98. Zhang X, Leng Z, Gao M, Hu J, Du F, Yao J, Liu Y. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. J Power Sour. 2018;398:183. https://doi.org/10.1016/j.jpowsour.2018.07.072.

    Article  CAS  Google Scholar 

  99. Yao P, Jiang Y, Liu Y, Wu C, Chou KC, Lyu T, Li Q. Catalytic effect of Ni@rGO on the hydrogen storage properties of MgH2. J Magnes Alloy. 2020;8(2):461. https://doi.org/10.1016/j.jma.2019.06.006.

    Article  CAS  Google Scholar 

  100. Zhang M, Xiao X, Mao J, Lan Z, Huang X, Lu Y, Chen L. Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride. Mater Today Energy. 2019;12:146. https://doi.org/10.1016/j.mtener.2019.01.001.

    Article  Google Scholar 

  101. Bhatnagar A, Pandey SK, Vishwakarma AK, Singh S, Shukla V, Soni PK, Srivastava ON. Fe3O4@graphene as a superior catalyst for hydrogen de/absorption from/in MgH2/Mg. J Mater Chem A. 2016;4(38):14761. https://doi.org/10.1039/c6ta05998h.

    Article  CAS  Google Scholar 

  102. Imamura H, Sakasai N. Hydriding characteristics of Mg-based composites prepared using a ball mill. J Alloys Compd. 1995;231(1–2):810. https://doi.org/10.1016/09258388(95)01722-4.

    Article  CAS  Google Scholar 

  103. Bogerd R, Adelhelm P, Meeldijk JH, Jong K, Jongh P. The structural characterization and H2 sorption properties of carbon-supported Mg(1–x)Nix nanocrystallites. Nanotechnol. 2009;20(20):204019. https://doi.org/10.1088/09574484/20/20/204019.

    Article  Google Scholar 

  104. Zhang M, Xiao X, Luo B, Liu M, Chen M, Chen L. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures. J Energy Chem. 2020;46:191. https://doi.org/10.1016/j.jechem.2019.11.010.

    Article  Google Scholar 

  105. Zaluska A, Zaluski L, Ström-Olsen JO. Nanocrystalline magnesium for hydrogen storage. J Alloys Compd. 1999;288(1–2):217. https://doi.org/10.1016/s0925-8388(99)00073-0.

    Article  CAS  Google Scholar 

  106. Schulz R, Huot J, Liang G, Boily S, Lalande G, Denis MC, Dodelet JP. Recent developments in the applications of nanocrystalline materials to hydrogen technologies. Mater Sci Eng, A. 1999;267(2):240. https://doi.org/10.1016/S0921-5093(99)00098-2.

    Article  Google Scholar 

  107. Bérubé V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res. 2007;31(6–7):637. https://doi.org/10.1002/er.1284.

    Article  CAS  Google Scholar 

  108. Schneemann A, White JL, Kang S, Jeong S, Wan LF, Cho ES, Stavila V. Nanostructured metal hydrides for hydrogen storage. Chem Rev. 2018;118(22):10775. https://doi.org/10.1021/acs.chemrev.8b00313.

    Article  CAS  Google Scholar 

  109. Ouyang L, Liu F, Wang H, Liu J, Yang XS, Sun L, Zhu M. Magnesium-based hydrogen storage compounds: a review. J Alloys Compd. 2020;832:154865. https://doi.org/10.1016/j.jallcom.2020.154865.

    Article  CAS  Google Scholar 

  110. Shao H, Wang Y, Xu H, Li X. Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction. Mater Sci Eng B. 2004;110(2):221. https://doi.org/10.1016/j.mseb.2004.03.013.

    Article  CAS  Google Scholar 

  111. El-Eskandarany MS, Almatrouk HS, Shaban E, Al-Duweesh A. Effect of the nanocatalysts on the thermal stability and hydrogenation/dehydrogenation kinetics of MgH2 nanocrystalline powders. Mater Today Proc. 2016;3(8):2608. https://doi.org/10.1016/j.matpr.2016.06.003.

    Article  Google Scholar 

  112. Varin RA, Czujko T, Chiu C, Wronski Z. Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J Alloys Compd. 2006;424(1–2):356. https://doi.org/10.1016/j.jallcom.2005.12.087.

    Article  CAS  Google Scholar 

  113. Shen C, Aguey-Zinsou KF. Can γ-MgH2 improve the hydrogen storage properties of magnesium? J Mater Chem A. 2017;5(18):8644. https://doi.org/10.1039/c7ta01724c.

    Article  CAS  Google Scholar 

  114. Huot J, Liang G, Boily S, Van Neste A, Schulz R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd. 1999;293–295:495. https://doi.org/10.1016/s0925-8388(99)00474-0.

    Article  Google Scholar 

  115. Ouyang L, Chen W, Liu J, Felderhoff M, Wang H, Zhu M. Enhancing the regeneration process of consumed NaBH4 for hydrogen storage. Adv Energy Mater. 2017;7(19):1700299. https://doi.org/10.1002/aenm.201700299.

    Article  CAS  Google Scholar 

  116. Zhu Y, Ouyang L, Zhong H, Liu J, Wang H, Shao H, Zhu M. Closing the loop for hydrogen storage: facile regeneration of NaBH4 from its hydrolytic product. Angew Chem Int Ed Engl. 2020;132(22):8701. https://doi.org/10.1002/anie.201915988.

    Article  CAS  Google Scholar 

  117. Zhou C, Peng Y, Zhang Q. Growth kinetics of MgH2 nanocrystallites prepared by ball milling. J Mater Sci Technol. 2020;50:178. https://doi.org/10.1016/j.jmst.2020.01.063.

    Article  CAS  Google Scholar 

  118. Zhao-Karger Z, Hu J, Roth A, Wang D, Kubel C, Lohstroh W, Fichtner M. Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem Commun. 2010;46(44):8353. https://doi.org/10.1039/c0cc03072d.

    Article  CAS  Google Scholar 

  119. Liu W, Setijadi E, Crema L, Bartali R, Laidani N, Aguey-Zinsou KF, Speranza G. Carbon nanostructures/Mg hybrid materials for hydrogen storage. Diamond Relat Mater. 2018;82:19. https://doi.org/10.1016/j.diamond.2017.12.003.

    Article  CAS  Google Scholar 

  120. Liang H, Chen D, Thiry D, Li W, Chen M, Snyders R. Efficient hydrogen storage with the combination of metal Mg and porous nanostructured material. Int J Hydrogen Energy. 2019;44(31):16824. https://doi.org/10.1016/j.ijhydene.2019.04.212.

    Article  CAS  Google Scholar 

  121. Jia Y, Yao X. Carbon scaffold modified by metal (Ni) or non-metal (N) to enhance hydrogen storage of MgH2 through nanoconfinement. Int J Hydrogen Energy. 2017;42(36):22933. https://doi.org/10.1016/j.ijhydene.2017.07.106.

    Article  CAS  Google Scholar 

  122. Liu Y, Zou J, Zeng X, Wu X, Tian H, Ding W, Walter A. Study on hydrogen storage properties of Mg nanoparticles confined in carbon aerogels. Int J Hydrogen Energy. 2013;38(13):5302. https://doi.org/10.1016/j.ijhydene.2013.02.012.

    Article  CAS  Google Scholar 

  123. Shinde SS, Kim DH, Yu JY, Lee JH. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. Nanoscale. 2017;9(21):7094. https://doi.org/10.1039/c7nr01699a.

    Article  CAS  Google Scholar 

  124. Zhang S, Gross AF, Van Atta SL, Lopez M, Liu P, Ahn CC, Jensen CM. The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology. 2009;20(20):204027. https://doi.org/10.1088/0957-4484/20/20/204027.

    Article  CAS  Google Scholar 

  125. Jia Y, Sun C, Cheng L, Abdul Wahab M, Cui J, Zou J, Yao X. Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2. Phys Chem Chem Phys. 2013;15(16):5814. https://doi.org/10.1039/c3cp50515d.

    Article  CAS  Google Scholar 

  126. Yu C, Fan J, Tian B, Zhao D. Morphology development of mesoporous materials: a colloidal phase separation mechanism. Chem Mater. 2004;16(5):889. https://doi.org/10.1021/cm035011g.

    Article  CAS  Google Scholar 

  127. Langley PJ, Hulliger J. Nanoporous and mesoporous organic structures: new openings for materials research. Chem Soc Rev. 1999;28(48):279. https://doi.org/10.1039/a704290f.

    Article  CAS  Google Scholar 

  128. Pitt MP, Paskevicius M, Webb CJ, Sheppard DA, Buckley CE, Gray EM. The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2+0.01Nb2O5 benchmark. Int J Hydrogen Energy. 2012;37(5):4227. https://doi.org/10.1016/j.ijhydene.2011.11.114.

    Article  CAS  Google Scholar 

  129. Li Q, Qiu S, Wu C, Lau KT, Sun C, Jia B. Computational investigation of MgH2/graphene heterojunctions for hydrogen storage. J Phys Chem C. 2021;125(4):2357. https://doi.org/10.1021/acs.jpcc.0c10714.

    Article  CAS  Google Scholar 

  130. Le TT, Pistidda C, Nguyen VH, Singh P, Raizada P, Klassen T, Dornheim M. Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. Int J Hydrogen Energy. 2021;46(46):23723. https://doi.org/10.1016/j.ijhydene.2021.04.150.

    Article  CAS  Google Scholar 

  131. Jeon KJ, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Urban JJ. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater. 2011;10(4):286. https://doi.org/10.1038/nmat2978.

    Article  CAS  Google Scholar 

  132. Yu H, Bennici S, Auroux A. Hydrogen storage and release: kinetic and thermodynamic studies of MgH2 activated by transition metal nanoparticles. Int J Hydrogen Energy. 2014;39(22):11633. https://doi.org/10.1016/j.ijhydene.2014.05.069.

    Article  CAS  Google Scholar 

  133. Pavlyuk V, Ciesielski W, Kulawik D, Pavlyuk N, Dmytriv G. Structural and enhanced hydrogen storage properties of the Li12Mg3Si3Al phase. Acta Crystallogr C Struct Chem. 2021;77(5):227. https://doi.org/10.1107/S2053229621004113.

    Article  CAS  Google Scholar 

  134. Chen Y, Dai J, Wang L, Song Y. Stabilization of Ca7Ge-type magnesium compounds by alloying of non-metal elements: a new family material for reversible hydrogen storage applications. Int J Hydrogen Energy. 2019;44(41):23216. https://doi.org/10.1016/j.ijhydene.2019.07.020.

    Article  CAS  Google Scholar 

  135. Edalati K, Uehiro R, Ikeda Y, Li HW, Emami H, Filinchuk Y, Horita Z. Design and synthesis of a magnesium alloy for room temperature hydrogen storage. Acta Mater. 2018;149:88. https://doi.org/10.1016/j.actamat.2018.02.033.

    Article  CAS  Google Scholar 

  136. Zhang H, Bao L, Qi J, Xuan W, Fu L, Yuan Y. Effects of nano-molybdenum coatings on the hydrogen storage properties of La–Mg–Ni based alloys. Renew Energ. 2020;157:1053. https://doi.org/10.1016/j.renene.2020.05.078.

    Article  CAS  Google Scholar 

  137. Shao H, Xu H, Wang Y, Li X. Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale. J Solid State Chem. 2004;177(10):3626. https://doi.org/10.1016/j.jssc.2004.05.003.

    Article  CAS  Google Scholar 

  138. Yin Y, Li B, Yuan ZM, Qi Y, Zhang YH. Microstructure and hydrogen storage properties of Mg-based Mg85Zn5Ni10 alloy powders. J Iron Steel Res Int. 2018;25(11):1172. https://doi.org/10.1007/s42243-018-0177-1.

    Article  Google Scholar 

  139. Li Y, Yang J, Luo L, Hu F, Zhai T, Zhao Z, Zhao D. Microstructure characteristics, hydrogen storage kinetic and thermodynamic properties of Mg80–xNi20Yx (x = 0–7) alloys. Int J Hydrogen Energy. 2019;44(14):7371. https://doi.org/10.1016/j.ijhydene.2019.01.216.

    Article  CAS  Google Scholar 

  140. Zhai TT, Yuan ZM, Hu F, Luo L, Li YZ, Sun H, Zhang YH. Influence of melt spinning and annealing treatment on structures and hydrogen storage thermodynamic properties of La0.8Pr0.2MgNi3.6Co0.4 alloy. J Iron Steel Res Int. 2019;27(1):114. https://doi.org/10.1007/s42243-019-00340-9.

    Article  CAS  Google Scholar 

  141. Zhang L, Jin S, Ren M, Lu C, Peng F, Gutsev GL. Structural evolution and hydrogen storage performance of Mg3LaHn (n = 9–20). Int J Hydrogen Energy. 2022;47(12):7884. https://doi.org/10.1016/j.ijhydene.2021.12.111.

    Article  CAS  Google Scholar 

  142. Zubarev DY, Boldyrev AI. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys Chem Chem Phys. 2008;10(34):5207. https://doi.org/10.1039/b804083d.

    Article  CAS  Google Scholar 

  143. Zhang X, Yang R, Qu J, Zhao W, Xie L, Tian W, Li X. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6. Nanotechnol. 2010;21(9):095706. https://doi.org/10.1088/0957-4484/21/9/095706.

    Article  CAS  Google Scholar 

  144. Zhang J, Li Z, Wu Y, Guo X, Ye J, Yuan B, Jiang L. Recent advances on the thermal destabilization of Mg-based hydrogen storage materials. RSC Adv. 2018;9(1):408. https://doi.org/10.1039/c8ra05596c.

    Article  CAS  Google Scholar 

  145. Ouyang L, Chen K, Jiang J, Yang XS, Zhu M. Hydrogen storage in light-metal based systems: a review. J Alloys Compd. 2020;829:154597. https://doi.org/10.1016/j.jallcom.2020.154597.

    Article  CAS  Google Scholar 

  146. John JV, Florian M, Channing CA, Robert CB Jr, Brent F. Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J Phys Chem B. 2004;108(37):13977. https://doi.org/10.1021/jp040060h.

    Article  CAS  Google Scholar 

  147. Zeng L, Miyaoka H, Ichikawa T, Kojima Y. Superior hydrogen exchange effect in the MgH2−LiBH4 system. J Phys Chem C. 2010;114(30):13132. https://doi.org/10.1021/jp1042443.

    Article  CAS  Google Scholar 

  148. Kumar S, Jain U, Jain A, Miyaoka H, Ichikawa T, Kojima Y, Dey GK. Development of MgLiB based advanced material for onboard hydrogen storage solution. Int J Hydrogen Energy. 2017;42(7):3963. https://doi.org/10.1016/j.ijhydene.2016.10.061.

    Article  CAS  Google Scholar 

  149. Zhong Y, Wan X, Ding Z, Shaw LL. New dehydrogenation pathway of LiBH4 + MgH2 mixtures enabled by nanoscale LiBH4. Int J Hydrogen Energy. 2016;41(47):22104. https://doi.org/10.1016/j.ijhydene.2016.09.195.

    Article  CAS  Google Scholar 

  150. Puszkiel J, Gasnier A, Amica G, Gennari F. Tuning LiBH4 for hydrogen storage: destabilization, additive, and nanoconfinement approaches. Molecules. 2019;25(1):163. https://doi.org/10.3390/molecules25010163.

    Article  CAS  Google Scholar 

  151. Ding Z, Chen Z, Ma T, Lu CT, Ma W, Shaw L. Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Mater. 2020;27:466. https://doi.org/10.1016/j.ensm.2019.12.010.

    Article  Google Scholar 

  152. Ali NA, Ismail M. Advanced hydrogen storage of the Mg–Na–Al system: a review. J Magnes Alloy. 2021;9(4):1111. https://doi.org/10.1016/j.jma.2021.03.031.

    Article  CAS  Google Scholar 

  153. Sirsch P, Che FN, Titah JT, McGrady GS. Hydride-hydride bonding interactions in the hydrogen storage materials AlH3, MgH2, and NaAlH4. Chemistry. 2012;18(31):9476. https://doi.org/10.1002/chem.201200803.

    Article  CAS  Google Scholar 

  154. Wang J, Du Y, Sun L. Understanding of hydrogen desorption mechanism from defect point of view. Natl Sci Rev. 2018;5(3):318. https://doi.org/10.1093/nsr/nwx114.

    Article  CAS  Google Scholar 

  155. Sun Y, Aguey-Zinsou KF. Light-activated hydrogen storage in Mg, LiH and NaAlH4. ChemPlusChem. 2018;83(10):904. https://doi.org/10.1002/cplu.201800190.

    Article  CAS  Google Scholar 

  156. Zhang Y, Tian QF, Liu SS, Sun LX. The destabilization mechanism and de/re-hydrogenation kinetics of MgH2–LiAlH4 hydrogen storage system - ScienceDirect. J Power Sources. 2008;185(2):1514. https://doi.org/10.1016/j.jpowsour.2008.09.054.

    Article  CAS  Google Scholar 

  157. Ding X, Zhu Y, Wei L, Li Y, Li L. Synergistic hydrogen desorption of HCS MgH2+LiAlH4 composite. Energy. 2013;55:933. https://doi.org/10.1016/j.energy.2013.04.043.

    Article  CAS  Google Scholar 

  158. Chen R, Wang X, Xu L, Chen L, Li S, Chen C. An investigation on the reaction mechanism of LiAlH4–MgH2 hydrogen storage system. Mater Chem Phys. 2010;124(1):83. https://doi.org/10.1016/j.matchemphys.2010.05.070.

    Article  CAS  Google Scholar 

  159. Jepsen J, Milanese C, Girella A, Lozano GA, Pistidda C, Bellosta von Colbe JM, Dornheim M. Compaction pressure influence on material properties and sorption behaviour of LiBH4–MgH2 composite. Int J Hydrogen Energy. 2013;38(20):8357. https://doi.org/10.1016/j.ijhydene.2013.04.090.

    Article  CAS  Google Scholar 

  160. Bösenberg U, Ravnsbæk DB, Hagemann H, D’Anna V, Minella CB, Pistidda C, Dornheim M. Pressure and temperature influence on the desorption pathway of the LiBH4−MgH2 composite system. J Phys Chem C. 2010;114(35):15212. https://doi.org/10.1021/jp104814u.

    Article  CAS  Google Scholar 

  161. Ding Z, Li S, Zhou Y, Chen Z, Yang W, Ma W, Shaw L. LiBH4 for hydrogen storage - new perspectives. Nano Mater Sci. 2020;2(2):109. https://doi.org/10.1016/j.nanoms.2019.09.003.

    Article  Google Scholar 

  162. Zhang Y, Xiao X, Luo B, Huang X, Liu M, Chen L. Synergistic effect of LiBH4 and LiAlH4 additives on improved hydrogen storage properties of unexpected high capacity magnesium hydride. J Phys Chem C. 2018;122(5):2528. https://doi.org/10.1021/acs.jpcc.7b11222.

    Article  CAS  Google Scholar 

  163. Wang Y, Lan Z, Fu H, Liu H, Guo J. Synergistic catalytic effects of ZIF-67 and transition metals (Ni, Cu, Pd, and Nb) on hydrogen storage properties of magnesium. Int J Hydrogen Energy. 2020;45(24):13376. https://doi.org/10.1016/j.ijhydene.2020.03.036.

    Article  CAS  Google Scholar 

  164. Zhang XL, Liu YF, Zhang X, Hu JJ, Gao MX, Pan HG. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. Mater Today Nano. 2020;9:100064. https://doi.org/10.1016/j.mtnano.2019.100064.

    Article  Google Scholar 

  165. Ding Z, Li Y, Yang H, Lu Y, Tan J, Li J, Pan F. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J Magnes Alloy. 2022. https://doi.org/10.1016/j.jma.2022.09.028.

    Article  Google Scholar 

  166. Ma Z, Panda S, Zhang Q, Sun F, Khan D, Ding W, Zou J. Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold. Chem Eng J. 2021;406:126790. https://doi.org/10.1016/j.cej.2020.126790.

    Article  CAS  Google Scholar 

  167. Yartys VA, Baricco M, Colbe J, Blanchard D, Zlotea C. Materials for hydrogen-based energy storage: past, recent progress and future outlook. J Alloys Compd. 2019;827:153548. https://doi.org/10.1016/j.jallcom.2019.153548.

    Article  CAS  Google Scholar 

  168. Shao H, Huang Y, Guo H, Liu Y, Guo Y, Wang Y. Thermally stable Ni MOF catalyzed MgH2 for hydrogen storage. Int J Hydrogen Energy. 2021;46(76):37977. https://doi.org/10.1016/j.ijhydene.2021.09.045.

    Article  CAS  Google Scholar 

  169. Ma Z, Zhang Q, Panda S, Zhu W, Sun F, Khan D, Zou J. In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. Sustain Energy Fuels. 2020;4(9):4694. https://doi.org/10.1039/d0se00818d.

    Article  CAS  Google Scholar 

  170. Zhu C, Chen M, Hu M, He D, Liu Y, Liu T. Hydrogen storage properties of Mg–Nb@C nanocomposite: effects of Nb nanocatalyst and carbon nanoconfinement. Int J Hydrogen Energy. 2021;46(14):9443. https://doi.org/10.1016/j.ijhydene.2020.12.099.

    Article  CAS  Google Scholar 

  171. Ouyang LZ, Cao ZJ, Wang H, Liu JW, Sun DL, Zhang QA, Zhu M. Enhanced dehydriding thermodynamics and kinetics in Mg(In)–MgF2 composite directly synthesized by plasma milling. J Alloys Compd. 2014;586:113. https://doi.org/10.1016/j.jallcom.2013.10.029.

    Article  CAS  Google Scholar 

  172. Ouyang L, Cao Z, Wang H, Hu R, Zhu M. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – a review. J Alloys Compd. 2017;691:422. https://doi.org/10.1016/j.jallcom.2016.08.179.

    Article  CAS  Google Scholar 

  173. Ding Z, Li H, Shaw L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem Eng J. 2020;385:123856. https://doi.org/10.1016/j.cej.2019.123856.

    Article  CAS  Google Scholar 

  174. Ding Z, Zhao X, Shaw LL. Reaction between LiBH4 and MgH2 induced by high-energy ball milling. J Power Sour. 2015. https://doi.org/10.1016/j.jpowsour.2015.05.079.

    Article  Google Scholar 

  175. Ding Z, Lu Y, Li L, Shaw L. High reversible capacity hydrogen storage through nano-LiBH4+nano-MgH2 system. Energy Storage Mater. 2019;20:24. https://doi.org/10.1016/j.ensm.2019.04.025.

    Article  Google Scholar 

  176. Ding Z, Shaw L. Enhancement of hydrogen desorption from nanocomposite prepared by ball milling MgH2 with in situ aerosol spraying LiBH4. ACS Sustain Chem Eng. 2019;7(17):15064. https://doi.org/10.1021/acssuschemeng.9b03724.

    Article  CAS  Google Scholar 

  177. Ding Z, Wu P, Shaw L. Solid-state hydrogen desorption of 2MgH2 + LiBH4 nano-mixture: a kinetics mechanism study. J Alloys Compd. 2019;806:350. https://doi.org/10.1016/j.jallcom.2019.07.218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research Funds for the Central Universities (No. 2023CDJXY-019), the Fundamental Guiding Project of Scientific Research Program in Ministry of Education of Hubei Province (No. B2021025), Shenzhen Municipal Science and Technology Innovation Commission (No. JCYJ20210324141613032), the Innovative Research Group Project of the Natural Science Foundation of Hubei Province (No. 2019CFA020), Special Projects for Local Science and Technology Development Guided by the Chinese Central Government (No. 2019ZYYD024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Ding or Kai-Fu Huo.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ding, Z., Li, YT. et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 42, 2906–2927 (2023). https://doi.org/10.1007/s12598-023-02306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02306-z

Keywords

Navigation