Skip to main content

Advertisement

Log in

Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2

  • Original article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnesium hydride (MgH2), which possesses high hydrogen density of 7.6 wt%, abundant resource and non-toxicity, has captured intense attention as one of the potential hydrogen storage materials. However, the practical application of Mg/MgH2 system is suffering from high thermal stability, sluggish absorption and desorption kinetics. Herein, two-dimensional (2D) vanadium nanosheets (VNS) were successfully prepared via a facile wet chemical ball milling method and proved to be highly effective on improving the hydrogen storage performance of MgH2. For instance, the MgH2 + 7 wt% VNS composite began to release hydrogen at 187.2 °C, 152 °C lower than that of additive-free MgH2. At 300 °C, 6.3 wt% hydrogen was released from the MgH2 + 7 wt% VNS composite within 10 min. In addition, the fully dehydrogenated sample could absorb hydrogen even at room temperature under hydrogen pressure of 3.2 MPa. X-ray diffractometer (XRD) and transmission electron microscopy (TEM) results confirmed metallic vanadium served as catalytic unit for facilitating the de/rehydrogenation reaction of MgH2. This finding presents an example of facile synthesis of two-dimensional (2D) vanadium with excellent catalysis, which may shed light on future design and preparation of highly effective layered catalysts for hydrogen storage and other energy-related areas.

摘要

氢化镁 (MgH2) 的储氢容量高达7.6 wt%, 而且镁在地壳中资源丰富,同时具有无毒等优点, 因此MgH2是一种极具应用潜力的储氢材料。然而, Mg/MgH2体系在实际应用中存在热稳定性高、吸附和解吸动力学缓慢等问题。本文采用一种简便的湿化学球磨方法成功制备了二维的钒纳米片 (VNS), 并证明其对MgH2的储氢性能有很好的改善作用。例如, MgH2+7 wt% VNS复合材料在187.2 °C时开始释放氢气, 比不添加催化剂的MgH2初始放氢温度低152 °C。在300 °C下, MgH2+7 wt%VNS复合材料在10分钟内释放出6.3 wt%的氢气, 并且完全脱氢的样品即使在室温和3.2 MPa的氢压下也能吸收氢气。XRD和TEM结果证实金属钒是促进MgH2脱氢以及再加氢反应的催化单元。本文提供了一种合成具有优良催化性能二维钒纳米片的简便方法, 这可能对未来设计和制备用于储氢和其他能源相关领域的层状催化剂有一定的指导意义。

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.

    CAS  Google Scholar 

  2. Liu XS, Liu ZH, Qiu N, Zhang YB, Zhao GY, Xu L, Lan ZQ, Guo J. Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01425-1.

    Article  Google Scholar 

  3. Zhao DL, Zhang YH. Researsh progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.

    CAS  Google Scholar 

  4. Xia GL, Tan YB, Chen XW, Fang F, Sun DL, Li XG, Guo ZP, Yu XB. Oxgen-free layer-by-layer assembly of lithiated composites on graphene for advanced hydrogen storage. Adv Sci. 2017;4(9):1600257.

    Google Scholar 

  5. Çelik Ö, Fırat T. Synthesis of FeCo magnetic nanoalloys and investigation of heating properties for magnetic fluid hyperthermia. J Magn Magn Mater. 2018;456:11.

    Google Scholar 

  6. Xia GL, Tan YB, Chen XW, Sun DL, Guo ZP, Liu HK, Ouyang LZ, Zhu M, Yu XB. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv Mater. 2015;27(39):5981.

    CAS  Google Scholar 

  7. Zhang JG, Shi R, Zhu YF, Liu YN, Zhang Y, Li SS, Li LQ. Remarkable synergistic catalysis of Ni-doped ultrafine TiO2 on hydrogen sorption kinetics of MgH2. ACS Appl Mater Inter. 2018;10(30):24975.

    CAS  Google Scholar 

  8. Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La-Mg-Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(11):1086.

    CAS  Google Scholar 

  9. Ouyang LZ, Yang XS, Zhu M, Liu JW, Dong HW, Sun DL, Zou J, Yao XD. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites. J Phys Chem C. 2014;118(15):7808.

    CAS  Google Scholar 

  10. Wang ZY, Zhang XL, Ren ZH, Liu Y, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. In situ formed ultrafine NbTi nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2. J Mater Chem A. 2019;7(23):14244.

    CAS  Google Scholar 

  11. Xiao XZ, Xu CC, Shao J, Zhang LT, Qin T, Li SQ, Ge HW, Wang QD, Chen LX. Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core–shell nanostructure. J Mater Chem A. 2015;3(10):5517.

    CAS  Google Scholar 

  12. Zhang J, He L, Yao Y, Zhou XJ, Yu LP, Lu XZ, Zhou DW. Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2. Renew Energy. 2020;154:1229.

    CAS  Google Scholar 

  13. Zhang LT, Xiao XZ, Chen LX, Fan XL, Zheng JG, Huang X. Enhanced hydrogen storage properties of MgH2 with numerous hydrogen diffusion channels provided by Na2Ti3O7 nanotubes. J Mater Chem A. 2017;5(45):6178.

    CAS  Google Scholar 

  14. Zhang LT, Ji L, Yao ZD, Yan NY, Sun Z, Yang XL, Zhu XQ, Hu S, Chen LX. Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2. Int J Hydrog Energy. 2019;44(39):21955.

    CAS  Google Scholar 

  15. Zhang M, Xiao XZ, Wang XW, Chen M, Lu YH, Liu MJ, Chen LX. Excellent catalysis of TiO2 nanosheets with high-surface-energy 001 facets on the hydrogen storage properties of MgH2. Nanoscale. 2019;11(15):7465.

    CAS  Google Scholar 

  16. Zhou CQ, Peng YY, Zhang QG. Growth kinetics of MgH2 nanocrystallites prepared by ball milling. J Mater Sci Technol. 2020;50:178.

    Google Scholar 

  17. Wang K, Du HF, Wang ZY, Gao MX, Pan HG, Liu YF. Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. Int J Hydrog Energy. 2017;42(7):4244.

    CAS  Google Scholar 

  18. Zhang M, Xiao XZ, Luo BS, Liu MJ, Chen M, Chen LX. Superior de/hydrogenation performances of MgH2 catalyzed by 3D flower-like TiO2@C nanostructures. J Energy Chem. 2020;46:191.

    Google Scholar 

  19. Zhang M, Xiao XZ, Mao JF, Lan ZY, Huang X, Lu YH, Luo BS, Liu MJ, Chen M, Chen LX. Synergistic catalysis in monodispersed transition metal oxide nanoparticles anchored on amorphous carbon for excellent low-temperature dehydrogenation of magnesium hydride. Mater Today Energy. 2019;12:146.

    Google Scholar 

  20. Zhang QY, Huang YK, Xu L, Zang L, Guo HN, Jiao LF, Yuan HT, Wang YJ. Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage. ACS Appl Nano Mater. 2019;2(6):3828.

    CAS  Google Scholar 

  21. Zhu W, Panda S, Lu C, Ma ZW, Khan D, Dong JJ, Sun FZ, Xu H, Zhang QY, Zou JX. Using a self-assembled two-dimensional MXene-based catalyst (2D-Ni@Ti3C2) to enhance hydrogen storage properties of MgH2. ACS Appl Mater Inter. 2020;12(45):50333.

    CAS  Google Scholar 

  22. Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La-Mg-Ni-Co-based A2B7-type electrode alloys. Rare Met. 2015;34(8):569.

    CAS  Google Scholar 

  23. El-Eskandarany MS, Saeed M, Al-Nasrallah E, Al-Ajmi F, Banyan M. Effect of LaNi3 amorphous alloy nanopowders on the performance and hydrogen storage properties of MgH2. Energies. 2019;12(6):1005.

    CAS  Google Scholar 

  24. Ismail M, Yahya MS, Sazelee NA, Ali NA, Yap FAH, Mustafa NS. The effect of K2SiF6 on the MgH2 hydrogen storage properties. J Magnes Alloy. 2020;8(3):832.

    Google Scholar 

  25. Jiang J, Ouyang LZ, Wang H, Liu JW, Shao HY, Zhu M. Controllable hydrolysis performance of MgLi alloys and their hydrides. ChemPhysChem. 2019;20(10):1316.

    CAS  Google Scholar 

  26. Liu JC, Liu YN, Liu ZB, Ma ZL, Ding YJ, Zhu YF, Zhang Y, Zhang JG, Li LQ. Effect of rGO supported NiCu derived from layered double hydroxide on hydrogen sorption kinetics of MgH2. J Alloy Compd. 2019;789:768.

    CAS  Google Scholar 

  27. Cuevas F, Korablov D, Latroche M. Synthesis, structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas. Phys Chem Chem Phys. 2012;14(3):1200.

    CAS  Google Scholar 

  28. Idris NH, Mustafa NS, Ismail M. MnFe2O4 nanopowder synthesised via a simple hydrothermal method for promoting hydrogen sorption from MgH2. Int J Hydrog Energy. 2017;42(33):21114.

    CAS  Google Scholar 

  29. Xia GL, Chen XW, Zhao Y, Li XG, Guo ZP, Jense C, Gu QF, Yu XB. High-performance hydrogen storage nanoparticles inside hierarchical porous carbon nanofibers with stable cycling. ACS Appl Mater Inter. 2017;9(18):15502.

    CAS  Google Scholar 

  30. Patelli N, Migliori A, Morandi V, Pasquini L. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage. Nano Energy. 2020;72:104654.

    CAS  Google Scholar 

  31. Shao H, Felderhoff M, Schuth F, Weidenthaler C. Nanostructured Ti-catalyzed MgH2 for hydrogen storage. Nanotechnology. 2011;22(23):235401.

    CAS  Google Scholar 

  32. Srinivasan S, Magusin PCMM, Kalisvaart WP, Notten PHL, Cuevas F, Latroche M, van Santen RA. Nanostructures of Mg0.65Ti0.35Dx studied with X-ray diffraction, neutron diffraction, and magic-angle-spinning H2NMR spectroscopy. Phys Rev B. 2010;81(5):054107.

    Google Scholar 

  33. Ding XL, Li YT, Fang F, Sun DL, Zhang QA. Hydrogen-induced magnesium−zirconium interfacial coupling: enabling fast hydrogen sorption at lower temperatures. J Mater Chem A. 2017;5(10):5067.

    CAS  Google Scholar 

  34. Chen M, Hu MM, Xie XB, Liu T. High loading nanoconfinement of V-decorated Mg with 1 nm carbon shells: hydrogen storage properties and catalytic mechanism. Nanoscale. 2019;11(20):10045.

    CAS  Google Scholar 

  35. Dobrovolsky VD, Ershova OG, Solonin YM, Khyzhun OY. Influence of titanium and iron additives to magnesium on hydrogen-sorption properties, thermal stability, and kinetics of hydrogen desorption from MgH2 phase of mechanical alloy. Powder Metall Met C. 2016;55(7–8):477.

    CAS  Google Scholar 

  36. Gao HG, Shao YT, Shi R, Liu YN, Zhu JL, Liu JC, Zhu YF, Zhang JG, Li LQ, Hu XH. Effect of few-layer Ti3C2Tx supported nano-Ni via self-assembly reduction on hydrogen storage performance of MgH2. ACS Appl Mater Inter. 2020;12(42):47684.

    CAS  Google Scholar 

  37. Jangir M, Jain A, Agarwal S, Zhang TF, Kumar S, Selvaraj S, Ichikawa T, Jain IP. The enhanced de/re-hydrogenation performance of MgH2 with TiH2 additive. Int J Energ Res. 2018;42(3):1139.

    CAS  Google Scholar 

  38. Patelli N, Migliori A, Pasquini L. Reversible metal-hydride transformation in Mg-Ti-H nanoparticles at remarkably low temperatures. ChemPhysChem. 2019;20(10):1325.

    CAS  Google Scholar 

  39. Xia LZ, Bo ZY, Liu Q, Zhang X, Pei YQ. Li-doped and functionalized metal-organic framework-519 for enhancing hydrogen storage: a computational study. Comp Mater Sci. 2019;166:179.

    CAS  Google Scholar 

  40. Zhou CS, Fang ZGZ, Sun P, Xu L, Liu Y. Capturing low-pressure hydrogen using V-Ti-Cr catalyzed magnesium hydride. J Power Sources. 2019;413:139.

    CAS  Google Scholar 

  41. Liang G, Huot J, Boily S, Neste AV, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloy Compd. 1999;292:247.

    CAS  Google Scholar 

  42. Liang G, Huot J, Boily B, Neste AV, Schulz R. Hydrogen storage properties of the mechanically milled MgH2-V nanocomposite. J Alloy Compd. 1999;291:295.

    CAS  Google Scholar 

  43. Rizo-Acosta P, Cuevas F, Latroche M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. J Mater Chem A. 2019;7(40):23064.

    CAS  Google Scholar 

  44. Lei JC, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Front Phys-Beijing. 2015;10(3):276.

    Google Scholar 

  45. Liu YF, Du HF, Zhang X, Yang YX, Gao MX, Pan HG. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem Commun. 2016;52(4):705.

    Google Scholar 

  46. Zhang LT, Cai ZL, Zhu XQ, Yao ZD, Sun Z, Ji L, Yan NH, Xiao BB, Chen LX. Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2. J Alloy Compd. 2019;805:295.

    CAS  Google Scholar 

  47. Shahi RR, Bhatanagar A, Pandey SK, Shukla V, Yadav TP, Shaz MA, Srivastava ON. MgH2–ZrFe2Hx nanocomposites for improved hydrogen storage characteristics of MgH2. Int J Hydrog Energy. 2015;40(35):11506.

    CAS  Google Scholar 

  48. Wang ZY, Ren ZH, Jian N, Gao MX, Hu JJ, Du F, Pan HG, Liu YF. Vanadium oxide nanoparticles supported on cubic carbon nanoboxes as highly active catalyst precursors for hydrogen storage in MgH2. J Mater Chem A. 2018;6(33):16177.

    CAS  Google Scholar 

  49. Du JQ, Lan ZQ, Zhang H, Lu SX, Liu HZ, Guo J. Catalytic enhanced hydrogen storage properties of Mg-based alloy by the addition of reduced graphene oxide supported V2O3 nanocomposite. J Alloy Compd. 2019;802:660.

    CAS  Google Scholar 

  50. Kumar S, Singh PK, Rao GVSN, Kojima Y, Kain V. Synergic effect of vanadium trichloride on the reversible hydrogen storage performance of the Mg-MgH2 system. Int J Hydrog Energy. 2018;43(32):15330.

    CAS  Google Scholar 

  51. Wu HJ, Du JQ, Cai FF, Xu F, Wei WL, Guo J, Lan ZQ. Catalytic effects of V and V2O5 on hydrogen storage property of Mg17Al12 alloy. Int J Hydrog Energy. 2018;43(31):14578.

    CAS  Google Scholar 

  52. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702.

    CAS  Google Scholar 

  53. Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7(12):1103.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51801078) and the Natural Science Foundation of Jiangsu Province (No. BK20180986).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu-Ting Zhang.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, ZY., Yu, HJ., Lu, X. et al. Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2. Rare Met. 40, 3195–3204 (2021). https://doi.org/10.1007/s12598-021-01764-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01764-7

Keywords

Navigation