Skip to main content

Advertisement

Log in

Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources. However, storing hydrogen in a compact, inexpensive, and safe manner is the main restriction on the extensive utilization of hydrogen energy. Magnesium (Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity (7.6wt%), good performance, and low cost. However, the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome. In this paper, we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials, including carbons, metal-organic frameworks, and other materials. Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, M. Jia, and X.L. Wang, Sb2S3 nanorods/porous-carbon composite from natural stibnite ore as high-performance anode for lithium-ion batteries, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2051.

    Article  CAS  Google Scholar 

  2. H.J. Cao, C. Pistidda, M.V. Castro Riglos, et al., Conversion of magnesium waste into a complex magnesium hydride system: Mg(NH2)2-LiH, Sustainable Energy Fuels, 4(2020), No. 4, p. 1915.

    Article  CAS  Google Scholar 

  3. X.B. Zang, L.T. Li, Z.X. Sun, et al., A simple physical mixing method for MnO2/MnO nanocomposites with superior Zn2+ storage performance, Trans. Nonferrous Met. Soc. China, 30(2020), No. 12, p. 3347.

    Article  CAS  Google Scholar 

  4. B.P. Zhang, G.L. Xia, D.L. Sun, F. Fang, and X.B. Yu, Magnesium hydride nanoparticles self-assembled on graphene as anode material for high-performance lithium-ion batteries, ACS Nano, 12(2018), No. 4, p. 3816.

    Article  CAS  Google Scholar 

  5. Q.L. Zhu and Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci., 8(2015), No. 2, p. 478.

    Article  CAS  Google Scholar 

  6. Z.J. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, and O.K. Farha, Porous materials for hydrogen storage, Chen, 8(2022), No. 3, p. 693.

    CAS  Google Scholar 

  7. X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101.

  8. H. Cho, S. Hyeon, H. Park, J. Kim, and E.S. Cho, Ultrathin magnesium nanosheet for improved hydrogen storage with fishbone shaped one-dimensional carbon matrix, ACS Appl. Energy Mater., 3(2020), No. 9, p. 8143.

    Article  CAS  Google Scholar 

  9. X.B. Xie, C.X. Hou, D. Wu, et al., Facile synthesis of various Co3O4/bio-activated carbon electrodes for hybrid capacitor device application, J. Alloys Compd., 891(2022), art. No. 161967.

  10. Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58.

    Article  CAS  Google Scholar 

  11. V. Berezovets, A. Kytsya, I. Zavaliy, and V.A. Yartys, Kinetics and mechanism of MgH2 hydrolysis in MgCl2 solutions, Int. J. Hydrogen Energy, 46(2021), No. 80, p. 40278.

    Article  CAS  Google Scholar 

  12. F. Tanaka, Y. Nakagawa, S. Isobe, and N. Hashimoto, Hydrogen absorption/desorption properties of light metal hydroxide systems, Int. J. Energy Res., 44(2020), No. 4, p. 2941.

    Article  CAS  Google Scholar 

  13. D.J. Han, K.R. Bang, H. Cho, and E.S. Cho, Effect of carbon nanoscaffolds on hydrogen storage performance of magnesium hydride, Korean J. Chem. Eng., 37(2020), No. 8, p. 1306.

    Article  CAS  Google Scholar 

  14. X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064.

  15. N.A. Ali, N.A. Sazelee, and M. Ismail, An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials, Int. J. Hydrogen Energy, 46(2021), No. 62, p. 31674.

    Article  CAS  Google Scholar 

  16. T. Sadhasivam, H.T. Kim, S. Jung, S.H. Roh, J.H. Park, and H.Y. Jung, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review, Renewable Sustainable Energy Rev., 72(2017), p. 523.

    Article  CAS  Google Scholar 

  17. M. Tian and C.X. Shang, Mg-based composites for enhanced hydrogen storage performance, Int. J. Hydrogen Energy, 44(2019), No. 1, p. 338.

    Article  CAS  Google Scholar 

  18. V.V. Berezovets, R.V. Denys, I.Y. Zavaliy, and Y.V. Kosarchyn, Effect of Ti-based nanosized additives on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, 47(2022), No. 11, p. 7289.

    Article  CAS  Google Scholar 

  19. S. Zholdayakova, R. Gemma, H.H. Uchida, M. Sato, and Y. Matsumura, Mechanical composition control for Ti-based hydrogen storage alloys, e-J. Surf. Sci. Nanotechnol., 16(2018), p. 298.

    Article  CAS  Google Scholar 

  20. T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318.

    Article  CAS  Google Scholar 

  21. S. Chandra, P. Sharma, P. Muthukumar, and S.S.V. Tatiparti, Strategies for scaling-up LaNi5-based hydrogen storage system with internal conical fins and cooling tubes, Int. J. Hydrogen Energy, 46(2021), No. 36, p. 19031.

    Article  CAS  Google Scholar 

  22. N.X. Zhou, M. Yamaguchi, H. Miyaoka, and Y. Kojima, Temperature rise of LaNi5-based alloys by hydrogen adsorption, Chem. Commun., 57(2021), No. 74, p. 9374.

    Article  CAS  Google Scholar 

  23. L. Fu, Research on battery technology of borohydride new hydrogen energy material, IOP Conf. Ser.: Earth Environ. Sci., 692(2021), No. 2, art. No. 022002.

    Google Scholar 

  24. Q.W. Lai, Y.W. Yang, and K.F. Aguey-Zinsou, Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage, Int. J. Hydrogen Energy, 44(2019), No. 41, p. 23225.

    Article  CAS  Google Scholar 

  25. J.G. Yuan, H.X. Huang, Z. Jiang, et al., Ni-doped carbon nan-otube-Mg(BH4)2 composites for hydrogen storage, ACS Appl. Nano Mater., 4(2021), No. 2, p. 1604.

    Article  CAS  Google Scholar 

  26. C.A.G. Beatrice, B.R. Moreira, A.D. de Oliveira, F.R. Passador, G.R. de Almeida Neto, D.R. Leiva, and L.A. Pessan, Development of polymer nanocomposites with sodium alanate for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 8, p. 5337.

    Article  CAS  Google Scholar 

  27. N. Hosseinabadi, The beryllium/strontium doped hydrogen storage alanate nano powders for concentrating solar thermal power applications, Int. J. Hydrogen Energy, 46(2021), No. 7, p. 5025.

    Article  CAS  Google Scholar 

  28. K. Suárez-Alcántara, J.R. Tena-Garcia, and R. Guerrero-Ortiz, Alanates, a comprehensive review, Materials, 12(2019), No. 17, art. No. 2724.

    Google Scholar 

  29. R. Kumar, A. Karkamkar, M. Bowden, and T. Autrey, Solidstate hydrogen rich boron-nitrogen compounds for energy storage, Chem. Soc. Rev., 48(2019), No. 21, p. 5350.

    Article  CAS  Google Scholar 

  30. T.K. Nielsen, F. Besenbacher, and T.R. Jensen, Nanoconfined hydrides for energy storage, Nanoscale, 3(2011), No. 5, p. 2086.

    Article  CAS  Google Scholar 

  31. K. Wang, X. Zhang, Z.H. Ren, X.L. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, and Y.F. Liu, Nitrogen-stimulated superior catalytic activity of niobium oxide for fast full hydrogenation of magnesium at ambient temperature, Energy Storage Mater., 23(2019), p. 79.

    Article  Google Scholar 

  32. M.Y. Song and Y.J. Kwak, Hydrogenation and dehydrogenation behaviors of Mg2Ni synthesized by sintering pelletized mixtures under an Ar atmosphere, J. Nanosci. Nanotechnol., 19(2019), No. 10, p. 6571.

    Article  CAS  Google Scholar 

  33. P. de Rango, D. Fruchart, V. Aptukov, and N. Skryabina, Fast forging: A new SPD method to synthesize Mg-based alloys for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 14, p. 7912.

    Article  CAS  Google Scholar 

  34. J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229.

    Article  CAS  Google Scholar 

  35. Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195.

    Article  CAS  Google Scholar 

  36. X. Zhou, Z.F. Liu, F. Su, and Y.F. Fan, Magnesium composites with hybrid nano-reinforcements: 3D simulation of dynamic tensile response at elevated temperatures, Trans. Non-ferrous Met. Soc. China, 31(2021), No. 3, p. 636.

    Article  Google Scholar 

  37. J.F. Zhang, Z.N. Li, Y.F. Wu, et al., Recent advances on the thermal destabilization of Mg-based hydrogen storage materials, RSC Adv., 9(2019), No. 1, p. 408.

    Article  CAS  Google Scholar 

  38. H. Yong, X. Wei, J.F. Hu, et al., Influence of Fe@C composite catalyst on the hydrogen storage properties of Mg-Ce-Y based alloy, Renewable Energy, 162(2020), p. 2153.

    Article  CAS  Google Scholar 

  39. J.D. Li, B. Li, H.Y. Shao, W. Li, and H.J. Lin, Catalysis and downsizing in Mg-based hydrogen storage materials, Catalysts, 8(2018), No. 2, art. No. 89.

    Google Scholar 

  40. M.D. Seo, A. Kim, and H. Jung, Co metal nanoparticles incorporated three-dimensional mesoporous graphene nanohybrids for electrochemical hydrogen storage, J. Solid State Chem., 269(2019), p. 151.

    Article  CAS  Google Scholar 

  41. X.L. Yang, L. Ji, N.H. Yan, et al., Superior catalytic effects of FeCo nanosheets on MgH2 for hydrogen storage, Dalton Trans., 48(2019), No. 33, p. 12699.

    Article  CAS  Google Scholar 

  42. J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647.

    Article  CAS  Google Scholar 

  43. D.M. Gattia, M. Jangir, and I.P. Jain, Study on nanostructured MgH2 with Fe and its oxides for hydrogen storage applications, J. Alloys Compd., 801(2019), p. 188.

    Article  CAS  Google Scholar 

  44. M. Wiesinger, B. Maitland, H. Elsen, J. Pahl, and S. Harder, Stabilizing magnesium hydride complexes with neutral ligands, Eur. J. Inorg. Chem., 2019(2019), No. 41, p. 4433.

    Article  CAS  Google Scholar 

  45. S.R. Chen, R.M. Tao, C. Guo, et al., A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials, Energy Storage Mater., 41(2021), p. 758.

    Article  CAS  Google Scholar 

  46. Y.Y. Shang, C. Pistidda, G. Gizer, T. Klassen, and M. Dornheim, Mg-based materials for hydrogen storage, J. Magnes. Alloys, 9(2021), No. 6, p. 1837.

    Article  CAS  Google Scholar 

  47. J.J. Liang and W.C.P. Kung, Confinement of Mg-MgH2 systems into carbon nanotubes changes hydrogen sorption energetics, J. Phys. Chem. B, 109(2005), No. 38, p. 17837.

    Article  CAS  Google Scholar 

  48. Y.N. Liu, J.L. Zhu, Z.B. Liu, Y.F. Zhu, J.G. Zhang, and L.Q. Li, Magnesium nanoparticles with Pd decoration for hydrogen storage, Front. Chem., 7(2020), art. No. 949.

  49. J. Asselin, C. Boukouvala, E.R. Hopper, Q.M. Ramasse, J.S. Biggins, and E. Ringe, Tents, chairs, tacos, kites, and rods: Shapes and plasmonic properties of singly twinned magnesium nanoparticles, ACS Nano, 14(2020), No. 5, p. 5968.

    Article  CAS  Google Scholar 

  50. A. Schneemann, J.L. White, S. Kang, et al., Nanostructured metal hydrides for hydrogen storage, Chem. Rev., 118(2018), No. 22, p. 10775.

    Article  CAS  Google Scholar 

  51. F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, p. 7334.

    Article  CAS  Google Scholar 

  52. C.Q. Zhou, C.D. Hu, Y.T. Li, and Q.A. Zhang, Crystallite growth characteristics of Mg during hydrogen desorption of MgH2, Prog. Nat. Sci. Mater. Int., 30(2020), No. 2, p. 246.

    Article  CAS  Google Scholar 

  53. Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922.

    Article  CAS  Google Scholar 

  54. Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32.

    Article  CAS  Google Scholar 

  55. F.M. Nyahuma, L.T. Zhang, M.Y. Song, et al., Significantly improved hydrogen storage behaviors in MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1788.

    Article  CAS  Google Scholar 

  56. Y. Jia, C.H. Sun, S.H. Shen, J. Zou, S.S. Mao, and X.D. Yao, Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renewable Sustainable Energy Rev., 44(2015), p. 289.

    Article  CAS  Google Scholar 

  57. Y.S. Au, Y.G. Yan, K.P. de Jong, A. Remhof, and P.E. de Jongh, Pore confined synthesis of magnesium boron hydride nanoparticles, J. Phys. Chem. C, 118(2014), No. 36, p. 20832.

    Article  CAS  Google Scholar 

  58. Z.Y. Han, M.L. Yeboah, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Hybrid activation mechanism of thermal annealing for hydrogen storage of magnesium based on experimental evidence and theoretical validation, Appl. Surf. Sci., 504(2020), art. No. 144491.

  59. Z. Ding, H. Li, and L. Shaw, New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system, Chem. Eng. J., 385(2020), art. No. 123856.

  60. Z.F. Wu, B. Tan, W.P. Lustig, et al., Magnesium based coordination polymers: Syntheses, structures, properties and applications, Coord. Chem. Rev., 399(2019), art. No. 213025.

  61. K.F. Aguey-Zinsou and J.R. Ares-Fernández, Hydrogen in magnesium: New perspectives toward functional stores, Energy Environ. Sci., 3(2010), No. 5, p. 526.

    Article  CAS  Google Scholar 

  62. A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602.

    Article  CAS  Google Scholar 

  63. J. Cui, H. Wang, D.L. Sun, Q.A. Zhang, and M. Zhu, Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition, Rare Met., 35(2016), No. 5, p. 401.

    Article  Google Scholar 

  64. H. Liu, P. Sun, R.C. Bowman Jr, Z.Z. Fang, Y. Liu, and C.S. Zhou, Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride, J. Power Sources, 454(2020), art. No. 227936.

  65. H.Y. Shao, L.Q. He, H.J. Lin, and H.W. Li, Progress and trends in magnesium-based materials for energy-storage research: A review, Energy Technol., 6(2018), No. 3, p. 445.

    Article  Google Scholar 

  66. Y. Wang, Z.M. Ding, X.J. Li, et al., Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres, Dalton Trans., 49(2020), No. 11, p. 3495.

    Article  CAS  Google Scholar 

  67. M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, and V.A. Yartys, Magnesium-carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57(2013), p. 146.

    Article  CAS  Google Scholar 

  68. M. Matsumoto, T. Kita, and K. Tanaka, Hydrogen adsorption/desorption properties of anhydrous metal oxalates; metal = Mg2+ and Ca2+, Bull. Chem. Soc. Jpn., 93(2020), No. 8, p. 985.

    Article  CAS  Google Scholar 

  69. M. Chen, Y.H. Pu, Z.Y. Li, et al., Synergy between metallic components of MoNi alloy for catalyzing highly efficient hydrogen storage of MgH2, Nano Res., 13(2020), No. 8, p. 2063.

    Article  CAS  Google Scholar 

  70. R. Bardhan, A.M. Ruminski, A. Brand, and J.J. Urban, Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage materials, Energy Environ. Sci., 4(2011), No. 12, p. 4882.

    Article  CAS  Google Scholar 

  71. D. Mukherjee and J. Okuda, Molecular magnesium hydrides, Angew. Chem. Int. Ed., 57(2018), No. 6, p. 1458.

    Article  CAS  Google Scholar 

  72. S. Cheung, W.Q. Deng, A.C.T. van Duin, and W.A. Goddard III, ReaxFFMgH reactive force field for magnesium hydride systems, J. Phys. Chem. A, 109(2005), No. 5, p. 851.

    Article  CAS  Google Scholar 

  73. J.L. White, N.A. Strange, J.D. Sugar, et al., Melting of magnesium borohydride under high hydrogen pressure: Thermodynamic stability and effects of nanoconfinement, Chem. Mater., 32(2020), No. 13, p. 5604.

    Article  CAS  Google Scholar 

  74. Q.Y. Zhang, Y.K. Huang, T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953.

  75. Z.W. Ma, Q.Y. Zhang, S. Panda, et al., In situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage, Sustainable Energy Fuels, 4(2020), No. 9, p. 4694.

    Article  CAS  Google Scholar 

  76. A. Schneemann, L.F. Wan, A.S. Lipton, et al., Nanoconfinement of molecular magnesium borohydride captured in a bipyridine-functionalized metal-organic framework, ACS Nano, 14(2020), No. 8, p. 10294.

    Article  CAS  Google Scholar 

  77. P.A. Song, J.F. Dai, G.R. Chen, Y.M. Yu, Z.P. Fang, W.W. Lei, S.Y. Fu, H. Wang, and Z.G. Chen, Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement, ACS Nano, 12(2018), No. 9, p. 9266.

    Article  CAS  Google Scholar 

  78. D.P.E. de Jongh and D.P. Adelhelm, Nanosizing and nanoconfinement: New strategies towards meeting hydrogen storage goals, ChemSusChem, 3(2010), No. 12, p. 1332.

    Article  CAS  Google Scholar 

  79. L. Wang, A. Rawal, M.Z. Quadir, and K.F. Aguey-Zinsou, Nanoconfined lithium aluminium hydride (LiAlH4) and hydrogen reversibility, Int. J. Hydrogen Energy, 42(2017}), No. 20}, p. 14

    Article  CAS  Google Scholar 

  80. X.B. Yu, Z.W. Tang, D.L. Sun, L.Z. Ouyang, and M. Zhu, Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications, Prog. Mater. Sci., 88(2017), p. 1.

    Article  Google Scholar 

  81. G.L. Xia, Y.B. Tan, X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981.

    Article  CAS  Google Scholar 

  82. G.L. Xia, Y.B. Tan, F.L. Wu, et al., Graphene-wrapped reversible reaction for advanced hydrogen storage, Nano Energy, 26(2016), p. 488.

    Article  CAS  Google Scholar 

  83. T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, and T.R. Jensen, Confinement of MgH2 nanoclusters within nano-porous aerogel scaffold materials, ACS Nano, 3(2009), No. 11, p. 3521.

    Article  CAS  Google Scholar 

  84. P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, et al., The preparation of carbon-supported magnesium nanoparticles using melt infiltration, Chem. Mater., 19(2007), No. 24, p. 6052.

    Article  CAS  Google Scholar 

  85. N.H. Yan, X. Lu, Z.Y. Lu, et al., Enhanced hydrogen storage properties of Mg by the synergistic effect of grain refinement and NiTiO3 nanoparticles, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.03.01

  86. J.H. Guo, S.J. Li, Y. Su, and G. Chen, Theoretical study of hydrogen storage by spillover on porous carbon materials, Int. J. Hydrogen Energy, 45(2020), No. 48, p. 25900.

    Article  CAS  Google Scholar 

  87. X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160.

  88. T.T. le, C. Pistidda, V.H. Nguyen, et al., Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23723.

    Article  CAS  Google Scholar 

  89. R.J. White, R. Luque, V.L. Budarin, J.H. Clark, and D.J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev., 38(2009), No. 2, p. 481.

    Article  CAS  Google Scholar 

  90. M. Paskevicius, H.Y. Tian, D.A. Sheppard, et al., Magnesium hydride formation within carbon aerogel, J. Phys. Chem. C, 115(2011), No. 5, p. 1757.

    Article  CAS  Google Scholar 

  91. Y. Jia, C.H. Sun, L.N. Cheng, et al., Destabilization of Mg-H bonding through nano-interfacial confinement by unsaturated carbon for hydrogen desorption from MgH2, Phys. Chem. Chem. Phys., 15(2013), No. 16, p. 5814.

    Article  CAS  Google Scholar 

  92. K.S. Xia, Q.M. Gao, C.D. Wu, S.Q. Song, and M.R. Ruan, Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3, Carbon, 45(2007), No. 10, p. 1989.

    Article  CAS  Google Scholar 

  93. S.S. Shinde, D.H. Kim, J.Y. Yu, and J.H. Lee, Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage, Nanoscale, 9(2017), No. 21, p. 7094.

    Article  CAS  Google Scholar 

  94. L.M. Sanz-Moral, A. Navarrete, G. Sturm, et al., Release of hydrogen from nanoconfined hydrides by application of microwaves, J. Power Sources, 353(2017), p. 131.

    Article  CAS  Google Scholar 

  95. P. Agarwala, S.K. Pati, and L. Roy, Unravelling the possibility of hydrogen storage on naphthalene dicarboxylate-based MOF linkers: A theoretical perspective, Mol. Phys., 118(2020), No. 21–22, art. No. e1757169.

    Google Scholar 

  96. W.W. Sun, S.F. Li, J.F. Mao, et al., Nanoconfinement of lithium borohydride in Cu-MOFs towards low temperature dehydrogenation, Dalton Trans., 40(2011), No. 21, p. 5673.

    Article  CAS  Google Scholar 

  97. S. Atashrouz and M. Rahmani, Predicting hydrogen storage capacity of metal—organic frameworks using group method of data handling, Neural Comput. Appl., 32(2020), No. 18, p. 14851.

    Article  Google Scholar 

  98. K.K. Gangu, S. Maddila, S.B. Mukkamala, and S.B. Jonnalagadda, Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review, J. Energy Chem., 30(2019), p. 132.

    Article  Google Scholar 

  99. A. Salehabadi, N. Morad, and M.I. Ahmad, A study on electrochemical hydrogen storage performance of β-oppper phthalocyanine rectangular nanocuboids, Renewable Energy, 146(2020), p. 497.

    Article  CAS  Google Scholar 

  100. A. Ahmed, Y.Y. Liu, J. Purewal, et al., Balancing gravimetric and volumetric hydrogen density in MOFs, Energy Environ. Sci., 10(2017), No. 11, p. 2459.

    Article  CAS  Google Scholar 

  101. L. Ren, W. Zhu, Q.Y. Zhang, et al., MgH2 confinement in MOF-derived N-doped porous carbon nanofibers for enhanced hydrogen storage, Chem. Eng. J., 434(2022), art. No. 134701.

  102. Z.W. Ma, S. Panda, Q.Y. Zhang, et al., Improving hydrogen sorption performances of MgH2 through nanoconfinement in a mesoporous CoS nano-boxes scaffold, Chem. Eng. J., 406(2021), art. No. 126790.

  103. Q.W. Lai and K.F. Aguey-Zinsou, Destabilisation of Ca(BH4)2 and Mg(BH4)2 via confinement in nanoporous Cu2S hollow spheres, Sustainable Energy Fuels, 1(2017), No. 6, p. 1308.

    Article  CAS  Google Scholar 

  104. X.B. Xie, X.J. Ma, P. Liu, J.X. Shang, X.G. Li, and T. Liu, Formation of multiple-phase catalysts for the hydrogen storage of Mg nanoparticles by adding flowerlike NiS, ACS Appl. Mater. Interfaces, 9(2017), No. 7, p. 5937.

    Article  CAS  Google Scholar 

  105. Y.L. Li, H. Yuan, Y.B. Chen, X.Y. Wei, K.Y. Sui, and Y.Q. Tan, Application and exploration of nanofibrous strategy in electrode design, J. Mater. Sci. Technol., 74(2021), p. 189.

    Article  CAS  Google Scholar 

  106. G.Z. Li, H. Yuan, J.J. Mou, et al., Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes, Compos. Commun., 29(2022), art. No. 101043.

  107. C.W. Duan, Y.T. Tian, X.Y. Wang, et al., Ni-CNTs as an efficient confining framework and catalyst for improving dehydriding/rehydriding properties of MgH2, Renewable Energy, 187(2022}), p. 4

    Article  CAS  Google Scholar 

  108. B.G. Liu, B. Zhang, H.X. Huang, et al., Catalytic mechanism of in-situ Ni/C co-incorporation for hydrogen absorption of Mg, J. Magnes. Alloys, (2021). DOI: https://doi.org/10.1016/j.jma.2021.08.019

  109. B. Liu, B. Zhang, X. Chen, et al., Remarkable enhancement and electronic mechanism for hydrogen storage kinetics of Mg nano-composite by a multi-valence Co-based catalyst, Mater. Today Nano, 17(2022), art. No. 100168.

Download references

Acknowledgements

This work was financially supported by the research programs of the National Natural Science Foundation of China (No. 52101274), the Natural Science Foundation of Shandong Province, China (No. ZR2020QE011), and the Youth Top Talent Foundation of Yantai University, China (No. 2219008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiubo Xie or Wei Du.

Additional information

Conflict of Interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, B., Xie, X. et al. Recent advances in the nanoconfinement of Mg-related hydrogen storage materials: A minor review. Int J Miner Metall Mater 30, 14–24 (2023). https://doi.org/10.1007/s12613-022-2519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2519-z

Keywords

Navigation